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Abstract
The potential of  B20 cluster decorated with alkali metals (AM = Li, Na, and K) and alkaline earth metals (AEM = Ca, Mg, 
and Be) to adsorb hydrogen molecules is investigated using density functional theory (DFT). The Bader’s topological 
parameters suggest the presence of non-bonded interaction between the bare structures and  H2 molecules. Global reactivity 
descriptor values confirm that the structures remain stable even after the adsorption of  H2 molecules. The results indicate 
that Na adorned  B20  (B20Na2) can store up to  12H2 molecules, with a hydrogen storage capacity of 8.33 wt% and an average 
adsorption energy is 0.127 eV/H2. The findings suggest that  B20 cluster decorated with AM and AEM have the ability to 
be a promising hydrogen storage material. Additionally, to gain insights into the adsorption and desorption behaviors of  H2 
molecules, ADMP molecular dynamics simulations methods were performed at room temperatures.
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Introduction

Nowadays, the growing global population has significantly 
increased human living standards. Conventional energy 
sources can no longer meet the demand for energy, which 
is limited and may pollute the environment if utilized in an 
excessive manner [1, 2]. Recently, hydrogen is regarded as a 
promising energy carrier with the potential to replace fossil 
fuels owing to its vast availability, great efficiency, and envi-
ronmental friendliness [3, 4]. However, obtaining a viable 
hydrogen storage technology remains a major challenge in 
the current decade. As a result, more study into the strate-
gies to accomplish safe and effective hydrogen storage is 
most required. The US Department of Energy has revised its 
hydrogen storage capacity for 2025 to a gravimetric density 
of 5.5 wt% at ambient temperature. Indubitably, developing 
a cost-effective hydrogen storage system is still a long way 
off [5]. To solve this problem several materials have been 
investigated for their potential in hydrogen storage [6, 7]. 

Mahamiya et al. explored the scandium decorated  C24 fuller-
ene, which showed the ability to hold up to six  H2 molecules 
with a gravimetric density of 13.02 wt% [8]. Another study, 
in the same research group, studied the yttrium-doped  C24 
fullerene, demonstrating a maximum adsorption of  6H2 mol-
ecules with an average adsorption energy of − 0.37 eV and 
an average desorption temperature of 477 K [9]. El Kassaoui 
et al. examined metal decorated beryllium carbide, find-
ing that 2Li@Be2C and 2 K@Be2C could host up to  16H2 
molecules, resulting in gravimetric capacities of 10.21 and 
8.48 wt%, respectively [10]. Additionally, the same research 
group explored the t-graphene-like boron nitride monolayer 
(t-B4N4) for hydrogen storage applications. By replacing car-
bon atoms in t-graphene with boron and nitrogen atoms, 
they achieved a Li-decorated double-sided t-B4N4 capable 
of storing up to  32H2 molecules. This material exhibited 
average hydrogen adsorption energy of 0.217 eV per  H2 and 
a maximum hydrogen storage capacity of 12.47 wt% [11].

In general, hydrogen molecules cannot be adequately 
adsorbed as their binding to the surface of pristine 
nanostructures is highly inf luenced by the Van der 
Waals interaction [12]. However, metal doping on 
boron clusters has shown to be a successful and use-
ful technique for enhancing the adsorption capability 
for  H2 molecules. Henceforth, several metal-decorated 
nanostructures were studied through experimental and 
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theoretical methods [13–17]. Among those, due to their 
light weight and distinctive electronic properties, boron 
nanostructures have recently received significant atten-
tion from researchers compared to carbon nanostruc-
tures. Boron clusters  (Bn, n > 20) with metal decorations 
are commonly suggested as promising hydrogen storage 
materials [18, 19]. Indeed, metals adorned with smaller 
boron structures  (Bn, n < 20) are also found to be effec-
tive hydrogen storage compounds [20].

Among alkali (AM = Li, Na, and K) and alkaline earth 
metals (AEM = Ca, Mg, and Be), decorated boron materials 
exhibit outstanding hydrogen storage capabilities [17–22]. 
In the investigation of Na coated  B36 boron sheets, Ye et al. 
observed that these clusters had a 4.4 wt% hydrogen storage 
capacity and could thus accommodate up to  10H2 molecules 
[23]. Alkali metal (AM = Li, Na, and K) doped  B80 fullerene 
was studied for its hydrogen storage potential by Yuanchang 
et al. and higher gravimetric densities were observed for 
Na- and K-doped fullerene (11.2 wt% and 9.8 wt%) [24]. 
Mao et al. studied the metal atoms (M = Li, Ca, Sc, and Ti) 
coated  B40 clusters and identified that 6Ca@B40 could hold 
up to  24H2 molecules with an average adsorption energy of 
0.170 eV/H2 which resulted in a gravimetric density of 6.66 
wt% [25]. Liu et al. examined the hydrogen storage perfor-
mance of Ca decorated  B36, finding that each Ca atom can 
hold up to  6H2 molecules with preferable adsorption energy 
of 0.364 eV/H2, yielding a gravimetric density of 4.97 wt% 
[26]. Wang et al. reported that the gravimetric density of 
Ca-decorated novel boron sheet was 12.68 wt% and its aver-
age binding energy varied from − 0.20 to − 0.32 eV/H2 [27].

Recently, boron clusters have aroused the interest of 
researchers due to the fact that their properties vary depend-
ing on size, component, and structure. Kiran et al. studied 
the neutral and anionic  B20 clusters using experimental and 
computational simulations and identified the  B20 neutral 
cluster has a double-ring tubular structure with a diameter of  
5.2 Å [28]. An et al. investigated the stability of planar ver-
sus double-ring tubular isomerism using neutral and anionic 
 B20 clusters [29]. Lu et al. extensively investigated the struc-
tural and electronic characteristics of C- and Si-doped  B20  
clusters through semi-empirical quantum mechanics method 
and identified that substitution of C and Si atoms noticeably 
alters the structural features of  B20 clusters [30]. Although 
there have been a several number of theoretical and experi-
mental studies on hydrogen storage applications published in 
literatures to date, however, there is no study have been pub-
lished on  B20 with alkali and alkaline earth metals [31–33]. 
Therefore, we aim to examine the hydrogen storage capabili-
ties of alkali (Li, Na, and K) and alkaline earth metals (Ca, Mg,  
and Be) decorated  B20 boron cluster based on density func-
tional theory (DFT) calculations. The obtained results may 
contribute to the development of  B20-based nanostructures 
for hydrogen storage applications.

Computational details

DFT calculations were employed to examine the stabil-
ity, electronic, and storage properties of  H2 molecules on 
alkali (Li, Na, and K) and alkaline earth metals (Ca, Mg, 
and Be) decorated  B20 at the ωB97XD/6–311 +  + G(d,p) 
level of theory [34, 35]. At the same theoretical level, the 
natural bonding orbitals (NBO) were calculated. The nature 
of the interaction between bare cluster and hydrogen mol-
ecules was investigated using quantum theory of atoms in 
molecule (QTAIM) with the aid of Multiwfn software [36].  
Analyzing their global reactivity descriptors, such as hard-
ness (η), electrophilicity (ω), and electronegativity (χ) led to 
better understanding of the stability and reactivity of alkali- 
and alkaline earth metals–decorated boron clusters and their 
 H2 interacted systems. Additionally, the energy gaps (Eg) 
between the highest occupied molecular orbitals (HOMOs) 
and lowest unoccupied molecular orbitals (LUMOs) of the 
clusters are calculated in order to determine their kinetic 
stabilities [37]. The following expressions represent the 
hardness (η), electronegativity (χ), and electrophilicity (ω).

Presently, the following expression can be used to evalu-
ate the gravimetric density (wt%) for hydrogen storage.

Where M
H

2
 and MHost are mass of maximum hydrogen mol-

ecules adsorbed over the system and mass of the host struc-
ture, respectively. All the simulation studies were executed 
in Gaussian 09W software [38], and structures are visual-
ized using the Chemcraft software [39].
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Na, and K) and alkaline earth metals (AEM = Ca, Mg, and 
Be) on both top and bottom of the boron cluster in the ground 
state. The bond lengths of boron to lithium  (B20-Li2), sodium 
 (B20-Na2), and potassium  (B20-K2) are observed to be 2.286 Å, 
2.920 Å, and 3.046 Å, respectively, for alkali metal–decorated 
 B20 complexes. Similarly, for alkaline earth metal–decorated 
 B20 cluster, the bond length of calcium  (B20-Ca2), magnesium 
 (B20-Mg2), and beryllium  (B20-Be2) are observed to be 2.681 Å, 
2.297 Å, and 1.982 Å, respectively. Firstly, one  H2 molecule is 
added to each Li atom in the  B20Li2 structure and it is placed par-
allel to the boron cluster. After gradually expanding the  B20Li2 
structure with the addition of  H2 molecules, it was found that 
it could accommodate up to  6H2 molecules and has a quasi-
perpendicular arrangement. Similarly for structures  B20Na2, 
 B20K2,  B20Ca2,  B20Mg2, and  B20Be2, each structure can hold 
up to  12H2,  12H2,  9H2,  8H2, and  2H2 molecules, respectively.

Figure  1 depicts the  H2 adsorption on  B20AM2 and 
 B20AEM2 structures, and Table 1 lists the notable average 
bond lengths for both bare and  H2 adsorbed structures. A 
nominal change from the bare boron cluster is observed 
signifying the adsorption of  H2 molecules. The H–H bond 
distance of the entire complex is not considerably altered 
and they fall in the range of 0.748 to 0.777 Å when com-
pared to its isolates (0.750 Å). In alkali (B-AM; AM = Li, 
Na, and K) and alkaline earth metals (B-AEM; AEM = Ca, 

Mg, and Be) interacted complexes, the B-AM /B-AEM 
bonds are increased by 0.002–0.232 Å, and this demon-
strates that the presence of  H2 molecules does not affect the 
structural integrity of  B20AM2 and  B20AEM2 structures. The 
AM-H/AEM-H bond lengths are found to be in the range 
of 1.623–2.996 Å in  H2 adsorbed alkali and alkaline earth 
metal complexes, respectively.

Fig. 1  Optimized geometries of 
 H2 adsorbed  B20AM2 (AM = Li, 
Na, and K) and  B20AEM2 
(AEM = Ca, Mg, and Be) 
complexes

Table 1  Average bond lengths of B-B, B-M (M = Li, Na, K, Ca, 
Mg, and Be), M-M, M-H, and H–H of the cluster calculated at 
ωB97XD/6–311 +  + G(d,p) level of theory

Complexes B-B (Å) B-M (Å) M-M (Å) M-H (Å) H–H (Å)

B20Li2 1.678 2.286 4.047 - -
B20Li2–6H2 1.675 2.518 4.124 2.223 0.750
B20Na2 1.681 2.920 5.444 - -
B20Na2–12H2 1.676 2.993 5.527 2.635 0.749
B20K2 1.677 3.046 6.130 - -
B20K2–12H2 1.673 3.134 6.111 2.996 0.748
B20Ca2 1.690 2.681 4.926 - -
B20Ca2–9H2 1.687 2.683 4.972 2.586 0.753
B20Mg2 1.704 2.297 4.559 - -
B20Mg2–8H2 1.666 2.352 4.538 2.553 0.752
B20Be2 1.689 1.982 2.889 - -
B20Be2–2H2 1.699 1.989 3.107 1.623 0.777
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HOMO–LUMO analysis

To better comprehend the electronic properties upon  H2 
adsorption, calculations on frontier molecular orbitals 
(FMOs) are performed. The energies of HOMO, LUMO, 
energy gap (Eg), hardness (η), electrophilicity (ω), and 
electronegativity (χ) of the structures are calculated at 
ωB97XD/6–311 +  + G(D,P) level of theory and the values 
are listed in Table 2. The findings demonstrate that the com-
plexes exhibit an increase in values of hardness with decrease 
in electrophilicity. However, in contrast, for alkali metal com-
plexes the values of hardness decrease when compared to its 
isolates. Among,  B20Na2–12H2 has the highest η (2.592 eV), 
 B20Ca2 –9H2 has the lowest ω (2.732 eV), and maximum ω 
(4.724 eV) is observed for  B20Be2–2H2 complexes. Addition-
ally, we observed that χ values decreased after adsorption of 
 H2 molecules in  B20AM2 and  B20AEM2 structures. The high-
est value of χ was identified for  B20Be2 (4.745 eV) and the 
lowest for  B20Ca2 (3.620 eV) complexes. Hence, minimum 
electrophilicity and maximum hardness principles ensure that 
the stability of complex is enhanced after successive adsorp-
tion of hydrogen molecules. Furthermore, it was observed that 
the values of electronegativity (χ) decrease with the addition 
of  H2 molecules, showing that the complexes are less likely to 
lose electrons, therefore implying the enhanced stability of the 
considered complexes. Moreover, the calculated energy gap 
(Eg) values gradually increased upon addition of the hydro-
gen molecule adsorption for alkaline earth metal–decorated 
complexes. However, a reverse trend is observed for alkali 
metal–adorned complexes.

Natural bond orbital (NBO) and quantum theory 
of atoms in molecule (QTAIM) analysis

The values of average natural bond orbital (NBO) analy-
sis of the structures both prior and after  H2 adsorption are 
given in Table 3. The average NBO charge of all the struc-
tures are listed in Table S1 (Supplementary Information). 

The computed average NBO charges for B, AM/AEM,  H2 
adsorbed complexes, and bare B, AM/AEM along with the 
corresponding number of hydrogen molecules are depicted 
in Fig. 2. The average charges on the B atom of the bare 
structure range from − 0.073 to − 0.140 e. However, upon 
functionalization with AM/AEM atoms, these charges 
experience a reduction and range from − 0.011 to − 0.085 
e. The results show that B atom contains vacant p orbitals 
and predict that during the adsorption process about 0.006 
e–0.669 e NBO charges are transferred from metal atom 
(AM/AEM) to B atom (− 0.011 e to − 0.085 e). This results 
exhibit the occurrence of charge transfer from metal atoms 
to the boron cluster. As a result of the charge transfer taking 
place between the metal atoms and boron cluster, bonds at 
B-Li of  B20Li2-6H2 complex is altered by 0.232 Å exhibit-
ing the presence of strong interactions prevailing. Similar 
changes are also observed for Na, K, and alkaline earth 
metal–interacted  H2 molecules.

With the aid of topological descriptors, the nature of contact 
between the host clusters and its  H2 interacted complexes is 
investigated using the quantum theory of atoms in molecules 
(QTAIM), and the corresponding results are listed in Table 4. 
The values of electron density (ρ) and Laplacian of electron 
density (∇2ρ) are found to be in the range of 0.0415–0.0211 
a.u. and 0.0415–0.0271 a.u. at M-H for all the  H2 adsorbed 

Table 2  The calculated 
values of HOMO, LUMO 
and HOMO–LUMO energy 
gap (Eg), hardness (η), 
electrophilicity index (ω), and 
electronegativity (χ) of the 
structures

Complexes HOMO (eV) LUMO (eV) Eg (eV) η (eV) ω (eV) χ (eV)

B20Li2  − 7.213  − 2.156 5.057 2.529 4.340 4.685
B20Li2–6H2  − 7.038  − 2.036 5.002 2.501 4.115 4.537
B20Na2  − 7.141  − 1.769 5.372 2.686 3.695 4.455
B20Na2–12H2  − 6.769  − 1.586 5.183 2.592 3.367 4.178
B20K2  − 6.601  − 1.451 5.150 2.575 3.147 4.026
B20K2–12H2  − 6.443  − 1.457 4.986 2.493 3.129 3.950
B20Ca2  − 6.152  − 1.496 4.656 2.328 3.141 3.824
B20Ca2–9H2  − 6.018  − 1.222 4.796 2.398 2.732 3.620
B20Mg2  − 6.648  − 1.793 4.855 2.428 3.669 4.221
B20Mg2–8H2  − 6.271  − 1.362 4.909 2.455 2.967 3.817
B20Be2  − 7.066  − 2.362 4.704 2.352 4.724 4.714
B20Be2–2H2  − 7.128  − 2.362 4.766 2.383 4.724 4.745

Table 3  Average NBO charge of each atoms (e), for  B20AM and 
 B20AEM cluster before and after  H2 adsorption

Complexes Before H2 adsorption After H2 adsorption

QB QAM /QAEM QB QAM /QAEM QH

B20Li2  − 0.074 0.736  − 0.011 0.006 0.026
B20Na2  − 0.077 0.768  − 0.038 0.226 0.020
B20K2  − 0.073 0.729  − 0.052 0.382 0.019
B20Ca2  − 0.119 1.191  − 0.085 0.669 0.032
B20Mg2  − 0.140 1.098  − 0.047 0.233 0.052
B20Be2  − 0.097 0.768  − 0.063 0.359 0.136
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complexes. The findings show the presence of non-covalent 
interaction between the metal atoms and the  H2 adsorbed 
molecule (AM-H/AEM-H). Further, the values for B-AM and 
B-AEM bond suggest a non-covalent and partially covalent 
character, while the B-B bond signifies the existence of cova-
lent in nature. Additionally, all the  H2 adsorbed complexes 
have positive total electron density values (H(r)), suggesting 
that kinetic energy density predominates over potential energy 
density at BCP (bond critical point).

Non‑covalent interaction (NCI)—reduced density 
gradient (RDG) analysis

The non-covalent interaction (NCI)–reduced density gradi-
ent (RDG) analysis of the considered complexes was per-
formed to determine the intramolecular and intermolecular 
interactions, while also categorizing the types and strengths 
of these interactions. To precisely illustrate the regions of 
interaction, we generated plots of the reduced density gradi-
ent (RDG) alongside the sign(λ2)ρ(r). The sign(λ2)ρ(r) value 
was utilized to distinguish between strong and weak non-
covalent interactions. The NCI scatter plots and correspond-
ing isosurfaces for the complexes are visualized in Fig. 3. 
The scatter plot of sign(λ2)ρ(r) versus RDG covers a range 
from − 0.05 to 0.05 a.u. The sign(λ2)ρ(r) values are posi-
tioned on the X-axis, while the RDG values are presented 

on the vertical axis. The NCI analysis is elucidated using a 
color scale: red signifies areas with repulsive interactions 
due to steric effects; blue-colored regions denote interactions 
arising from hydrogen bonds. Additionally, green regions 
indicate van der Waals (Vdw) interactions. In the preceding 
section, quantum theory of atoms in molecules (QTAIM) 
analysis predicted the presence of non-covalent interac-
tions between hydrogen molecules and metal atoms, as well 
as between boron and metal atoms within the complexes. 
Similarly, in Fig. 3, the green regions are evident around the 
hydrogen molecules and the metal atoms, as well as between 
boron and metal atoms, which can be attributed to van der 
Waals interactions. Additionally, red regions appear along 
the B-B and B-AEM bonds of the complexes, indicating 
repulsive interactions in those regions.

Adsorption energy

The average adsorption energy (Eads) and wt% of the system 
calculated at the same level of theory are shown in Table 5. 
Furthermore, the values are compared with those of previ-
ously documented boron-based 2D nanostructures. The values 
of Eads are determined to fall between 0.094 and 0.503 eV/H2. 
The results show that Eadsvalues are positive for the entire  H2 
adsorbed host cluster suggesting that the  H2 adsorption mech-
anism is exothermic in nature. The gravimetric densities of all 

Fig. 2  Average NBO charges before and after hydrogen adsorption of the structures



 Structural Chemistry

1 3

the complexes are determined to be in the range of 1.66–8.33 
wt % which is well in agreement with the US Department of 
Energy (DOE) predicted value (5.5 wt% by 2025). However, 
in the present work  B20Li2–6H2 and  B20Be2–2H2 complex 
gravimetric densities are less than the US DOE targeted value. 
Table 5 provides additional insights, revealing that the  B20 
nanostructures decorated with alkali and alkaline earth metals 
exhibit higher gravimetric capacities than those reported in 
previous literature, with the exception of the Li and Be deco-
rated structures. The structure  B20Na2 can store up to  12H2 
molecules, resulting in a relatively high gravimetric density 
of 8.33 wt% and the complex suggests that it can be the most 
prospective candidate for hydrogen storage.

Molecular dynamics simulations

To investigate the adsorption and desorption processes 
at room temperature, we performed atom-centered den-
sity matrix propagation (ADMP)–molecular dynamics 
(MD) simulation of all the complexes. The simulations 
were carried out for duration of 200 fs. The trajectories 
of the complexes are visualized in Fig. 4, while snap-
shots captured at various time intervals are provided in 
Fig. S1 (Supplementary Information). The observations 
of the results revealed that within specific time intervals 
of 30 fs, 20 fs, 20 fs, 30 fs, 30 fs, and 50 fs, the first  H2 
molecules began to move away from the  B20Li2–6H2, 

Table 4  The topological 
parameters (in a.u.) of 
the structures obtained at 
ωB97XD/6–311 +  + G(d,p) 
level of theory

Complexes BCP ρ ∇2ρ G(r) V(r) H(r)

B20Li2 B-B 0.1531 − 0.2678 0.0484 − 0.1534 − 0.1692
B-Li 0.0177 0.0779 0.0179 − 0.0160 0.0018

B20Li2–6H2 B-B 0.1492 − 0.2565 0.0463 − 0.1567 − 0.1104
B-Li 0.0152 0.0700 0.0155 − 0.0135 0.0020
Li–H 0.0068 0.0415 0.0082 − 0.0060 0.0022
H–H 0.2589 − 1.0401 0.0005 − 0.2616 − 0.2611

B20Na2 B-B 0.1515 − 0.2703 0.0456 − 0.1587 − 0.1131
B-Na 0.0115 0.0485 0.0104 − 0.0087 0.0017

B20Na2–12H2 B-B 0.1272 − 0.2313 0.0379 − 0.1336 − 0.0957
B-Na 0.0089 0.0390 0.0081 − 0.0064 0.0017
Na–H 0.0052 0.0271 0.0052 − 0.0035 0.0016
H–H 0.0029 0.0077 0.0015 − 0.0011 0.0004

B20K2 B-B 0.1436 − 0.2095 0.0474 − 0.1471 − 0.1634
B-K 0.0115 0.0377 0.0082 − 0.0070 0.0012

B20K2–12H2 B-B 0.1447 − 0.2437 0.0424 − 0.1458 − 0.1034
B-K 0.0080 0.0229 0.0049 − 0.0041 0.0009
K-H 0.0049 0.0211 0.0039 − 0.0026 0.0013
H–H 0.2590 − 1.0502 0.0003 − 0.2620 − 0.2617

B20Ca2 B-B 0.1475 − 0.2437 0.0471 − 0.1551 − 0.1080
B-Ca 0.1070 0.0863 0.0232 − 0.0249 − 0.0002

B20Ca2–9H2 B-B 0.1463 − 0.2346 0.0486 − 0.1558 − 0.1836
B-Ca 0.0245 0.0729 0.0188 − 0.0194  − 0.0006
Ca-H 0.0099 0.0369 0.0077 − 0.0061 0.0016
H–H 0.2562 − 1.0262 0.0009 − 0.2584  − 0.2575

B20Mg2 B-B 0.1392 − 0.2208 0.0455 − 0.1378  − 0.1012
B-Mg 0.0362 0.1040 0.0300 − 0.0340  − 0.0040

B20Mg2–8H2 B-B 0.1453 − 0.2372 0.0449 − 0.1491  − 0.1845
B-Mg 0.0341 0.1063 0.0296 − 0.0326  − 0.0030
Mg-H 0.0090 0.0305 0.0068 − 0.0060 0.0008
H–H 0.2566 − 1.0288 0.0008 − 0.1550 − 0.2580

B20Be2 B-B 0.1471 − 0.2441 0.0473 − 0.1557 − 0.1084
B-Be 0.0590 0.1402 0.0567 − 0.0784 − 0.0217

B20Be2–2H2 B-B 0.1429 − 0.2388 0.0416 − 0.1429 − 0.1013
B-Be 0.0597 0.1482 0.0587 − 0.0802 − 0.0216
Be-H 0.0382 0.2258 0.0560 − 0.0556 0.0004
H–H 0.2468 − 0.9386 0.0046 − 0.2439 − 0.2392
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 B20Na2–12H2,  B20K2–12H2,  B20Ca2–9H2,  B20Mg2–8H2, 
and  B20Be2–2H2 complexes, respectively. Through 
the MD simulations, we found that even after 200 fs, 
 2H2,  5H2,  3H2,  1H2,  1H2, and  2H2 molecules remained 
bound to the  B20Li2,  B20Na2,  B20K2,  B20Ca2,  B20Mg2, 
and  B20Be2 clusters, respectively. Notably, there were 
minimal changes in the geometrical characteristics of 
the clusters even after the desorption process. This sug-
gests that these clusters hold promising potential for 
reversible  H2 storage.

Fig. 3  The plot of sign(λ2)ρ(r) 
(a.u.) and reduced density gradi-
ent (RDG) for all the complexes

Table 5  Average adsorption energy per  H2 molecule (Eads) and gravi-
metric density

Complexes Eads (eV) wt% Literature

Structure wt%

B20Li2–6H2 0.181 4.91 B40Li6-18H2 [32] 7.10
B20Na2–12H2 0.127 8.33 B36Na2-10H2 [23] 4.40
B20K2–12H2 0.094 7.51 B28K3-14H2 [40] 6.30
B20Ca2–9H2 0.188 5.70 B36Ca2-12H2 [26] 4.97
B20Mg2–8H2 0.141 5.67 B9Mg2-4H2 [41] 5.20
B20Be2–2H2 0.503 1.66 B8Be2-7H2 [42] 21.1
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Conclusions

The ability of  B20 cluster decorated with alkali (AM = Li, Na, 
and K) and alkaline earth metals (AEM = Ca, Mg, and Be) to 
capture hydrogen atoms is explored using density functional 
theory (DFT) calculations. The electronic properties explain 
the stability of the structures which are supported by their 
enhanced chemical hardness and decreased electrophilicity 
index. The global reactivity values affirm that the structure 
remains stable even after the adsorption of  H2 molecules. 
Topological parameters revealed that the interaction between 
bare structures and metal atoms is of closed shell type. Further-
more, a maximum of  6H2 molecules can be attached by each 
Na and K atoms of the  B20Na2 and  B20K2 complexes with a 
gravimetric density of 8.33 and 7.51 wt%, respectively. Based 
on our results we suggest that AM and AEM decorated  B20 
cluster could definitely be a promising material for hydrogen 
storage applications. Molecular dynamics simulations using 
ADMP were conducted under room temperature. The findings 
revealed that the  B20Li2,  B20Na2,  B20K2,  B20Ca2,  B20Mg2, and 
 B20Be2 clusters maintained a binding of up to  2H2,  5H2,  3H2, 
 1H2,  1H2, and  2H2 molecules, respectively, attached to their 
respective metal centers.
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