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Abstract. This article presents the Joints and Trajectory-pooled 3D-Deep Positional Attention-

based Bidirectional Recurrent convolutional Descriptors (JTPADBRD) for recognizing the 

human activities from video sequences. At first, the video is partitioned into clips and these clips 

are given as input of a two-stream Convolutional 3D (C3D) network in which the attention 

stream is used for extracting the body joints locations and the feature stream is used for extracting 

the trajectory points including spatiotemporal features. Then, the extracted features of each clip 

is needed to aggregate for creating the video descriptor. Therefore, the pooled feature vectors in 

all the clips within the video sequence are aggregated to a video descriptor. This aggregation is 

performed by using the PABRNN that concatenates all the pooled feature vectors related to the 

body joints and trajectory points in a single frame. Thus, the convolutional feature vector 

representations of all the clips belonging to one video sequence are aggregated to be a descriptor 

of the video using Recurrent Neural Network (RNN)-based pooling. Besides, these two streams 

are multiplied with the bilinear product and end-to-end trainable via class labels. Further, the 

activations of fully connected layers and their spatiotemporal variances are aggregated to create 

the final video descriptor. Then, these video descriptors are given to the Support Vector Machine 

(SVM) for recognizing the human behaviors in videos. At last, the experimental outcomes 

exhibit the considerable improvement in Recognition Accuracy (RA) of the JTDPABRD is 

approximately 99.4% achieved on the Penn Action dataset as compared to the existing methods. 

1.  Introduction 

Human Activity Recognition (HAR) is the method of using the videos that include a specific activity 

and recover videos of interest to identify an individual's conduct. This has been applied in potential 

fields including video processing, human-computer interface design, medical services and so on.  By 

the day, an incredible number of videos are generated due to monitoring devices, media, YouTube and 

others. Correspondingly, HAR is significant in the field of machine learning in the current era. 

Many deep learning models were suggested based on either supervised or unsupervised learning 

algorithms that can support HAR systems [1-3]. 

Among many deep learning methods, Joints-pooled 3D-Deep convolutional Descriptors (JDD) [4-5] 

has better efficiency by aggregating the convolutional activations of the 3D-deep Convolutional Neural 
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Network (3DCNN) into the discriminative descriptors based on the joint locations. On the contrary, the 

estimation of joints locations takes more time for a huge dataset and also the estimation of skeletons has 

a high complex. As a result, Joints and Trajectory-pooled 3D-Deep convolutional Descriptors (JTDD) 

is suggested [6] that extracts both body joints and trajectory points between two video sequences by 

multiplying two C3D streams: feature and attention with the bilinear product function. Also, the pooled 

descriptors are generated to extracting the spatiotemporal features together. Then, the video descriptors 

are obtained by training the whole network in an end-to-end manner according to the class labels. 

Moreover, these video descriptors are classified via the SVM to recognize individual behaviors. 

Nonetheless, the max-min poling was applied as the feature aggregation method that has high flexibility 

to spatially smooth over the adjacent kernels. This eliminates the necessary spatiotemporal variances 

between class labels. 

Therefore in this article, JTDPABRD is proposed that integrates the PABRNN model into a two-

stream C3D network to extract significant spatiotemporal features and increase the accuracy of 

recognizing individual activities. Initially, the video is split into many clips and these clips are fed to the 

two-stream C3D network as input. In a two-stream C3D network, the attention stream is used to extract 

the guidance of body joints locations and the feature stream is used to extract the trajectory points along 

with significant spatiotemporal features. After, each convolutional feature vector representations of each 

clip belonging to the single video are aggregated using the PABRNN to create the clip descriptor. Also, 

these two streams are multiplied by the bilinear product and end-to-end trained via class labels. 

Moreover, the activations of fully connected layers and their spatiotemporal variances are also 

aggregated to generate the final video descriptor. This video descriptor is applied to the SVM to 

recognize the individual activities in video sequences. Thus, the accuracy of recognizing human 

activities is increased efficiently. 

2.  Literature Survey 

Rahman et al. [7] investigated the HAR system using textural features with classical shape and motion 

features from low-quality videos. But, it needs to learn the richer features from video sequences for 

enhancing the performance. Li et al. [8] proposed a novel two-layer framework for HAR via defining 

the video with low-level local and mid-level motion features. However, several groups in the video were 

not represented the activity part and it cannot determine the number of groups in various datasets which 

affects the efficiency of mid-level encoding. 

Jin et al. [9] proposed a multilevel action descriptor that provides absolute information on human 

activities. But, it was not able to learn deep motion flow from the video sequences. Shou et al. [10] 

suggested a lightweight generator network to get more Discriminative Motion Cue (DMC) for HAR. 

Conversely, it has less accuracy. Huo et al. [11] proposed the new mobile HAR system, but it needs to 

consider the attention scheme for further improving the accuracy. 

Nida et al. [12] proposed a feedforward learning method for recognizing the instructor’s action in the 

classroom. However, an overfitting problem occurred while increasing the hidden layers. Sudhakaran et 

al. [13] proposed a Long Short-Term Attention (LSTA) to extract the features from relevant spatial parts 

and recognize the egocentric activity. But, the accuracy was less. 

3.  Proposed Methodology 

This section explains the JTDPABRD method in brief. The block diagram of the JTDPABRD method 

is depicted in Figure 1. 

 



ICCRDA 2020
IOP Conf. Series: Materials Science and Engineering 1022  (2021) 012017

IOP Publishing
doi:10.1088/1757-899X/1022/1/012017

3

 

 

 

 

 

 

 

Figure 1. Block diagram of JTDPABRD based HAR system. 

 

Originally, each video sequence is split into many clips or frames and given as input to the two-

stream C3D network. In this network, the input is given to the attention stream and feature stream, 

accordingly. The attention stream is used for extracting the guidance of body joint locations and the 

feature stream is used for extracting the trajectory points or optical flow between each clip including 

spatiotemporal features. The activations of each corresponding body joint location and trajectory point 

are pooled from each channel. To obtain the pooled feature vectors belonging to one clip, RNN, namely 

JTDRD method is applied instead of max-min pooling. But, the standard RNN has a problem of how to 

aggregate network outputs in an optimized manner as various networks trained on similar data can no 

longer be regarded as independent. Therefore, JTD-Bidirectional RNN-Descriptor (JTDBRD) is applied 

to solve the problems in the standard RNN and trained using all available input information in the past 

and future of particular time frames i.e., video clips. The concept is splitting the state neurons of a 

standard RNN in a part for both forward and backward states. The results from forward-states are not 

linked to inputs of backward-states and vice versa. Using both states, input information in the previous 

and the future of the currently estimated frames can be directly used for reducing the objective function 

without the requirement for delays to include future information. 

This BRNN can be trained with similar algorithms as a standard RNN since there are no interactions 

between two kinds of state neurons and so can be extended into the common feed-forward network, Few 

specific solutions are required only at the beginning and the end of training samples. The forward-state 

input at 𝑡 = 1 and the backward-state inputs 𝑡 = 𝑇 are not observed. But, they are set randomly to a 

predetermined value (0.5). Also, the local state derivatives at 𝑡 = 𝑇 for the forward-states and at 𝑡 = 1 

for the backward-states are not known and are set to 0, considering that the information beyond that 

point is not significant for the current update. On the other hand, BRNN cannot be used for providing 

significant feature vectors with the highest likelihood. Also, the problem of BRNN is how to aggregate 

the hidden vectors for feature representations. As a result, PABRNN is proposed in this JTDPABRD 

method that assumes if a feature in one video frame occurs in another video frame, it will have guidance 

on the adjacent context. In other words, the adjacent features should be given more attention that those 

far away since they may include more body joint and trajectory relevant information. The entire trainable 

end-to-end two-stream C3B with the PABRNN framework is depicted in Figure 2. 
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Figure 2. Block diagram of two-stream bilinear C3D with PABRNN-based feature aggregation 

method. 

 

3.1.  PABRNN model 

This PABRNN adopts the BRNN for feature vector representation which takes the pre-trained body 

joints and trajectory points embeddings as the input and creates the hidden vectors by recurrent updates. 

To aggregate the feature vector representations, the standard attention is used which especially relies on 

the hidden vectors for the attentive weight generation. For this purpose, a positional attention scheme is 

proposed and additional steps are performed based on the standard attention as: 

• Discover the occurrence feature positions in each clip related to a single video sequence. 

• Propagate the guidance of feature vectors to other positions with a position-aware guidance 

propagation approach. 

• Create the position-aware guidance vector for every feature in clips according to the propagated 

guidance. 

• Combine the position-aware guidance vector into the standard attention scheme. 

By using the attentive representations of both original and aggregated feature vectors, different 

similarity functions are used for measuring the relevance between each dimension. The Manhattan 

distance similarity function (𝑠𝑖𝑚) is used with 𝑙1-norm as: 

𝑠𝑖𝑚(𝐹, 𝐹𝑎) = 𝑒−(‖𝐹−𝐹𝑎‖1)     (1) 

In Eq. (1), 𝐹 and 𝐹𝑎 are the original feature vector and aggregated feature vectors corresponding to 

in each clip and ‖∙‖1 is the 𝑙1-norm. The structure of this PABRNN model is illustrated in Figure 3. 
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Figure 3. Feature vector representation with PABRNN model. 

 

3.2.  Position-aware guidance propagation 

Based on the above consideration, the features will have guidance on the adjacent context if it occurs in 

other clips. Here, the position-aware guidance propagation is modeled with the Gaussian kernel as: 

𝐾𝑒𝑟𝑛𝑒𝑙(𝑑) = 𝑒
(−𝑑2

2𝜎2⁄ )
     (2) 

In Eq. (2), 𝑑 is the distance between the original and aggregated features, 𝜎 is a parameter that 

constraints the propagation scope and 𝐾𝑒𝑟𝑛𝑒𝑙(𝑑) is the obtained guidance related to the distance of 𝑑 

based on the kernel. Observe that the position-aware guidance is fading while the distance increases. 

Particularly, when 𝑑 = 0, the maximum propagated guidance is obtained. Here, a fixed 𝜎 value is 

applied for all feature vectors and focused on combining the positional context into attentions. 

3.3.  Position-aware guidance vector 

The guidance in a high-dimensional space for attention is modeled by obtaining the position-aware 

guidance vector for each feature vector in the video clips. Initially, consider the guidance for a particular 

distance follows the Gaussian distributions over the hidden dimensions. After, a guidance base matrix 

𝐺 is defined based on the assumption where each column is the guidance base vector related to the 

particular distance. Each element of 𝐺 is described as follows: 

𝐺(𝑖, 𝑑)~𝑁(𝐾𝑒𝑟𝑛𝑒𝑙(𝑑), 𝜎′)    (3) 

In Eq. (3), 𝐺(𝑖, 𝑑) is the guidance related to the distance of 𝑑 in the 𝑖𝑡ℎ position and 𝑁 is the normal 

density with a predicted value of 𝐾𝑒𝑟𝑛𝑒𝑙(𝑑) and standard variance of 𝜎′. Using the guidance base 

matrix, the guidance vector for a feature at a particular position is obtained by aggregating the guidance 

of all features occurring in the video clips: 

𝐴𝑗 = 𝐺𝑐𝑗      (4) 

In Eq. (4), 𝐴𝑗 is the aggregated guidance vector for the feature at position 𝑗 and 𝑐𝑗 is the distance 

count vector which estimates the count of features with different distances. Particularly, for the feature 

at position 𝑗, the count of body joint and trajectory point features with a distance of 𝑑 i.e., 𝑐𝑗(𝑑) is 

computed as follows: 

𝑐𝑗(𝑑) = ∑ [(𝑗 − 𝑑) ∈ 𝑝𝑜𝑠(𝑓)] + [(𝑗 + 𝑑) ∈ 𝑝𝑜𝑠(𝑓)]𝑓∈𝐹  (5) 
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In Eq. (5), 𝐹 is the 3D feature maps containing multiple features, 𝑓 is either a body joint location or 

a trajectory point feature in 𝐹, 𝑝𝑜𝑠(𝑓) is the group of 𝑓’s occurrence positions in different clips and [∙] 
is an indicator function which equals to 1 if the criteria satisfy, or else equals to 0. 

3.4.  Positional attention 

A positional attention scheme is proposed that incorporates the position-aware guidance of the features 

into the aggregated feature’s attentive representations. In particular, the attentive weight of a feature at 

position 𝑗 in the aggregated feature vector is formulated as: 

𝛼𝑗 =
𝑒

(𝑒(ℎ𝑗,𝐴𝑗))

∑ 𝑒
(𝑒(ℎ𝑘,𝐴𝑘))𝑙

𝑘=1

     (6) 

In Eq. (6), ℎ𝑗 is the hidden vector at position 𝑗 based on BRNN, 𝐴𝑗 is the aggregated position-aware 

guidance vector obtained by Eq. (4), 𝑙 is the video sequence length and 𝑒(∙) is the score function which 

estimates the feature significance based on the hidden vector and the position-aware guidance vector. 

Then, the score function is defined as: 

𝑒(ℎ𝑗, 𝐴𝑗) = 𝑣𝑇𝑡𝑎𝑛ℎ(𝑊𝐻ℎ𝑗 + 𝑊𝐴𝐴𝑗 + 𝑏)   (7) 

In Eq. (7), 𝑊𝐻 and 𝑊𝐴 are matrices, 𝑏 is the bias vector, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, 𝑣 

is the global vector and 𝑣𝑇 is its transpose. By using the obtained attentive weights, the resultant 

aggregated feature vector is represented by the weighted sum of all the hidden vectors: 

𝐹𝑎 = ∑ 𝛼𝑗ℎ𝑗
𝑙
𝑗=1       (8) 

Thus, the aggregated all the pooled feature vectors belonging to one clip is achieved to get the clip 

descriptors. Then, these clip descriptors obtained from different convolutional layers are fused using the 

bilinear production for improving its representation ability [6]. By aggregating the clip descriptors, the 

final video descriptor is generated and the entire network is trained end-to-end with softmax loss 

supervised by the class label. Once the video descriptor is obtained, these are fed to the SVM for 

recognizing the human activities in a specific video sequence. 

Algorithm: 

Input: Video sequences from Penn Action Dataset 

Output: Extracted body points, trajectory points (Video descriptor) 

 Begin 

 Split video sequences into clips; 

 𝒇𝒐𝒓(𝑒𝑎𝑐ℎ 𝑐𝑙𝑖𝑝) 

  Initialize CNN parameters for both attention and feature streams; 

  Compute all the activations in convolutional layers; 

  Aggregate activations of each convolutional layers using PABRNN;  

//PABRNN 

  Formulate the position-aware guidance propagation via Gaussian kernel; 

  Calculate the guidance base matrix related to a certain distance; 

  Aggregate the guidance of all features in convolutional layers; 

  Obtain the aggregated guidance vector; 

  Determine the score function and the attentive weight of features; 

  Find the resultant aggregated feature vector (clip descriptors) belonging to one clip; 

  Combine attention and feature streams using bilinear product function; 

  Apply fully connected and softmax layer; 

  Train the C3D using aggregated guidance feature vector; 

  Predict the video descriptors for a video sequence; 

  Perform SVM classifier;   

  Recognize the individual activities in a particular video sequence; 

  End 
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4.  Experimental Results 

In this section, the JTDPABRD method is implemented in MATLAB 2017b as well as its efficiency is 

evaluated with the JTDBRD, JTDRD and JTDD based on the RA. In this experiment, the Penn Action 

dataset is taken into consideration which includes 2326 video sequences of 15 activity classes. The 

videos are captured from various online video repositories. The length of each video is ranging between 

50-100 frames. For every frame, 13 body joints are annotated.  

To validate the efficiency, 80% of the data is taken from the entire dataset for training and 20% of 

data is taken for testing. The body joint coordinates, trajectory points and C3D features are used as 

baselines. As a result, JTDPABRD with these features is evaluated with various pooling i.e., feature 

aggregation configurations.  

The RA is the percentage of True Positive (TP) and True Negative (TN) rates among the overall 

amount of trails performed. 

𝑅𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
     (9) 

In Eq. (9), FP and FN stand for the false positive and false negative. TP is the amount of correctly 

recognized legal activities and they are legal. TN is the amount of correctly recognized illegal activities 

and they are illegal. FP is the amount of wrongly recognized legal activities but they are illegal. FN is 

the amount of incorrectly recognized illegal activities but they are legal. The results of body joints and 

trajectory points extraction are portrayed in Figure 4. 

 

 

Figure 4(a). Sample input video sequence. 

  

Figure 4(b). Results for body joints 

extraction of input video sequence. 

Figure 4(c). Results for trajectory points 

extraction of input video sequence. 

 

The RA results on the Penn Action dataset are provided in Table 1. 

Table 1. RA of baselines and JTDPABRD with various configurations on Penn action dataset. 
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coordinates 

0.6452 - - - - 
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𝑓𝑐7 0.7638 - - - - 

𝑓𝑐6 0.7811 - - - - 

𝑐𝑜𝑛𝑣5𝑏 0.7345 0.8358 0.8829 0.8385 0.8683 

𝑐𝑜𝑛𝑣5𝑎 0.6675 0.7768 0.8047 0.7722 0.7831 

𝑐𝑜𝑛𝑣4𝑏 0.5684 0.7965 0.7873 0.8135 0.8258 

𝑐𝑜𝑛𝑣3𝑏 0.4602 0.7268 0.7059 0.7336 0.7315 

 

In Table 1, the 1st column is the RAs of directly utilizing body joint coordinates with trajectory point 

coordinates as C3D features. The other columns are the RAs achieved by the aggregation of all the 

features in the particular layer. This scrutiny observes that the RA of 𝑓𝑐7 is marginally lower to that 

of 𝑓𝑐6 since the actual C3D on the Penn Action dataset is not able to fine-tune the 𝑓𝑐7 layer which is 

highly preferable to construct the video descriptor for the pre-learned dataset. Also, it observes the 

results of PABRNN-based feature aggregation at various 3D 𝑐𝑜𝑛𝑣 layers. To end, it concludes the 

JTDPABRD has better efficiency as compared to the JTDBRD, JTDRD and JTDD for aggregating the 

guided feature vectors of body joint and trajectory points in the video sequence.  

The results of various combinations of layers using the scores of SVM with late fusion on the Penn 

Action dataset are given in Table 2. 

Table 2. RA of fusing JTDPABRD from multiple layers together on Penn action dataset. 

Fusion layers JTDD JTDRD JTDBRD JTDPABRD 

RA 

𝑐𝑜𝑛𝑣5𝑏 + 𝑓𝑐6 0.867 0.871 0.875 0.883 

𝑐𝑜𝑛𝑣5𝑏 + 𝑐𝑜𝑛𝑣4𝑏 0.987 0.989 0.991 0.994 

𝑐𝑜𝑛𝑣5𝑏 + 𝑐𝑜𝑛𝑣3𝑏 0.873 0.875 0.879 0.883 

 

Figure 5 indicates that the fusion of JTDPABRD of various layers particularly improves the feature 

extraction and recognition results. The mixture of JTDPABRD from 𝑐𝑜𝑛𝑣5𝑏 + 𝑐𝑜𝑛𝑣4𝑏 can maximize 

the accuracy of recognizing individual activities efficiently. This is because aggregating more significant 

features in the 𝑐𝑜𝑛𝑣 layers. 

The results of the impact of estimated body joints + trajectory points versus Ground-Truth (GT) body 

joints + trajectory points for different HAR methods on the Penn Action dataset is given in Table 3. 

Table 3. Impact of estimated body joints + trajectories versus GT body joints + trajectories for 

different methods on Penn action dataset. 

Methods GT Estimated Difference 

JTDD (𝑐𝑜𝑛𝑣5𝑏) 0.835 0.810 0.025 

JTDRD (𝑐𝑜𝑛𝑣5𝑏) 0.838 0.815 0.023 

JTDBRD (𝑐𝑜𝑛𝑣5𝑏) 0.843 0.821 0.022 

JTDPABRD (𝑐𝑜𝑛𝑣5𝑏) 0.847 0.828 0.019 

 

From Figure 6, it is observed that the JTDPABRD gives more efficiency than compared with the 

other methods on Penn Action Dataset. The JTDPABRD attains the maximum efficiency not only with 

GT body joints and trajectory points, however also with the estimated body joints and trajectory points, 

beyond the other methods. 
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Figure 5. RA of fusing JTDPABRD from multiple 

layers together on Penn action dataset. 

Figure 6. Impact of estimated body joints + 

trajectories versus GT body joints + 

trajectories for different methods in Penn 

action dataset. 

 

5.  Conclusion 

In this article, JTDPABRD is suggested to combine the PABRNN and two-stream C3D network for 

extracting the necessary spatiotemporal features and increasing the accuracy of recognizing individual 

activities. First, the video is divided into several clips and these clips are fed to the two-stream C3D 

network as input. In a two-stream C3D network, the attention stream is used to extract the guidance of 

body joints locations and the feature stream is used to extract the trajectory points along with significant 

spatiotemporal features. After, every convolutional feature vector representation of each clip belonging 

to the single video is aggregated via the PABRNN to create the clip descriptor. Also, these two streams 

are multiplied by the bilinear product and end-to-end trained via class labels. Moreover, the activations 

of fully connected layers and their spatiotemporal variances are also aggregated to generate the final 

video descriptor. This video descriptor is fed to the SVM to identify the individual activities in videos. 

To end, the experimental outcomes proved that the RA of JTDPABRD is improved by fusion of 𝑐𝑜𝑛𝑣5𝑏 

and 𝑐𝑜𝑛𝑣4𝑏 with GT feature vectors as compared to the other methods for HAR systems. 

References 

[1] Wan S, Qi L, Xu X, Tong C and Gu Z 2019 Deep learning models for real-time human activity 

recognition with smartphones Mob. Netw. Appl. 1-13 

[2] Ding S, Qu S, Xi Y, Sangaiah A K and Wan S 2019 Image caption generation with high-level 

image features Pattern Recognit. Lett. 123 89-95 

[3] Nweke H F, Teh Y W, Al-Garadi M A and Alo U R 2018 Deep learning algorithms for human 

activity recognition using mobile and wearable sensor networks: state of the art and research 

challenges Expert Syst. Appl. 105 233-261 

[4] Cao C, Zhang Y, Zhang C and Lu H 2017 Body joint guided 3-D deep convolutional descriptors 

for action recognition IEEE Trans. Cybern. 48 1095-1108 

[5] Ji S, Xu W, Yang M and Yu K 2012 3D convolutional neural networks for human action 

recognition IEEE Trans. Pattern Anal. Mach. Intell. 35 221-231 

[6] Srilakshmi N and Radha N 2019 Body joints and trajectory guided 3D deep convolutional 

descriptors for human activity identification Int. J. Innov. Technol. Explor. Eng. 8 1016-1021 

[7] Rahman S, See J and Ho C C 2017 Exploiting textures for better action recognition in low-quality 

videos EURASIP J. Image Video Process. 2017 74 

[8] Li X, Wang D and Zhang Y 2017 Representation for action recognition using trajectory-based 

low-level local feature and mid-level motion feature Appl. Comput. Intell. Soft Comput. 2017 

1-7 



ICCRDA 2020
IOP Conf. Series: Materials Science and Engineering 1022  (2021) 012017

IOP Publishing
doi:10.1088/1757-899X/1022/1/012017

10

 

 

 

 

 

 

[9] Jin C B, Do T D, Liu M and Kim H 2018 Real-time action recognition using multi-level action 

descriptor and DNN Intell. Video Surveill. IntechOpen. 

[10] Shou Z, Lin X, Kalantidis Y, Sevilla-Lara L, Rohrbach M, Chang S F and Yan Z 2019 Dmc-net: 

generating discriminative motion cues for fast compressed video action recognition Proc. 

IEEE Conf. Comput. Vis. Pattern Recog. 1268-1277 

[11] Huo Y, Xu X, Lu Y, Niu Y, Lu Z and Wen J R 2019 Mobile video action recognition arXiv 

preprint arXiv:1908.10155. 

[12] Nida N, Yousaf M H, Irtaza A and Velastin S A 2019 Instructor activity recognition through deep 

spatiotemporal features and feedforward extreme learning machines Math. Probl. Eng. 2019 

1-13 

[13] Sudhakaran S, Escalera S and Lanz O 2019 LSTA: long short-term attention for egocentric action 

recognition Proc. IEEE Conf. Comput. Vis. Pattern Recog. 9954-9963 


