
World Mycotoxin Journal, 2018; 11 (2): 187-199�
Wageningen Academic 
P u b l i s h e r s

ISSN 1875-0710 print, ISSN 1875-0796 online, DOI 10.3920/WMJ2017.2248� 187

1. Introduction

In rainfed areas of semi-arid tropics that suffer unpredictable 
droughts, groundnut (Arachis hypogaea L.) is cultivated 
(Wright and Nageswara Rao, 1994) and so, there is a 
real danger of contamination with mycotoxin known as 
‘aflatoxin’ (Nageswara Rao et al., 2002). Preharvest aflatoxin 
contamination (AC) in food and feed is a common problem 
all over the world. Aflatoxin is known to cause liver cancer 
(Hsu et al., 1991). Wu et al. (2013) showed that consumption 
of large amounts of groundnuts contaminated with 

aflatoxins even at low levels is detrimental to health. The 
influence of AC on the agricultural economy is particularly 
destructive during droughts. Aflatoxins in US groundnuts 
caused >$25.8 million in losses per year during 1993 to 
1996 (Schmale and Munkvold, 2017).

Aflatoxin is a secondary metabolite, made mostly by the 
fungi, Aspergillus flavus Link ex. Fries and Aspergillus 
parasiticus Speare. These fungi infect vulnerable crops 
including groundnut during cultivation, harvest, storage, 
and processing. They can enter groundnut pods through 
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Groundnut is a commercial oilseed crop that is prone to infection by Aspergillus flavus or Aspergillus parasiticus. 
Drought impairs the defence mechanism of the plant and favours the production of aflatoxin by the fungus. Aflatoxin 
is a carcinogen and its presence in food and feed causes significant economic loss. The answer to the question, 
‘how drought tolerance and aflatoxin resistance are related?’ is not clear. In this review paper, the relationship of 
drought and preharvest aflatoxin contamination (AC), the relationship of drought tolerance traits and AC, and 
the approaches to enhance resistance to AC are discussed using up-to-date literature. Factors leading to AC are 
drought, high geocarposphere temperature, kernel/pod damage, and reduced phytoalexin synthesis by the plant. 
If the fungus colonises a kernel with reduced water activity, the plant cannot synthesise phytoalexin and then, the 
fungus synthesises aflatoxin. Breeding for resistance to AC is complicated because aflatoxin concentration is costly 
to measure, highly variable, and influenced by the environment. Since drought tolerant cultivars have resistance to 
AC, traits of drought tolerance have been used as indirect selection tools for reduced AC. The genetics of aflatoxin 
resistance mechanisms have not been made clear as the environment influences the host-pathogen relationship. 
Host-pathogen interactions under the influence of environment should be studied at molecular level to identify 
plant resistant factors using the tools of genomics, proteomics, and metabolomics in order to develop cultivars 
with durable resistance. Many candidate genes involved in host-pathogen interactions have been identified due 
to improvements in fungal expressed sequence tags, microarrays, and genome sequencing techniques. Moreover, 
research projects are underway on identifying genes coding for antifungal compounds, resistance associated proteins 
and quantitative trait loci associated with aflatoxin resistance. This review is expected to help those who wish to 
work on reducing AC in groundnuts.
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minute cracks that arise when the pods mature and dry 
(Sanders et al., 1984). When A. flavus infects groundnut 
pods with insect or mechanical damage, AC may occur. 
On the other hand, postharvest AC can also occur if there 
are poor storage conditions. The Council for Agriculture 
Science and Technology (CAST, 2003) has described 
epidemics of severe aflatoxicosis due to infected food 
consumption by humans in India, Kenya, Malaysia, and 
Thailand. In 2004, aflatoxin-contaminated maize took the 
lives of 125 persons in Kenya (CDC, 2004; Probst et al., 
2007). Recently Bumbangi et al. (2016) reported high levels 
of AC in raw groundnut kernels sampled from open markets 
and supermarkets in Zambia, which posed a serious threat 
to health. Hence, these authors suggested that priority 
should be given to intervention strategies to lessen AC 
levels in groundnuts.

According to the US Food and Drug Administration (FDA), 
aflatoxin is often present in food (Williams et al., 2004). 
The US FDA has set the maximum allowable limit of total 
aflatoxins (B1, B2, G1 and G2) in food/feed to 20 µg/kg, while 
the European Union has set a maximum level for aflatoxin 
B1 of 2 µg/kg and for total aflatoxins of 4 µg/kg (EC, 2010). 
When the amount of aflatoxin is higher than the maximum 
allowable limits in food/feed products, they are destroyed 
in the developed countries, causing a loss of billions of 
dollars over the world every year. Acute epidemics of AC 
often take place in certain areas of southern US and lead 
to huge financial losses (Robens and Cardwell, 2005). As 
identification and detoxification policies are not feasible 
in developing countries, food safety is a most important 
issue in these countries. Regular use of food polluted with 
aflatoxin is prevalent in these countries due to food scarcity.

Torres et al. (2014) summed up the latest developments 
in preventing aflatoxins in several groundnut growing 
countries. Fountain et al. (2015) gave a detailed account 
of resistance to Aspergillus flavus in maize and groundnut 
with regard to molecular biology, breeding, environmental 
stress and future perspectives. Pooja et al. (2015) critically 
reviewed the biotechnological developments for fighting 
A. flavus and AC in crops. Sharanaiah et al. (2017) made 
a survey on the impact of biologically active aflatoxins 
and their control strategies. Recently, Udomkun et al. 
(2017) reviewed certain innovative technologies to 
manage aflatoxins in foods and feeds. Although drought is 
considered to be the main factor leading to preharvest AC in 
groundnut, an exclusive review on the relevance of drought 
on AC in groundnut has not been done. Therefore, this 
review will discuss the nature of aflatoxin, its relationship 
with drought and drought tolerance traits in groundnut, 
and the approaches to enhance resistance to AC.

2. Types and structure of aflatoxins

Aflatoxins are members of a group of chemical substances 
with difuranocoumarins. There are four most important 
aflatoxins, named aflatoxin G1, G2, B1 and B2 (AFG1, 
AFG2, AFB1 and AFB2, respectively). This classification 
is derived from their capacity to show green (G) or blue 
(B) fluorescence under ultraviolet light and their relative 
mobility in thin-layer chromatography (Guo et al., 2008b). 
Aflatoxins contain a lactone moiety (Figure 1) and highly 
oxygenated stable structure of 5 fused rings. AFB1 is a 
strong cancer-causing agent (Squire, 1981). When cows 
are fed with feeds contaminated with AFB1, they give milk 
containing aflatoxin M1 which is a hydroxylated derivative 
metabolite of AFB1 (Van Egmond, 1989). A. parasiticus 
produces AFB1 and AFB2, besides AFG1 and AFG2. On 
the other hand, A. flavus produces only AFB1 (Horn et al., 
2009b). According to Klich and Pitt (1988), conidial wall 
texture was the most effective criterion for distinguishing 
A. flavus and A. parasiticus. They also found that very few 
A. flavus isolates produced type G aflatoxins.

The aflatoxin biosynthetic pathway has been determined 
and the molecular structures of the intermediates of the 
pathway described (Payne and Brown, 1998; Yu, 2004; 
Yu et al., 2005). There are no less than 23 reactions 
catalysed by enzymes in the synthesis of aflatoxin and at 
least 15 structurally-defined intermediates in the aflatoxin 
biochemical pathway.

3. �Relationship between drought and preharvest 
aflatoxin contamination

A number of studies in the past have shown that drought 
favours AC in groundnut. In this section, only the important 
findings in the past are discussed with reference to its 
impact on aflatoxin synthesis. Wotton and Strange (1987) 
noticed a negative relationship between irrigation and 
kernel colonisation by A. flavus, which is in agreement with 
the findings of Dorner et al. (1989) who noticed that low soil 
moisture favoured the growth of A. flavus. High aflatoxin 
levels are usually related to hot climate and drought in the 
field (Payne, 1998). Waliyar et al. (2003a) stated that drought 
is a predisposing factor for AC in groundnut. Severe drought 
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Figure 1. Chemical structure of aflatoxin B1.
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encouraged the growth of A. flavus, leading to high AC 
(Arunyanark et al., 2010; Craufurd et al., 2006). Although 
the fungus is found in several climatic areas, it is often 
observed between latitudes 16° and 35° in warm climate 
zones and is not common above 45° latitudes (Klich, 2007). 
A negative correlation (r = -0.46) was observed between AC 
for seven elite accessions and rainfall during the crop season 
(Waliyar et al., 2016). Wu et al. (2016) noticed a significant 
association between aflatoxin and meteorological conditions 
30 days prior to harvest of groundnut. They observed 
maximum AC when the rainfall was occasional (leading 
to drought) and the approximate mean, minimum and 
maximum temperatures were 23, 20 and 29 °C, respectively. 
Recently, Kachapulula et al. (2017) found that quantities of 
crops unsafe for human consumption varied significantly 
(P<0.001) among agroecologies in Zambia with more AC 
(38%) in the warmest agroecology and the least (8%) in 
cool, wet agroecology.

Horn et al. (1995) reported that Aspergillus spp. are 
exclusively thermo-tolerant, xero-tolerant and can stay alive 
efficiently in the field during water deficit and temperature 
stress. Water deficit decreases soil water activity, which in 
turn, lessens the growth of amoebae, competing bacteria 
and fungi. Hence, proliferation of xerophiles, such as A. 
flavus and A. parasiticus, increases (Pitt et al., 2013). 
A. flavus survives as conidia or sclerotia in the soil. It is 
present in the form of mycelia inside plant tissues. Horn 
et al. (2009a) reported that sclerotia produce conidia and 
probably ascospores with harsh environments. Structural 
and regulatory aflatoxin biosynthetic genes of the fungus 
have been significantly influenced by environmental 
stresses, such as high temperature and drought (Medina 
et al., 2014). Reactive oxygen species (ROS) accumulates 
within the tissues of host plant due to drought and/or heat 
stress and these ROS may have a vital role in communicating 
with A. flavus (Fountain et al., 2015) to synthesise aflatoxin. 
Hence, drought has a significant role in host-pathogen 
interactions.

Hill et al. (1983) found that a lower soil temperature reduced 
AC in groundnut. Cole et al. (1985) noticed that when 
there was a drought and high soil temperature, there was 
high AC in groundnut. Similar findings were reported 
by Arunyanark et al. (2009). Fungal attack and aflatoxin 
formation in groundnut pods are due to lengthy drought 
stress, increased soil temperature (>22 °C) and any physical 
damage to pods during the kernel filling stage (Cole et al., 
1989; Horn, 2005; Nageswara Rao et al., 2002). Drought 
and pest infestation make groundnuts more susceptible to 
toxigenic Aspergillus infection and AC (Pitt et al., 2013). 
The chief features favouring infection by A. flavus and A. 
parasiticus in groundnuts are found to be kernel damage 
by insects, drought and increased soil temperatures (Torres 
et al., 2014).

Literature shows differences in pod zone temperature 
(geocarposphere) that favoured AC. Under the influence 
of drought, the reported geocarposphere temperatures 
that favoured AC were 28-31 °C (Hill et al., 1983), 35 °C 
(Sanders et al., 1984) and 29.6-31.3 °C (Cole et al., 1985). 
Williams and McDonald (1983) reported that the mean, 
threshold, and geocarposphere temperature required for 
AC were between 25.7-27 °C. The optimum temperature 
for the growth of A. flavus is 25-42 °C (Klich et al., 1992). 
Interestingly, AC is found to occur if the pods are subjected 
to water deficit even if crop roots received enough water 
(Sanders et al., 1993). This reveals that the geocarposphere 
temperature increases when the pods are subjected to 
drought. An increase in the geocarposphere temperature 
favours the fungi to infect the pods. This is supported 
by Cole et al. (1989) who reported that geocarposphere 
temperatures cooler than 29-31 °C can lead to less aflatoxin, 
even under water deficit conditions. Craufurd et al. (2006) 
related fungal infection and subsequent AC in groundnut 
with the occurrence of drought during pod filling stage 
when soil temperatures are near optimal for A. flavus. It is 
relevant to note here that drought in the absence of high soil 
temperature does not result in AC (Craufurd et al., 2006).

Sudhakar et al. (2007) reported that high aflatoxin levels 
are usually found in damaged pods compared to pods with 
intact shells. Extreme water deficit results in injuries to 
the pods and testas and enables the fungus to enter and 
infect the kernels (Okello et al., 2010). The fungus can 
also infect through flowers (Styer et al., 1983). Cole et al. 
(1985) suggested that when a kernel is infected with A. 
flavus or A. parasiticus, aflatoxin synthesis occurs only 
after the natural defence mechanisms stop due to drought 
and high temperature. When there is no drought, fungal 
infection induces the synthesis of plant phytoalexins, which 
decrease the growth of fungi and consequent AC (Basha 
et al., 1994; Wotton and Strange, 1987). Sudhakar et al. 
(2007) reported inconsistent associations between AC and 
seed infection percentage and inferred that AC in kernels 
is lessened when there is high leaf relative water content 
(RWC) in the leaf which permits synthesis of phytoalexin. 
A phytoalexin compound present in groundnut kernels is 
resveratrol (Sanders et al., 2000).

However, if there is drought, the canopy of groundnut 
diminishes (Cole et al., 1985) and hence, the soil 
temperatures increase, which in turn will result in dry 
soil, decreased plant water status and finally a reduction in 
kernel water activity. Cole et al. (1989) said that a decrease 
in kernel water activity can lead to a decrease in phytoalexin 
synthesis which favours A. flavus growth and synthesis of 
aflatoxin. The AC is frequently connected with drought 
intensity, crop’s growth stage of drought occurrence and 
the temperature of soil and/or air (Cole et al., 1989). Payne 
(1998) reported that water deficit and elevated temperature, 
which frequently happens simultaneously in the course of a 
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growing season, have probably been involved in poor kernel 
development and, thus, favoured fungal growth leading to 
AC. Craufurd et al. (2006) reported that drought for <10 
days in the field was adequate to bring about considerable 
AC, especially in the last 4-6 weeks of a growing season 
(Cole et al., 1985; Hill et al., 1983). Two factors, namely 
water deficit and greater A. flavus load in the soil act 
together and lead to kernel colonisation by A. flavus and 
consequent AC (Arunyanark et al., 2009).

It is well known that kernel invasion or colonisation by the 
fungus does not always result in AC (Basha et al., 1994) 
because drought determines AC, as can be seen in Figure 
2, which depicts the sequence of events responsible for 
AC in groundnut. This figure summarises the information 
collected for this review.

It can be concluded that the factors responsible for AC 
in groundnut are drought, high soil temperature in the 
pod zone, kernel damage by insects, physical damage to 
pods, and reduced phytoalexin synthesis by the plant. A 
combination of reduced soil water activity and high soil 
temperature favours the load of toxigenic thermo-tolerant 
Aspergillus in the soil by decreasing the population of 
competing soil microflora. High Aspergillus load in the soil 
leads to kernel colonisation by the fungus. Reduced kernel 
water activity due to drought weakens the plant’s defence 
mechanism and thereby, phytoalexin synthesis is inhibited 
and AC occurs. It is pertinent to note here that phytoalexin 
production by the plant and aflatoxin production by the 
fungus are inversely proportional.

Dry soil

Kernel colonisation

Fungal entry into pods and infection

High soil temperatures (>22°C) 

Canopy diminishes

Drought (<10 days)

Aflatoxin synthesis prevented

Fungal growth arrested

No drought

Synthesis of phytoalexins by plant

Decrease in phytoalexin synthesis

Poor kernel development and/or natural defence mechanism stops

Reduction in kernel water activity

Decrease in plant water status

Aflatoxin synthesis

Aspergillus flavus or Aspergillus 
parasiticus load in the soil

Physical damage to pods during 
kernel filling stage

Pod temperature reaches 35°C (optimum for A. flavus)

A. flavus growth favoured

Figure 2. Sequence of physiological events responsible for aflatoxin contamination in groundnut.
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4. �Relationship between drought tolerance 
and resistance to preharvest aflatoxin 
contamination

In plant breeding programs, traits for drought tolerance are 
being used as indirect selection criteria to select for reduced 
AC. There are three reasons for this. First, measurement 
of aflatoxin concentration is expensive. Second, aflatoxin 
concentration is highly variable as it is mostly influenced by 
the environment. Third, in numerous studies the drought 
tolerance traits have been associated with lower AC.

Cole et al. (1993) stated that under prolonged water deficit 
the groundnut varieties higher in kernel water were more 
resistant to fungi and contained less aflatoxin. After 
assessing resistance to AC in groundnut varieties with 
varying levels of drought tolerance, Holbrook et al. (2000) 
concluded that drought tolerant varieties had significantly 
less AC. There is a potential for the drought tolerance traits 
to be employed as indirect selection criteria for resistance to 
AC. These results imply that drought tolerant varieties may 
acquire a certain level of resistance to AC. Arunyanark et al. 
(2009) were of the opinion that the mechanisms governing 
genotypic variation for resistance to AC may be connected 
with differences in drought tolerance.

Transpiration efficiency (TE) is a difficult physiological 
trait to measure. It is the ratio of biomass produced and 
the quantity of water transpired by a plant. Wright et al. 
(1994) noticed a statistically significant correlation between 
TE and an easy to measure trait, specific leaf area (SLA). 
When the SLA is low, the leaves are thicker. Thicker leaves 
have a high chlorophyll density per unit leaf area. Therefore, 
the varieties of groundnut with low SLA show a greater 
CO2 assimilation efficiency. So low SLA is correlated with 
lower AC. The work by Girdthai et al. (2010) supports 
the findings by Wright et al. (1994); Girdthai et al. (2010) 
found a positive correlation between AC and SLA, which 
was used as a surrogate trait for drought tolerance in their 

work. According to Arunyanark et al. (2009), the cuticle 
layer may be thicker in thicker leaves and the thicker cuticle 
is considered to be the principal component contributing 
to avoid water loss through transpiration.

Rooting efficiency is defined as the plant’s capability to alter 
the distribution of its roots to use water from the deeper 
layers of soil. It is a significant physiological characteristic 
that has a relationship with drought tolerance (Songsri et 
al., 2008). A plant’s capacity to obtain water from deeper 
layers of soil is indicated by higher root length density (RLD) 
at deeper depths of soil. Water extraction from soil might 
allow cell turgor maintenance in order to contribute to 
drought tolerance. Traits of drought tolerance, namely SLA 
and RLD, might contribute to resistance to AC (Arunyanark 
et al., 2009). These authors suggested that three traits (SLA, 
RLD and kernel colonisation) in combination may be used 
as selection criteria for choosing genotypes that resist to 
AC.

Holbrook et al. (2009) experimented with traits that were 
less variable and inexpensive to measure. These authors 
concluded that visual stress ratings, leaf temperature and 
yield under water deficit could be used as tools for indirect 
selection for less AC. They selected these traits because 
of positive and significant relationships of AC with leaf 
temperature and visual stress ratings and also due to a 
negative but significant relationship of AC with yield. 
According to Girdthai et al. (2010), the best characteristics 
that can be used as tools for indirect selection for less 
AC include SLA, RWC, chlorophyll density and drought 
stress ratings among which RWC and SLA are cheaper 
and less variable. The correlation between RWC and SLA 
was investigated by Nautiyal et al. (2002) who suggested 
that conservation of plant water status in the course of a 
water deficit is favoured by low SLA and so, metabolic 
activities are maintained, which, in turn, results in the 
maintenance of favourable leaf temperature. Wotton and 
Strange (1985) hypothesised that the ability of groundnut 

Table 1. Noteworthy traits of drought tolerance associated with less aflatoxin contamination (AC).

Traits contributing to less AC1 Difficulty level of measurement References

Kernel water content (high) easy Dorner and Cole (1997)
Transpiration efficiency (high) difficult Arunyanark et al. (2009)
Specific leaf area (low) easy Arunyanark et al. (2009)
Root length density (high) difficult Arunyanark et al. (2009)
Visual stress ratings (no stress) easy Holbrook et al. (2009)
Leaf temperature (low) easy Holbrook et al. (2000)
Yield with water deficit (high) easy Hamidou et al. (2014)
Leaf relative water content (high) easy Girdthai et al. (2010)
Chlorophyll density (high) difficult Girdthai et al. (2010)

1 Words in parenthesis indicate the degree of the particular trait.

Downloaded from Brill.com 11/20/2023 08:13:08AM
via free access



P.R. Jeyaramraja et al.

192� World Mycotoxin Journal 11 (2)

kernels to synthesise phytoalexin depends on the capacity to 
conserve the water status of the plant during a water deficit.

On the other hand, Hamidou et al. (2014) reported an 
absence of a significant relationship between the drought 
tolerance index and AC values. Hence, they inferred that 
although drought intensity increases AC, drought tolerance 
in groundnut does not lead to less AC. This suggests that 
the mechanisms of drought tolerance and resistance to AC 
are different. Important selected drought tolerance traits 
associated with less AC are given in Table 1. The difficulty 
level of measuring these traits is also given.

It has been proven beyond doubt that drought leads 
to AC. Therefore, there is a great possibility for a link 
to exist between the mechanisms regulating aflatoxin 
resistance and drought tolerance in groundnut. It can be 
inferred from published literature that relationships have 
been established between these two traits only based on 
correlation coefficients (r). No direct relationships between 
these two traits have been demonstrated at cellular, 
physiological, biochemical, or molecular level. Until such 
a direct relationship is shown, it should be admitted that 
such relationships are merely speculative. Therefore, more 
research efforts are required to unravel the mystery behind 
the relationship between these two traits. Identifying 
common metabolite(s)/protein(s)/gene(s) expressed during 
fungal infection and drought may be useful to trace how 
these two traits are related. Meanwhile, traits of drought 
tolerance listed in Table 1 will continue to serve as indirect 
selection tools for reduced AC.

5. �Approaches to enhance resistance to 
preharvest aflatoxin contamination

AC is costly to determine and varies a lot in groundnuts 
(Holbrook et al., 2000). A decrease in aflatoxin content is a 
significant goal in breeding programs. Groundnut breeding 
programs for resistance to AC would have a comprehensive 
effect on quality of seeds, thus improving the financial 
profit and welfare of agriculturalist and well-being of 
consumers (Hamidou et al., 2014). There is no one time 
AC in groundnut as AC may occur at any time when ideal 
conditions are available. Holbrook et al. (2009) gave two 
conditions for obtaining groundnut varieties that resist 
AC: (1) there have to be genetic divergence in terms of AC 
resistance, so that gene(s) for resistance can be inserted 
into varieties; (2) there must be dependable and effective 
selection methods to find varieties with resistance genes.

Mitigation of AC using a plant breeding approach has been 
a long-standing objective of researchers (Arunyanark et al., 
2009). But, significant and inexplicable G×E interactions 
and huge assay expenses for aflatoxins have slowed this 
research (Anderson et al., 1995; Blankenship et al., 1985). 
Arunyanark et al. (2010) stated that it is essential to find 

alternate approaches to select genotypes that resist AC, 
because low heritability of AC and high G×E interactions 
confuse the selection process. Hamidou et al. (2014) 
observed that AC had high G×E interactions and hence, 
suggested that selection for resistance to AC must be 
specific to a given environment. These authors noticed 
that genotypes found to resist AC did not have a uniform 
degree of resistance in different environments, indicating 
that AC was not consistent across environments. As a 
result, there is a requirement to investigate alternate 
approaches including the use of indirect selection criteria 
for resistance to AC. Groundnut varieties that effectively 
resist AC may be possible, provided that the appropriate 
traits for drought tolerance that also favour resistance to 
AC are found. In other words, breeding for resistance to AC 
in groundnut requires the inclusion of drought tolerance 
traits as surrogate traits.

The genetics of resistance mechanisms for AC have not 
been so far made clear. According to Pooja et al. (2015), 
the allelic relationship among several sources for resistance 
characters that can aid to pyramid the non-allelic genes 
for each resistance mechanism is unknown. Also, it has 
been found (Hamidou et al., 2014; Waliyar et al., 2003b) 
that certain groundnut cultivars resist A. flavus infection 
under laboratory conditions but not under field conditions. 
Crop’s resistance to aflatoxin has been grouped under three 
categories such as resistance to infection in the pod wall, 
resistance to invasion and colonisation in the seed coat, 
and resistance to aflatoxin synthesis in the cotyledon. Many 
groundnut cultivars with these three types of resistances 
have been identified in many studies and resistance 
traits were transferred to different genetic backgrounds 
for the development of several breeding lines. However, 
no relationships have been noticed among these three 
resistance categories in any studies. This is attributed to 
the influence of environmental factors on the crop-fungus 
relationship.

Many methods have been suggested for containing AC 
genetically. One of these methods is to develop and utilise 
groundnut genotypes that resist insects and that tolerate 
water-deficits and elevated temperatures (Guo et al., 2008b). 
Holbrook et al. (2009) stated that the two most hopeful 
mechanisms of resistance to AC found in groundnut are 
drought resistance and root knot nematode resistance. 
When Meloidogyne arenaria infects groundnut while there 
is a water deficit during maturation of pods, the result is a 
rise in AC of kernels (Timper et al., 2004). This is correct for 
the USA, however, nematodes are not necessarily a problem 
in many other countries. But of course, drought and other 
soil born insects and pathogens can also play a major role.

A method to improve resistance of groundnut to AC 
is to pyramid genes from different and diverse sources 
(Upadhyaya et al., 2002), such as genes encoding three 
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types of aflatoxin resistances, as well as fungal and insect 
resistances. Sullivan and Holbrook (2007) had noticed 
encouraging outcomes in the use of ground-based canopy 
reflectance remote sensing as a selection principle for 
aflatoxin- and drought-resistant varieties of groundnut. 
Studies of Wu et al. (2016) suggested a basis for forecasting 
AC using weather conditions, which can help in carrying 
out precautions to lessen pre-harvest AC of groundnuts. 
Besides, research on the influence of various types of soil 
on AC in crops is necessary because properties of soil can 
possibly affect AC (Graham, 1982). According to Torres et 
al. (2014), light sandy soil encourages fast fungal growth 
especially with drought, and heavier soils have good water-
holding capacity, so the possibility for the occurrence of a 
water deficit is minimised which partially contributes to 
low AC in heavier soils.

Biological control is a very hopeful approach to decrease 
AC in groundnuts. Aflatoxin was removed by a bacterium, 
Flavobacterium aurantiacum B-184 from solutions (Ciegler, 
1979). Enterococcus faecium can detoxify AFB1 which binds 
to the cell wall constituents of the bacteria (Haskard et al., 
2001), such as polysaccharides and peptidoglycans. Under 
laboratory conditions, some saprophytic yeast species, 
such as Candida krusei and Pichia anomala (Masoud and 
Kaltoft, 2006), and certain bacteria such as Bacillus subtilis, 
Burkholderia spp., Lactobacillis spp., Pseudomonas spp. and 
Ralstonia spp. (Palumbo et al., 2006) inhibit Aspergillus 
growth.

Using non-aflatoxigenic strains of A. flavus and A. 
parasiticus, reductions in AC have been achieved in several 
crops, including groundnut. These non-aflatoxigenic strains 
are genetically stable and mostly asexual, and cannot 
recombine with native aflatoxigenic strains and so, they have 
been used as biocontrol strains (Ehrlich and Cotty, 2004). As 
these biocontrol strains occupy the same niches in soil (Yin 
et al., 2008), they can compete with aflatoxigenic strains 
for the infection sites and essential nutrients, and finally, 
displace them. Dorner (2008) observed consistent and 
substantial decreases in AC up to 90% in groundnut using 
non-aflatoxigenic Aspergillus strains. In the recent study 
of Alaniz Zanon et al. (2016), biocontrol of aflatoxins has 
been reported using the application of naturally occurring 
non-aflatoxigenic A. flavus to soil as an antagonist. Non-
aflatoxigenic A. flavus competed and interfered with the 
proliferation of indigenous aflatoxigenic A. flavus resulting 
in a competitive exclusion of aflatoxigenic A. flavus and, in 
turn, in less AC. Fungal community structure influences 
AC, which suggest the use of atoxigenic A. flavus as 
biocontrol agent to reduce AC (Kachapulula et al., 2017; 
Mallikarjunaiaha et al., 2017). Currently, such biocontrol 
products are sold under the trade name AflaSafe® in Africa, 
and Afla-guard® and AF36® in the USA. However, there 
are certain challenges in using this biocontrol method 
due to the vast diversity in A. flavus, which can form 

heterokaryotic reproductive forms. Contrary to the findings 
of Ehrlich and Cotty (2004), Razzaghi-Abyaneh et al. (2014) 
reported that non-aflatoxigenic A. flavus could participate 
in sexual recombination, which may further increase their 
functional and genetic diversity. There is a possibility that 
sexual recombination may increase the population of 
aflatoxigenic strains, thus, the biocontrol strategy may 
become ineffective. Hence, studies on genetic variations 
among Aspergillus spp. are necessary to develop an efficient 
biocontrol strategy to reduce AC.

Waliyar et al. (2013) reported that by following certain 
management procedures in the field, the occurrence of 
AC can be diminished to a certain extent. These include 
well-timed sowing, keeping an ideal plant population, 
providing appropriate nutrition, preventing water 
deficit, containing pathogens, weeds and insect pests and 
harvesting appropriately. However, according to Liang et al. 
(2006), these methods might not be suitable for small-scale 
agriculture particularly in the tropical regions of developing 
countries.

Host-pathogen interactions under the influence of 
environment (especially drought and heat stress) are to 
be studied at the genetic level to identify plant resistant 
factors. Developments in recombinant DNA technology 
coupled with genomics, proteomics, and metabolomics will 
make it possible to develop cultivars with durable resistance 
soon. Many candidate genes involved in host-pathogen 
interactions that lead to AC have already been identified 
due to improvements in fungal expressed sequence tags, 
microarrays, and genome sequencing techniques (Cleveland 
et al., 2006). The aflatoxin biosynthesis pathway has been 
studied adequately with reference to the enzymes, genes, 
intermediates, and regulatory mechanisms (Bhatnagar 
et al., 2003; Ehrlich, 2009). Guo et al. (2008a) developed 
expressed sequence tags to identify genes encoding 
resistance to aflatoxin produced by A. parasiticus and 
then, a groundnut microarray was developed (Guo et al., 
2011) for the identification of candidate genes providing 
resistance to infection by A. flavus. Brown et al. (2013) 
reported that RNA interference gene silencing could 
permit genetically engineered crops to express resistance 
against A. flavus. With this method, fungal DNA sequences 
could be used to recognise and inhibit fungal growth in the 
plant. Mallikarjunaiaha et al. (2017) characterised non-
aflatoxigenic A. flavus strains genetically and found six 
different deletion patterns for thirteen examined genes from 
the aflatoxin biosynthesis pathway. Among the observed 
deletion patterns, the most frequently absent gene was 
found to be aflR.

An interesting research area to combat A. flavus infection is 
to identify genes coding for compounds that inhibit fungal 
growth, such as defensins, thionins, pathogenesis-related 
proteins, lectins, ribosome inactivating proteins (RIP), etc. 
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These genes can then be transferred to elite groundnut 
cultivars using a gene transfer method. Certain genes, 
namely glucose oxidase gene, ribosome-inactivation protein 
gene, stilbene synthase gene and tabtoxin acetyltransferase 
gene, have been introduced into plants to increase resistance 
against fungi (Wani et al., 2010). Transgenic groundnut had 
enhanced resistance to A. flavus and AC when expressing 
tobacco glucanase gene (Sundaresha et al., 2010), and rice 
chitinase gene (Prasad et al., 2013).

Identification of resistance associated proteins is a 
proteomics based research area, with an aim to reduce 
AC. Resistant groundnut lines when infected with A. flavus 
exhibited a 3- to 4-fold rise in β-1,3-glucanase, which may 
play a role in plant defence mechanism (Liang et al., 2005). 
Wang et al. (2010) compared the differential expression 
of seed protein profiles between a resistant cultivar and a 
susceptible cultivar, infected with A. flavus under drought 
conditions to identify proteins involved in the resistance 
to AC. Major result of this study is the identification of six 
protein spots including low molecular weight heat shock 
protein precursor, RIO kinase, L-ascorbate peroxidase, 
iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S 
ribosomal S9, that were significantly up-regulated in the 
resistant cultivar.

Targeting Induced Local Lesions in Genomes (TILLING), a 
reverse-genetics approach, was used by Knoll et al. (2011), 
to screen mutagenised groundnut populations for induced 
changes in allergen genes, with an aim of creating a cultivar 
with reduced allergenicity. Ara h 1 and Ara h 2 are two 
major allergen genes. The significant mutations identified 
were a disrupted start codon in Ara h 2.02 and a premature 
stop codon in Ara h 1.02. Homozygous individuals were 
recovered in succeeding generations for each of these 
mutations, and elimination of Ara h 2.02 protein was 
confirmed.

The cultivated groundnut is an allotetraploid with a 
large genome size and hence, interpretation of genomic 
data is complex. Moreover, the cultivated groundnut has 
relatively narrow genetic diversity (Moretzsohn et al., 
2004). To conduct genetic and genomic studies in cultivated 
groundnut, simple sequence repeats (SSR) are the most 
desirable molecular markers. As many as 15,518 SSR 
markers were generated between 2002-2012 (Guo et al., 
2013), which are valuable inputs for the research works on 
molecular genetics and breeding in cultivated groundnut. 
Kanyika et al. (2015) identified 139 informative SSR markers 
associated with resistance to certain groundnut diseases 
(early leaf spot, rosette disease, rust & AC), that have been 
mapped to the Arachis genome earlier and can be employed 
in quantitative trait loci (QTL) mapping. Molecular markers 
are useful in constructing genetic linkage maps, which is a 
pre-requisite for QTL studies.

Use of molecular markers for resistance to AC in groundnut 
is very limited. Many QTLs associated with drought 
tolerance related traits in groundnut, such as transpiration, 
transpiration efficiency, specific leaf area, leaf area and 
SPAD chlorophyll meter reading, have been identified 
(Gautami et al., 2012; Ravi et al., 2011; Varshney et al., 
2009). However, QTLs associated with resistance to A. 
flavus and AC are scarce. Identifying QTL for resistance 
to AC is expected to be very important in allowing the use 
of marker assisted selection to transfer aflatoxin resistance 
into elite lines of groundnut. In Arachis cardenasii derived 
lines, Milla et al. (2005) identified a set of six amplified 
fragment length polymorphism (AFLP) markers with low 
phenotypic variance explained (PVE). Liang et al. (2009) 
identified six QTLs for resistance to A. flavus infection 
with PVE ranging from 6.2 to 22.7%. Fountain et al. (2015) 
asserts that crop’s resistance to A. flavus colonisation and 
AC should be quantitative and that resistance is severely 
influenced by environmental interactions. Consequently, 
identifying consistent QTL for resistance to AC is a very 
difficult task because breeding efforts to discover and 
characterise QTL for resistance to AC were forced to 
consider the environment in obtaining phenotypic data 
(Fountain et al., 2015).

Until now, it has not been possible to develop a groundnut 
variety that can resist AC consistently in different seasons/
localities. Breeding for reduced AC remains cumbersome 
due to certain major problems which include lack of 
knowledge on the mechanism(s) responsible for regulation 
of aflatoxin biosynthesis by the fungus, expensive aflatoxin 
assay and high G×E interactions. Hence, indirect selection 
criteria for resistance to AC namely, drought tolerance, 
insect/nematode resistance are employed currently. 
However, it is of paramount importance to study the complex 
interactions among the plant, fungus and environment, 
which may help to throw light on plant resistance factors. 
Although the non-aflatoxigenic biocontrol strains have 
been used successfully for reducing AC, further studies 
are required on the diversity of Aspergillus spp. so that, 
there will not be any possibility for the development hyper-
competitive toxigenic strains in the long-run. More research 
works need to be carried out using gene expression analysis 
tools, so as to understand the functions of the groundnut 
genes. The modern genomic tools have great potential to 
disentangle the complex aflatoxin resistance mechanisms 
in groundnut.

6. Future thrusts

An important task is to lessen and remove AC from food 
and feed crops. Even though a lot of investigations pointed 
out positive relationships between aflatoxin resistance 
and drought tolerance, the foundation of the association 
remains uncertain and requires more research. Further 
investigations are specifically required to evaluate the 
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connection between AC and drought tolerance during 
brief episodes of acute water deficit near the end of the 
growing season.

It is still unknown whether the two traits namely, drought 
tolerance and resistance to AC are controlled by same 
genes or not. The failure to establish genetic relationship 
between these traits hinders the development of groundnut 
varieties that resist AC consistently. Quite a lot of aflatoxin 
resistant genotypes were identified at the International 
Crops Research Institute for the Semi-Arid Tropics 
(ICRISAT) based on three types of resistance viz., resistance 
to preharvest seed infection, resistance to in vitro seed 
colonisation (IVSC), and resistance to aflatoxin production 
by the fungus (Nigam et al., 2009). Liao et al. (2009) reported 
that a cultivar ‘Zhonghua 6’ which is resistant to AC, has 
been extensively cropped in central China. Rahmianna et 
al. (2015) identified a genotype ‘GH 51’ that had AC under 
the safe level (≤10 µg/kg), which has been released by the 
Ministry of Agriculture, Indonesia. Recently, Waliyar et al. 
(2016) identified seven best accessions, ICGs 13603, 1415, 
14630, 3584, 5195, 6703 and 6888 which were found to 
accumulate consistently very low levels of aflatoxin (<4 µg/
kg) over a period of six years (2008-2013). However, these 
elite genotypes may not express their resistance under all 
the environmental conditions. This is mainly attributed 
to the variability in the toxigenicity of Aspergillus spp. 
in different localities that makes the resistant genotypes 
not to perform uniformly. Consequently, breeding for AC 
resistance needs to continue.

Torres et al. (2014) stated that total prevention of aflatoxin 
is not practically possible using available methods and the 
most promising approach for reducing AC seems to be 
crop resistance enhancement. This approach requires: (1) 
inhibiting fungal infection during a drought; (2) inhibiting 
consequent fungal growth; (3) preventing AC, and (4) 
crop or fungi mediated aflatoxin degradation. Hamidou 
et al. (2014) proposed that studies on drought tolerance 
should be separated from studies on AC resistance, as it is 
very doubtful that a common mechanism leading to both 
drought tolerance and AC resistance can be identified.

The most important trait of interest that is to be genetically 
engineered in groundnut is ‘resistance to AC’ which has 
high degree of plasticity and complexity. The complex 
nature of this trait is mainly due to reasons such as, (1) 
aflatoxin measurement is difficult, (2) AC shows very high 
G×E interactions, and (3) the heritability of AC is low. 
Hence, research works to reduce AC in groundnut are very 
difficult. A complex network of genes that are regulated 
in unknown manner under the influence of environment 
must be unravelled to understand the molecular mechanism 
underlying resistance to AC. Besides, the ecological role of 
aflatoxin to the fungus should be studied, so that it may be 

possible to design strategies to arrest aflatoxin production 
by the fungus at molecular level.
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