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Abstract 

 

An analysis of the three dimensional flow of an viscous incompressible fluid 

between two horizontal porous flat plates separated by a finite distance in a slip 

flow regime is carried out under following conditions: the fluid is electrically 

conducting, the free stream velocity is uniform, the plate is subjected to a 

sinusoidal transverse suction velocity distribution and a magnetic field of uniform 

strength is applied in the direction normal to the plate. The influences of the 

various parameters on the main flow and cross flow velocity and skin friction are 

discussed with the help of graphs. 

 

Keywords: Slip flow regime, MHD, porous medium, Couette flow, periodic 

suction 

 

1. Introduction  
 

The Phenomenon of MHD flow with heat transfer play an important role in 

various industrial applications. Some important applications are cooling of nuclear 

reactors, liquid metals fluid, power generation system and aerodynamics Gersten 

and Gross (1974) studied the effect of slightly sinusoidal transverse suction 

velocity distribution on the flow and heat transfer over a plane wall. This suction  
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velocity distribution leads to a cross flow and hence to a three dimensional flow 

over the surface. 

 Das et al (2008) investigated three dimensional Couette flow of a viscous 

incompressible electrically conducting fluid between two infinite horizontal 

parallel porous flat plates in presence of a transverse magnetic field. The 

stationary plate and the plate in uniform motion are, respectively, subjected to a 

transverse sinusoidal injection and uniform suction of the fluid.  

 A study on the effect of constant suction and sinusoidal injection on three 

dimensional Couette flow of a viscous incompressible electrically conducting 

fluid through a porous medium between two infinite horizontal parallel porous flat 

plates in presence of a transverse magnetic field was investigated by Das (2009). 

 Ahmed Sahin (2010) analysed the Magnetohydrodynamic and chemical 

reaction effects on unsteady flow, heat and mass transfer characteristics in a 

viscous, incompressible and electrically conduction fluid over a semi-infinite 

vertical porous plate in a slip-flow regime. 

 The effect of heat source on free convective flow of a incompressible, 

viscous, electrically conducting fluid through a porous medium bounded by an 

oscillating porous plate in the slip flow regime in presence of a transverse 

magnetic field was studied by Das, Mishra and Mishra (2011). 

 Khem chand (2011) investigated the heat transfer and hydromagnetic 

boundary layer flow of an electrically conducting viscous, incompressible fluid 

over a continuous flat surface moving in a parallel free stream. 

 Das, Maity and Das (2012) analysed the unsteady free convective flow of 

a viscous incompressible electrically conducting fluid past an infinite vertical 

porous flat plate in a porous medium with constant suction in presence of a 

uniform transverse magnetic field. 

 The unsteady free convection flow and heat transfer of a viscous 

incompressible fluid past a vertical porous plate embedded in a porous medium 

was studied by Mishra (2014). 

 Guria and Jana (2006) analyzed the three dimensional fluctuating Couette 

flow through the porous plates with heat transfer. The plates are considered to be 

at a distance ‘d’ apart. The stationary plate is subjected to a periodic suction and 

plate in uniform motion is subjected to uniform injection. 

 The aim of the present investigation is to study the effect of magnetic field 

and velocity slip on flow characteristic of an unsteady Couette flow between two 

horizontal parallel porous flat plates with periodic suction at the stationary plate 

and constant injection at the plate in motion. The periodic suction is assumed to 

be time dependent and perpendicular to the flow direction. This makes the flow to 

be three dimensional. The main flow velocity and cross flow velocity are 

calculated and plotted. The results obtained are validated for vanishing slip 

parameter with the results obtained by Guria and Jana (2006) for no slip 

condition. 
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2. Flow Description and Governing Equations 
 
 

 The flow under investigation has been modelled as an unsteady three 

dimensional flow of a viscous incompressible electrically conducting fluid 

between two horizontal flat porous plates separated by a distance d in a slip flow 

regime in presence of a transverse magnetic field 0B . We assume that the upper 

plate is moving with uniform velocity U  in the direction of the flow. We choose a 

Cartesian coordinate system with its origin on the lower stationary plate, x -axis 

is in the direction of the flow, 


y -axis taken perpendicular to the plate and 

directed into fluid flowing laminarly with a uniform free stream velocity U and 

 z -axis is normal to the


yx -plane is introduced. 

  The upper plate is subjected to a constant injection 
0V  and the lower 

plate to a transverse sinusoidal time dependent suction velocity distribution of the 

form  
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where   is the amplitude of the suction velocity. The negative sign in equation (1) 

indicates that the suction is towards the plate.  

 Denoting dimensional velocity components as ,


u


v and w  in the 

directions ,


x


y and 
z axes respectively, the governing equations are given by  

0











z

w

y

v
                 (2) 

 

*

*
*

*

*
*

*

*

z

u
w

y

u
v

t

u














  = 






)(2
0

2

2

2

2 UuB

z

u

y

u 






























            (3) 

 



















z

v
w

y

v
v

t

v
  = 




































2

2

2

2
1

z

v

y

v

y

p



            (4) 

 



















z

w
w

y

w
v

t

w
 = 













































 wB

z

w

y

w

z

p
2
0

2

2

2

2
1

           (5)  

 

where   is kinematic viscosity,  is density and 
p  is fluid pressure. 

The corresponding boundary conditions are  

 

 



8812                                                                                                K. Sumathi et al. 

 

 










y

u
Lu
1

; 














 







ct
d

z
CosVv


10

; 








y

w
Lw
2

  at 0y  

Uu 


; 
0

Vv 
 ;     0


w ;  at dy 


         (6) 

 

where L
m

m
LL 







 


 2*

2
,

1
and 

2
1

2















P
L is the mean free path, m  the 

Maxwell's reflection  coefficient 

By introducing the following non-dimensional parameters  
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Re ; the Reynolds number;  
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The governing equations (2)-(6) can be rewritten in non-dimensional form 

as follows  

0









z

w

y

v
                   (8) 

 
























z

u
w

y

u
v

t

u
Re    = )1(

2

2

2

2
























uM

z

u

y

u
            (9) 

 
























z

v
w

y

v
v

t

v
Re    = 






























2

2

2

2

Re
z

v

y

v

y

p
          (10) 

 
























z

w
w

y

w
v

t

w
Re   = Mw

z

w

y

w

z

p































2

2

2

2

Re          (11) 

 

The corresponding boundary conditions are  
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1u ;  Sv  ;   0w ;  at  1y          (12) 

Here Re ,  denote Reynolds Number and frequency parameter 

respectively. 
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3. Solution of the Problem 
 

 When the amplitude of oscillation in the suction velocity is small ),1(  
we assume u , v , w  and p  in the following form to solve the differential 

equations  (8)-(11). 
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When 0 , the differential equations (8)-(11) pertaining to two dimensional flow 

are obtained as  
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The unsteady state equations are  
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The boundary conditions become  
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 In order to solve this set of differential equations 1u , 1v , 1w  and 1p   are 

assumed in terms of complex notations as below, real part will have physical 

significance.  

 
)(

)(11),,(1
tzi

eyutzyu





       

 
)(

)(11),,(1
tzi

eyvtzyv





  

 
)(

)(11),,(1
tzi

eyv
i

tzyw






   

 
)(

)(
11

),,(
1

tzi
eyptzyp





            (25) 

 

Now using (25) in equations (20) - (23) we get 
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Skin Friction  

 The  skin friction at the wall  is given by  
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For the sake of brevity, the constants are given in Appendix 

 
 

 

4. Numerical Results 
 
 

 In order to get the physical insight of the problem we have studied the 

main flow, cross flow and skin friction as function of various non dimensional 

parameters such as Reynolds number, Suction parameter, Frequency parameter 

and Magnetic parameter. The effects of flow parameters on velocity field and 

skin friction are calculated numerically and discussed with the help of graphs.  

 To check the validity of the analytical expressions derived in the previous 

section we have shown main flow velocityu , cross flow velocity w through 

figures 1 and 2 for vanishing Magnetic field and slip parameter. It can be seen 

from these figures that the main flow velocity increases as Reynolds number and 

Suction parameter increases. The cross flow velocity increases with the increase 

in Suction Parameter. Due to Suction at the stationary plate and injection at the 

moving plate, the cross flow velocity is found to be increasing near the stationary 

plate and decreasing near the upper plate. These results are in agreement with 

Guria and Jana (2006). 
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 In figures 3 and 4, the main flow velocity is plotted as a function of y . It 

could be seen from these figures that the main flow velocity increases with 

increase in either Re  or S while it decrease with increase in frequency parameter. 

 From figures 5 and 6, it can be seen that increasing Hartmann number M  

and velocity slip parameter 
1h  increase the velocity profile. 

 Figures 8-12 illustrate the behaviour of the cross flow velocity as a 

function of y and various non dimensional parameters. It is observed that the 

magnitude of the cross flow velocity w increases with the increase in either S or 

 , but it increases near the stationary plate and decreases near the moving plate 

with increases in Re . This is due to fact that suction at the stationary plate and 

injection at the moving plate are two exactly opposite processes. 

 From Figures 13-18, Skin friction is found to be increasing at stationary 

plate and decreasing at the moving plate with increasing Magnetic Parameter M , 

velocity slip parameters 
1h  and

2h , Reynolds number Re and Suction parameter.  

Skin friction is found to be decreasing at the stationary plate and increasing at the 

moving plate with increasing M ,
1h ,

2h and  . 

 

5. Conclusion 
 

 Motivated by the industrial applications of MHD flows past porous plates, 

we have extended the work of Guria and Jana (2006) to study the effect of 

magnetic field and slip parameter on the three dimensional unsteady Couette flow 

of viscous incompressible fluid between two horizontal porous flat plates. The 

stationary plate is subjected to a periodic suction and the plate in uniform motion 

is subjected to uniform injection. The conclusions of the study are as follows. 

 

 Velocity profile increases with Reynolds number and Suction parameter 

while it decreases with increase in frequency parameter. 

 
 The effect of Hartmann number and velocity slip parameter is to increase the 

main flow velocity.  

 

 The cross flow velocity increases with the increase in either S or  , but it 

increases near the stationary plate and decreases near the moving plate 

with increase in Re . 

 

 The cross flow velocity decreases with increasing Re while it increases 

with increase in Suction parameter. 

 

 Skin friction is found to be increasing at stationary plate and decreasing at 

the moving plate due to Magnetic Parameter and  velocity slip parameter

1h  and 2h . 
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Fig 1: Main Velocity  u versus y for 0.1S , 0M ,    

6 , 0.0z , 2.0 , 2.0t , 01 h , 02 h  

Fig 2:  Cross velocity  -10w versus y for 0.1S

0M , 6 , 5.0z 2.0 , 2.0t 01 h  02 h  

Fig 3: Main Velocity  u versus y  for 0.1S , 2M ,     

6 , 0.0z , 2.0 , 2.0t , 11 h , 12 h  

Fig  4: Main Velocity u as a function of  y for 2M ,

5Re  , 6 , 0.0z , 2.0 , 2.0t , 11 h 12 h  

Fig 5:Main velocity u as a function of M  for 0.1S

6 , 0.0z  , 2.0 , 2.0t , 11 h 12 h at

5.0y  

 

                                                                           

Fig 6:  Main velocity u versus 1h  for 0.1S , 6 ,  

0.0z , 2.0 , 2.0t , 2M  , 12 h  at  5.0y  
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 Fig  7:Main velocity u versus 1h  for 5Re  , 6 ,

0.0z , 2.0 , 2.0t , 2M , 12 h  at 5.0y  

Fig 8: Cross velocity -10w versus y for 0.1S

2M , 6 , 5.0z , 2.0 , 2.0t , 11 h , 12 h  

Fig  9 Cross velocity -10w versus y for 5Re  2M

6 , 5.0z , 2.0 , 2.0t , 11 h , 12 h  

Fig 10: Cross velocity -10w versus M for 0.1S ,

6 , 5.0z , 2.0 , 2.0t , 11 h , 12 h  at

5.0y  

Fig  11: Cross  velocity  -10w  versus 2h  for 0.1S

6 , 5.0z , 2.0 , 2.0t , 2M  , 11 h  at 

5.0y  

Fig  12: Cross velocity -10w  versus 2h  for 5Re     

6 , 5.0z , 2.0 , 2.0t , 2M , 11 h  at 

5.0y  
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Fig 13: Skin Friction  versus M for 5Re  , 6 ,

0.0z , 2.0 , 2.0t , 11 h , 1
2
h  at  0y   

 
Fig 14: Effect of h1 on Skin Friction   for 0.1S

6 , 0.0z 2.0 , 2.0t 2M 12 h at 

0y
 

Fig  15: Skin Friction  versus M for 0.1S , 6  

 0.0z , 2.0 , 2.0t , 11 h , 12 h  at   1y  

Fig 16: Skin Friction  versus M for 5Re  , 6 , 

0.0z , 2.0 , 2.0t , 11 h , 12 h  at   1y  

Fig  17: Skin Friction versus 1h  for 0.1S , 6  

0.0z  2.0 , 2.0t , 2M , 12 h  at 1y  

Fig 18: Skin Friction  versus 1h  for 5Re  , 6      

0.0z , 2.0 , 2.0t , 2M  12 h  at  1y  
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