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Abstract: Muscular dystrophy is a neuromuscular disorder that impairs the functioning of the locomotive muscles.

Large deletion and duplication mutations in the gene sequences pave the way for these muscular dystrophies. Any

heritable change can be used as input in computational studies such as pattern and classification models. Mutated gene

sequences are generated by adopting the positional cloning approach on the reference cDNA sequence with mutational

information from the Human Gene Mutational Database (HGMD). The extrinsic and intrinsic descriptors of the mutated

gene sequence are indispensable to identifying the disease. This work describes a computational approach of building a

disease classification model by extracting the exonic and intronic descriptors from the mutated gene sequences through

a combined learning technique. An ensemble hybrid model is developed through LibD3C classifier. The hybrid learned

model gained an accuracy of 98.3% in diagnosing the neuromuscular disorder, based on deletion and insertion/duplication

mutations. Furthermore, this paper analyzes the implementation of ensemble-learning classifiers based on features related

to synonymous and nonsynonymous mutations, in order to detect muscular dystrophy performed with the same data set.

Experiments showed high accuracy for the models built using LibD3C classifier, which proves that ensemble learning

is effective for predicting disease. To the best of our knowledge, for the first time the models established here explore

a scheme of disease prediction through pattern recognition from the sequence of nucleic acid molecule and associated

mutations.

Key words: Ensemble learning, extrinsic, intrinsic, LiBD3C, muscular dystrophy

1. Introduction

Muscular dystrophy is a kind of neuromuscular genetic disorder caused by a deformity in the genes that

deteriorates the locomotive muscles [1]. At present, there are no effective therapeutic strategies to halt

progression or to cure this type of disease. Certain types of muscular dystrophy are Duchenne, Becker, Emery–

Dreifuss, limb–girdle muscular dystrophy, facioscapulohumeral, myotonic, and Charcot Marie tooth disease.

Variation in the genetic code bequeathed from parents to offspring can cause a perpetual change in the

gene sequence, known as mutation. Single character change in a gene makes an impact on the gene, which,

in turn, changes its function. Nonsynonymous mutations that show an impression on protein sequence include

missense, nonsense, insertions, deletions, splicing, and frame-shift mutations. Replacement of a nucleotide by

another that makes an impact on protein change is termed as missense mutation [2,3]. Nonsense mutations

are those where the protein succeeds in stopping codon when a change occurs in the DNA sequence. A cluster
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of bases are added or deleted during translation, which leads to the insertion or deletion mutation in the gene

sequence that gradually roots in a change of protein sequence [4,5].

Altering the bases in a codon encodes for the same amino acid and the resulting protein does not reflect

any change during silent mutations [6]. The information from the genes transfers the nucleic acid to proteins

in the form of codons. During the process of translation, the synonymous codons have different frequencies [7],

which are referred to as codon usage bias. The functionality of the gene depends on codon usage bias.

In medical applications, the capability of machine learning is well-suited to analyzing complex diseases

such as diabetes [8], hepatitis [9], rheumatoid arthritis [10], and schizophrenia [11]. However, not many studies

have been carried out on variation in muscular dystrophy using machine-learning algorithms. Furthermore,

the classification of this complex disease is performed with either the protein data or microarray data as their

inputs. Classification of facioscapulohumeral muscular dystrophy (FSHD) disease is performed by monitoring

expression levels. Usually, microarray gene expression analysis is mainly focused on cancer diseases. In [12],

the authors proposed a model using a support vector machine to classify the types of FSHD, using microarray

gene expression data from the DUX4 gene.

The authors in [13] proposed a model to classify the types of human leukocyte antigen (HLA) gene into

different functional groups by choosing the codon usage bias as input. RSCU values are calculated for the gene

sequences by converting them into a vector of 59 elements. The support vector machine achieved an accuracy

of 99.3%.

Nisha et al. proposed a new approach, based on codon usage pattern, to classify the type of hepatitis

C virus (HCV), which is the primary reason for liver infection. To classify the subclass of its genotype, a

model was created using codon usage bias as input to multiclass SVM [14]. Falk and Gilchrist [15] developed a

model using neural networks to identify limb–girdle muscular dystrophy (LGMD). Using family details data, a

classification of disease status was made using the neural network, achieving an accuracy of 98%.

The authors in [16] constructed a protein–protein interaction network to classify the subtypes of muscular

dystrophy with a multiclass support vector machine. Microarray gene expression data sets are analyzed, the

protein data and their interaction data are collected, and a network is constructed to classify the subtypes.

The authors in [17] employed a machine learning approach, based on ensemble classifier LibD3C, to

predict the cytokines. The analysis was carried out on the physicochemical properties and the distribution of

whole amino acids.

In [18], the authors identified large mutations, such as duplications and deletions, through a computational

approach. A system SPeeDD was developed by utilizing the logical model tree method, based on machine

learning technique for the gene BRCA1. High specificity was achieved with this technique. In [19], the

authors predicted the disease-causing mutations with the ensemble learning technique. The protein sequence

data set from Swiss-Prot database was used for classification. A comparative analysis was made between the

traditional and ensemble approaches, and it was found that the LogitBoost ensemble technique achieves the

highest performance among all the methods compared.

From the background study, it is observed that the muscular dystrophy identification problem can be

modeled as a pattern recognition task and solved using machine learning techniques. The difficulties involved

in the disease identification system need to be analyzed and taken into account when modeling the disease

identification task by considering the appropriate mutational features from sequence data. It is clear that

machine learning methods can be used to significantly improve the accuracy of predicting muscular dystrophy
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susceptibility and mortality. It allows the clinician to make a diagnosis without needing a muscle biopsy, raises

clinician response time, and helps to treat disorders.

In our previous work [20] predicting muscular dystrophy, this was performed by creating 150 cloned gene

sequences. Missense and nonsense mutation-related features are extracted from the gene sequences to build the

classifier and classify the type of disease. A model was developed based on pattern classification algorithms,

and high accuracy was attained from the decision tree classifier. In other work, silent mutational features are

captured by calculating the RSCU values from the disease gene sequences, and a model was build using standard

classification techniques to identify the muscular dystrophy disease. An accuracy of 86% was attained using a

support vector machine [21]. With the same set of RSCU features, 90% of accuracy is achieved from LibD3C

classifier in predicting muscular dystrophy with silent mutations.

The primary focal point of this research is to classify the major forms of muscular dystrophy disease

such as Duchenne muscular dystrophy (DMD), Becker’s muscular dystrophy (BMD), Emery–Dreifuss muscular

dystrophy (EMD), limb–girdle muscular dystrophy (LGMD), and Charcot Marie tooth disease (CMT). As

the mutated sequence is not readily available for this disease, the corpus is developed on the reference cDNA

sequence, with the mutational information obtained from the HGMD. The HGMD [22] is a core collection

of data on germ-line mutations in genes coupled with the human inherited disease, which is grasped from

various works in the literature. The study is performed by extracting the well-defined descriptors pertaining to

insertions/duplications and deletions from 300 mutated gene sequences in the corpus. The experimentation is

executed with a hybrid approach of the ensemble learning technique with the LibD3C classifier. Additionally,

this study predicts muscular dystrophy related to features of synonymous and nonsynonymous mutations based

on the ensemble LibD3C classifier with this corpus of data.

In machine learning, the hybrid approach has been an ongoing research area for achieving better per-

formance for classification or prediction problems with a single learning approach. The motivation behind the

hybrid model is that a hybrid classification model can be composed of one unsupervised learner to prepro-

cess the training data and one supervised learner to learn the clustering result [23,24]. The familiar ensemble

learning methods for classification problems are bagging, boosting, and random forests. To reduce information

redundancy within multilabel learning, a model-shared subspace boosting algorithm was constructed [25], which

automatically finds shared subspace models, where every model was made to learn from the random feature

subspace and bootstrap data and combined a number of base models through multiple labels [26]. Ensemble

classification is a technique that combines multiple basic classifiers with their own decision-making capacity. The

prediction ability of an ensemble classifier is excellent compared to that of a single classifier, because the former

can address the differences produced by the latter more efficiently when challenged with different problems.

LibD3C is a type of ensemble classifier with a clustering and dynamic selection strategy. A method that blends

two types of discriminating ensemble techniques is known as dynamic selection and circulating combination-

based clustering (D3C). LibD3C employs two types of selective ensemble techniques, namely ensemble pruning

based on k-means clustering and dynamic selection and circulating combination. LibD3C is a selective ensemble

classifier, where various candidate classifiers are trained, and a set of classifiers that are accurate and diverse

are selected to rectify the problem.

2. Materials and methods

The arrangement of the bases in the gene sequences differs in every human. The main objective of this research is

to pinpoint discriminative descriptors and provide an efficient machine learning solution for predicting the type
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of muscular dystrophy with insertion, deletion, and duplication mutations. Multiclass classification is worked

out through data modeling of gene sequences. The availability of diseased gene sequences is a challenge for this

intricate disease, which stimulates the need for generation of synthetic mutational gene sequences. Identification

of muscular dystrophy disease involves various phases that utilize extrinsic and intrinsic features. At first, the

mutational gene sequences are generated using positional cloning. The discriminative descriptors are identified

and then extracted. The selected indispensible features are utilized to train the model, and the processing flow

of the approach is depicted in Figure.1.

         Diseased gene sequences 

Feature Extraction 

Training 

Muscular Dystrophy 

Disease Classification 

model 

 Diseased 

Sequence 
Disease 

Type 

Feature Selection 

 

POSITIONAL CLONING 

cDNA Reference geneome Mutational 

Information 

Figure 1. Disease identification model.

2.1. Corpus preparation through positional cloning

Various types of genes associated with the five types of neuromuscular disorder are studied. We analyze 55 genes

that are associated with five types of muscular dystrophy, namely DMD, BMD, EMD, LGMD, and CMT. Several

types of mutated sequences based on mutations such as missense, nonsense, synonymous, insertion/duplication,

deletion mutations, and splicing mutations are collected. For the purpose of this research, in each category of

muscular dystrophy, 60 synthetic mutated gene sequences are generated and a corpus comprising 300 sequences

for all five categories of muscular dystrophy is developed.

The reference genes for the mutated genes are downloaded from NCBI. The raw sequence obtained from

the HGMD is processed to form a cDNA sequence. Nucleotide base alteration is carried out based on mutational

information through an R script and new sequences are generated. Using built-in functions, a set of programs are

executed from the R library to identify the required position to be altered and is replaced with the nucleotide

specified in the nucleotide change column of the HGMD database. Using the traditional positional cloning

approach, the mutated sequences are generated and stored as fasta files.

Consider the missense mutational information for the EMD phenotype from the Emerin gene; for example,

nucleotide change is 2 T > C, which indicates that in position 2 the nucleotide changes from T to C and alters

the protein from Met to thr.
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For example, the cDNA sequence of EMD gene is

ATGGACAACTACGCAGATCTTTCGGATACCGA…… 

 

 

 

After the nucleotide change in position 2

ACGGACAACTACGCAGATCTTTCGGATACCGA…… 

 

 

 

A sample output of the cloning technique for gene sequence using positional information is shown in

Figure 2.

Figure 2. Sample output of generated mutated gene sequence.

2.2. Feature extraction and training data set

Genetic disorders are caused by changes or mutations occurring in gene sequences. The descriptors are captured

from structural changes in the gene sequence to learn the prediction model. So far, no attempt has been made

in the literature to extract descriptors pertaining to insertion, deletion, and duplication mutations. Hence, it is

significant to propose these features to build a disease identification model. The exonic and intronic features are

considered from diverse gene families to extract the well-defined descriptors related to insertion, deletion, and

duplication mutations in the mutated gene sequences. Twenty-three such evocative descriptors are extracted

and feature vectors are created for learning the disease prediction model. These extrinsic and intrinsic features,

extracted from 300 gene sequences, are depicted in Table 1. Code is written using R for extracting most

descriptor values from the mutated gene sequences.
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Sample Coding sequence of DMD gene 

1                            10                                  20                                30                                40                     50                    60                            70  80 90 100                  109  

ATGCTTTGG TGGGAAG AAGTAGAGGAC TGTTATGTTGATACCACC TATCCAGATAAGAAGTCCATCTTAATG TAC ATCAC ATC ACTC TTCC AAG TTTTGCC TCAAC AAG TGA  

|----Exon1----------|----------Exon 2------------------|-------Exon 3--------|-----------------------Exon 4------------------------|------Exon5-----|----Exon 6----|Exon 7-------| 

 

When dele on occurs in exon 2 and 3  
1                            10                                  20                                30                                40                     50                    60                                    74    

ATGCTTTGG TGGGACCAG ATAAGAAGTCCATCTTAATG TAC ATC ACATC ACTC TTCC AAG TTTTGCC TCAACAAG TGA  

|----Exon1----------|-----------------------Exon 4------------------------|------Exon5-----|----Exon 6----|Exon 7---------| 

 

 

Gene Id: 1746  No. of Exons deleted: 2 

Gene Symbol: DMD  Star ng posi on of exon: 14 

Sequence Length: 74  Ending posi on of exon: 47 

Altera on Type: Internal exon Inframe/ ou!rame: Inframe 
 

Table 1. Extrinsic and intrinsic descriptors and their description.

Descriptors Description
Gene ID Gene identifier
Gene symbol Gene name
Gene start position Gene starting position in chromosome
Gene end position Gene ending position in chromosome
Length Sequence length
Alteration type Type of alteration either deletion or duplication
Number of exons Number of exons inserted or deleted
Starting position of exons Exon starting position
Ending position of exon Exon ending position
Inframe or outframe Deletion is inframe or outframe
Type of exon Initial, internal, terminal exon, single exon
Exon conservation score Conservation score of all exons
Protein coding region score Distinguishing protein coding region from noncoding region and

calculates its score
Probability of exon Exon’s probability score
Alignment scores (3) Blast alignment scores such as phred quality scores, edit distance scores,

quality scores
Nucleotide composition values (6) A,T,G,C,AT,GC nucleotide compositional values

Descriptor 1, 2 – Annotation features: Gene sequences are identified by attributes such as gene

identifier and symbol. As many-to-one relationships occur between the gene and the disease, these descriptors

are considered to differentiate the gene sequence in every disease type. The attributes of gene sequences, such as

gene ID and gene symbol, are identified by using the biomart package in R, and are extracted using getgenes(id).

The gene ID is the NCBI gene identifier for the affected phenotype. For example, GeneID 1746 and gene symbol

DMD are for Dystrophin gene, GeneID 2010 and gene symbol EMD for Emerin gene, etc.

Descriptor 3 – Alteration type: The next descriptor alteration type denotes the type of mutation

such as insertion, deletion, and duplications. This feature is captured by hardcoding the mutation type to its

corresponding numeric values from 3 to 5, such as 3 for insertion, 4 for duplication, and 5 for deletion.

Descriptor 4, 5 – Gene starting position and gene ending position: A chromosome comprises

several genes and every gene has a starting and ending position. If an insertion/duplication or deletion mutation

occurs in a sequence, then there may be a change in the gene’s starting or ending position. Hence, these features
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aid the classification of the disease type. Nucleotide blast is used to capture the starting and ending position

of a gene by aligning the sequence with its reference gene sequence.

Descriptor 6 – Sequence length: The length of the sequence plays an important role in examining

the difference in length of the sequence. When the insertion or deletion mutation occurs, the length of the

sequence varies automatically. This feature is determined using length() function by converting the fasta file

into a data frame.

Descriptor 7 – Number of exons inserted/deleted: Severe effect on the deletion of exons leads to

DMD, and mild deletion of exons results in BMD. While gross insertions and gross deletions occur, the severity

of the disease is determined by the number of exons inserted or deleted. This descriptor is calculated using the

deletion region information column in the HGMD.

Descriptor 8 – Exon and intron boundary: Every gene sequence comprises coding (exonic) and non-

coding (intronic) regions. The boundary of the exonic and intronic regions is altered when insertion/duplication

or deletion of exons occurs. Therefore, these descriptors are captured to identify the differences in the boundary

between the normal and the diseased sequences. By visualizing the sequences in Geneious Pro, these descriptors

are captured.

Descriptor 9 – Deletion type: If the sequence can still be read after deletion mutation occurs, then

it is considered as an inframe deletion. In the outframe deletion type, the sequence cannot be read after the

deletion mutation occurs. Deletion type is a contributive feature in identifying the type of the disease, as in

some diseases like BMD, where the sequence can still be read after deletion, and in some diseases like DMD, the

sequence cannot be read after deletion as it is outframe. This feature is captured by translating the diseased

sequences into its corresponding amino acid sequence. Splitseq (), tablecode () functions from biostrings, and

seqinr packages are used to capture this descriptor.

Descriptor 10 – Exon type: Depending on the location of the exon, the type of exon may be initial,

internal, terminal, or single exons. The mutation in each type of exon has its own severity, which aids in

classifying the disease type. This discriminative feature is captured using Geneious Pro.

Descriptor 11 – Conservation score: The structure or the function of the sequence is identified by

calculating the conservation score by aligning the sequence with all organisms. The University of California

Santa Cruz (UCSC) genome browser is employed to calculate the conservation score.

Descriptor 12 – Protein-coding region score: The score of the protein-coding region is calculated

with a coding potential calculator, based on the sequence features to distinguish protein coding from noncoding

regions. When a deletion occurs in an exon, the protein-coding region score decides the severity of the deletion

on the sequence.

Descriptor 13 to 19 – Nucleotide composition values: The base composition A, C, G, T are

calculated to count the number of occurrences of the four different nucleotides (“A”, “C”, “G”, and “T”) in the

sequence. GC content is the fraction of the sequence that consists of Gs and Cs, i.e. the GC content can be

calculated as the percentage of the bases in the genome that are Gs or Cs. That is,

AT content = (number of As + number of Ts) × 100 / (genome length)

GC content = (number of Gs + number of Cs) × 100 / (genome length)

Therefore, six different descriptor values are calculated as the nucleotide composition values.

Descriptor 20 – Stop codon position: The position of the stop codon reveals the end of the coding

part in the sequence. This position may be altered with the occurrence of mutation and, hence, it is noted.

Match pattern () function is employed to identify and capture the position of the stop codon.
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Descriptor 21 to 23 – Alignment scores: Alignment scores are considered as an important feature

in disease prediction. The global pairwise alignment, based on edit distance, is performed with the mutated

sequence against the reference cDNA sequence, and the three alignment scores are calculated using the edit

distance scoring method. The PhredQuality measures are calculated with pattern quality and subject quality to

examine the quality-based match and mismatch bit scores for DNA/RNA. The substitution scores are calculated

by setting the error probability to 0.

The above 23 features are extracted from each diseased gene sequence and a data set with 300 feature

vectors is created.

3. Experiment and results

In machine learning, the hybrid approach has been an ongoing research area for achieving better performance

for classification or prediction problems over a single learning approach. LibD3C is a type of ensemble classifier

with a clustering and dynamic selection strategy. In this experiment, a muscular dystrophy prediction model is

built using the LibD3C algorithm, based on clustering and dynamic strategy in WEKA environment [27]. The

benefit of the positional cloning approach in this experiment is that it supports the generation of synthetic

mutated gene sequences. The diseases are identified by extracting the well-designed descriptors from the

cloned gene sequences. A training data set with instances related to five categories of muscular dystrophy, i.e.

Duchenne muscular dystrophy, Becker’s muscular dystrophy, Emery–Dreifuss, limb–girdle muscular dystrophy,

and Charcot Marie Tooth disease has been developed as described in Section 2.2.

A standard k-fold cross validation technique is used to evaluate the generalization power of the classifiers

and estimate their predictive capabilities for unknown samples. As the data set comprises 300 instances, it is

appropriate to use cross validation with K = 10. This 10-fold cross validation iterates the algorithm 10 times

with different groupings of training and testing data sets. The comparison of cross validation results is made

between standard supervised learning techniques and the LibD3C ensemble classifier. The hybrid approach of

the LibD3C algorithm shows a high accuracy of 94.34% over traditional classification algorithms such as Näıve

Bayes, decision tree, and artificial neural networks. The results of the experiments are summarized in Table 2

and the performances are depicted in Figure 3.

Table 2. Predictive performance of the classifiers.

Performance criteria
Decision tree Artificial neural Näıve Bayes LibD3C
classifier network classifier classifier

Kappa statistic 0.902 0.88 0.854 0.931
Mean absolute error 0.095 0.1 0.15 0.098
Root mean squared error 0.21 0.41 0.43 0.19
Relative absolute error 29.944 32.1 40.45 19.44
Root relative square error 50.95 52.95 55.95 45.5
Time taken to build the model (s) 6.09 6.7 6.1 5.47
Correctly classified instance 275 265 260 283
Incorrectly classified instance 25 35 40 17
Prediction accuracy 91.69% 88.3% 86.6% 94.34%

3.1. Feature selection

Feature selection or attribute subset selection look for the best descriptors for model construction. Here the

information gain selection attribute method is used to select the subset of attributes. Information gain measures
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Figure 3. Prediction accuracy of LibD3C classifier.

the number of bits of information obtained for a category prediction of disease by knowing the type of mutation

in the disease gene sequence. The difference observed and the expected uncertainty from attribute X is the

information gain of attribute X. By ranking the two attributes X and Y, if the gain of X is greater than that

of Y, then attribute X is preferred. Likewise, highly ranked attributes are identified using the information gain

method and are listed in the following order: in-frame out-frame boundary, type of exon, number of exons, exon

start position, exon conservation score, protein conservation score, nucleotide composition, sequence length, and

alignment scores. The model is built using a LibD3C classifier and the performance is evaluated in the same

manner. An accuracy of 98.33% is observed, and the results are shown in Tables 3 and 4 and are depicted in

Figure 4.

3.2. LiBD3C classifiers based on synonymous and nonsynonymous descriptors

As shown in our previous work [20,21], standard classification algorithms, such as decision tree, Näıve Bayes,

and artificial neural network, yielded an average of 92% for 150 mutated synthetic gene sequences. Section 3

demonstrated that the LiBD3C classifier earned promising results in predicting the type of muscular dystrophy

based on extrinsic and intrinsic features. This stimulated the performance of two independent implementations
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Table 3. Predictive performance of the LibD3C classifier after applying feature selection technique.

Performance criteria
Decision tree Artificial neural Näıve Bayes LibD3C
classifier network classifier classifier

Kappa statistic 0.932 0.91 0.88 0.97
Mean absolute error 0.098 0.091 0.13 0.065
Root mean squared error 0.17 0.27 0.31 0.14
Relative absolute error 18.4 23.1 38.15 23.44
Root relative square error 45.95 50.15 50.15 41.65
Time taken to build the model (s) 3.94 4.03 3.75 2.76
Correctly classified instance 284 274 267 295
Incorrectly classified instance 16 26 33 5
Prediction accuracy 94.6% 91.3% 89.6% 98.33%

Table 4. Assessment of overall accuracies before and after feature selection.

Method
Correctly classified Incorrectly Time taken to build Prediction
instance classified instance the model (s) accuracy

Classification without
attribute selection 275 25 5.47 91.69
Classification with
attribute selection 286 14 2.76 98.33

Figure 4. Prediction accuracy of LibD3C classifier (feature selection).
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for disease classification through ensemble learning, based on nonsynonymous and synonymous mutational

features to predict the type disease. The nonsynonymous mutational features are structural, annotation,

and alignment features. Relative synonymous codon usage (RSCU) values for 59 codons form synonymous

mutational features. The size of the data set is increased to 300 gene sequences and used for training with

the LibD3C ensemble classifier after extracting the respective features. LibD3C-hybrid classifiers are built

for classifying neuromuscular disorder based on nonsynonymous and synonymous features. The results of the

performance evaluation are presented in Table 5 and drawn in Figure 5. Predictive performance of the LibD3C

classifier for all three types of mutation is shown in Table 6.

Table 5. Predictive performance of the LibD3C classifier based on nonsynonymous and synonymous mutations.

Performance criteria
LibD3C classifier LibD3C classifier
(nonsynonymous mutation) (synonymous mutation)

Kappa statistic 0.95 0.85
Mean absolute error 0.015 0.09
Root mean squared error 0.15 0.202
Relative absolute error 20.74 29.844
Root relative square error 39.45 50.801
Time taken to build the model (s) 4.5 7.36
Correctly classified instance 291 202
Incorrectly classified instance 9 28
Prediction accuracy 97% 90%

Figure 5. Prediction accuracy of LibD3C classifier (all mutations).

Prediction accuracy of about 97%, nonsense mutational descriptors with a kappa of 0.95, and learning

time of 4.5 s are attained for missense. We attained 90% prediction accuracy for silent mutational descriptors

with a kappa of about 0.85 and a minimum time of about 7.36 s for 300 cloned gene sequences. Various

other measures, such as TP rate, FP rate, precision, recall, F-measure, and ROC area, are evaluated for all

three LibD3C classifiers, and the results are depicted in Table 7. The precision recall curve and receiver
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Table 6. Predictive performance of the LibD3C classifiers for all three types of mutations.

Problem
Correctly classified Incorrectly classified Predictive
instance instance accuracy

Nonsynonymous mutation 291 9 97
Synonymous mutation 202 28 90
Insertion and deletion mutation 286 14 98.33

operating characteristic (ROC) metric are illustrated in Figures 6 and 7 for each class, respectively. The

existing approaches classify either the gene or the disease with the micro array, protein, or family details data.

The proposed approach can classify five types of muscular dystrophy from gene sequence data by extracting

mutational features. The results are compared with existing studies and presented in Table 8.

Table 7. Evaluation measures of the classifiers.

Problem Precision Recall F-measure TP rate FP rate ROC area
Missense and nonsense mutation 0.967 0.23 96.8 96.8 0.014 0.97
Synonymous mutation 0.901 0.72 89.3 89.3 0.018 0.91
Insertion and deletion mutation 0.983 0.45 98.2 98.2 0.08 0.997

Figure 6. Precision recall curve for each class.

3.3. Discussion and findings

These experiments confirm that the hybrid approach of the LibD3C classifier yields better results than the

standard pattern classification algorithms for predicting the disease from the mutated gene sequences, and high

accuracy is attained. This work attains elevated kappa statistic and prediction accuracy through ensemble
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Figure 7. ROC curve for each class.

Table 8. Comparison of the results with existing studies.

Classification Data Approach
Algorithm Accuracy
(method) (%)

LGMD Family details Machine learning ANN 98

Results of
6 types of MD

Microarray protein–
protein interaction

Machine learning MSVM 86

existing FSHD Microarray Machine learning SVM 84.65
studies Gene type classification HLA gene Machine learning SVM 99.3

Virus type classification HCV virus Machine learning SVM 100
Cytokine classification Protein Ensemble learning LibD3C 93.3

Results of 5 types of MD Nonsynonymous mutations Machine learning LibD3C 97
proposed 5 types of MD Synonymous mutations Machine learning LibD3C 90
work 5 types of MD Insertion/deletion mutations Machine learning LibD3C 98.33

learning. The mean absolute error is minimized and the consistency of the system is improved. LibD3C is

a hybrid approach that is a combination of unsupervised over supervised learning, a powerful approach for

predicting the class label of the unseen instance. The time taken to build the model is a minimum of 3.75 s.

Reevaluation of features through feature selection facilitated the improvement of the outcome, and the

prediction accuracy of the hybrid classifier built using high ranked features was elevated to 98.33%. It is well

proven that the ensemble learning technique using LibD3C classifier is powerful and suitable for predicting

muscular dystrophy when any type of mutational features are utilized for building the models. The work to

date ascertains the highly efficient creation of muscular dystrophy prediction models through ensemble learning

and discriminative mutational descriptors.

4. Conclusion

Muscular dystrophy disease identification is a multiclass classification problem that classifies the type of disease

from the mutated gene sequences. Exonic and intronic descriptors pertaining to insertion, deletion, and

duplication mutations are generated from the cloned gene sequences, and an eminent model is built by engaging
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the machine learning technique through a LibD3C ensemble classifier in hybrid learning method. Feature

selection technique is introduced to improve prediction accuracy. The performance of the classifier was evaluated

based on various metrics and the results indicate that the LibD3C algorithm is best suited for predicting the

type of muscular dystrophy. Several types of mutations, such as missense, nonsense, and silent mutations, are

also considered for building hybrid models through ensemble learning technique, and their results are analyzed.

This work establishes that the ensemble learned model is highly efficient in the prognosis of neuromuscular

genetic disorders.
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