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ABSTRACT

In this paper, we study the effect of Hall current for the case of three-dimensional
non-parallel stratified shear flow of an inviscid, incompressible perfectly conducting
fluid. The non-linear equations of the flow and the magnetic induction equation are
obtained with the uniform applied magnetic field. These equations are linearized by
assuming the perturbation from the undisturbed flow to be small. Numerical
computations are carried out for the non-dimensional parameters. The effect of
different physical parameters such as Magnetic Reynolds number, Magnetic pressure
number, Hall parameter, Richardson number, Brunt-Vaisala frequency, longitudinal
and transverse wave number are discussed with the help of graphs.
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1. INTRODUCTION

Shear instability caused by velocity shear is one of most important factors in flow
instabilities. Even though the mechanism of shear instability are yet to be fully revealed, it has
been applied to analyze instability in mixing layers, jets in pipes, wakes behind cylinders, etc.
Some simple models have been employed to study shear instability, including the Kelvin-
Helmholtz (K-H) model, piecewise linear velocity profile, continuous arbitrary velocity
profile U(y) by Rayleigh (1880, 1894). Deardorff (1965), Gallagher and Mercer (1965) and
Ingersoll (1966) investigated the stability of plane Couette flow. Ling and Reynolds (1973)
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focused their attention in analyzing the non-parallel flow corrections for the stability of shear
flows. Long-wave instability and growth rate of the inviscid shear flows was examined by
Liang Sun (2011).

Magnetohydrodynamic (MHD) shear flows are common in space plasmas. Well-known
examples of such flows are the flows near the magnetopauses of the Earth and other planets,
the flows close to the heliopause and the flows at the boundaries of the fast and slow streams
of the solar wind. Also some flows observed in the solar atmosphere can be treated as shear
flows. Studying stability of MHD shear flows is of considerable importance for the
understanding of the physical processes in space and for correct interpretation of the
observations.

Lerner and Knobloch (1985) analysed the stability of dissipative magnetohydrodynamic
shear flows using linearized perturbations to an unbounded, plane Couette flow in a parallel
magnetic field. The stability against small disturbances of the plane laminar motion of an
electrically conducting fluid between parallel plates in relative motion under a transverse
magnetic field was investigated by Takashima (1998).

The effect of Hall currents on thermal instability has received the attention of several
authors namely Raptis and Ram (1984), Sharma and Rani (1988), Sunil et al. (2005), Sharma
and Kumar (2000), Gupta and Agarwal (2011). Hall effects on unsteady hydromagnetic flow
of an electrically conducting fluid bounded by a non-conducting plate were investigated by
Prasada Rao and Krishna (1981).

In this paper, the work of Padmini and Subbiah (1995) is extended to analyze the
effect of Hall current on the linear stability of stratified shear fluid in the presence of uniform
horizontal magnetic field. Here, the stability of stratified shear flow of an unsteady,
incompressible, inviscid electrically conducting fluid confined between two rigid planes at z
= # L is taken into consideration. The magnetic field is assumed to be large enough to
produce significant Hall current. The fluid layer is permeated by a uniform external magnetic
induction field H = (Hy, H,,0). The plates at z = # L are assumed to be electrically non-
conducting.

2. MATHEMATICAL FORMULATION

Consider the unsteady three dimensional stratified flow of an incompressible, inviscid,
perfectly conducting Boussinesq fluid in the presence of a uniform magnetic field. The basic
state nonparallel shear layer is characterized by arbitrary velocities in the horizontal and
longitudinal direction. The equilibrium state velocity is taken as (U(z), V(z), 0). The
governing equations are linearized using long wave approximation. The fluid is confined

between two plates at z = + L. A uniform magnetic field H = (Hx,Hy, 0) is applied.
Based on the assumptions taken physical model of the problem is presented in Figure 1.

Upper plate

Lower plate

Fig 1. Flow configuration
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The fundamental equations relevant to the present problem are
The equation of motion governing the fluid

a_) - - A - —
p(a—‘t’+(q-l7)q) = —Vp—pgz2+ pum(VxH)xH 1)
The equation of continuity for an incompressible fluid
v.g =0 )
6p - _
praat Vp =0 (3)
Maxwell’s equations
VxH =4 nf (4)
i __, o
VXE = THm G, ()
V.H =0 (6)
Taking Hall current into account the generalized Ohm’s law is
f=a(§+um(ﬁxﬁ))—:’—:um(fxﬁ) (7)

Displacement current is neglected and all quantities are measured in terms of
electromagnetic units.

Simplifying equations (4), (5) and (7) we get

W= vx (@xH)+ nv2H -2 (7 x (v x ) x ) ®)

Where n = ﬁ is the magnetic resistivity of the fluid
Based on the boundary condition that the velocity must vanish at the boundaries (i.e)

G=0atz=+L )
The basic flow variables are given by

q) = (U(Z)'V(Z)'O)’ Po = pO(Z)! Po = pO(Z) and ﬁ = (Hx' Hy; 0)
which satisfies the governing equations and boundary conditions provided

7]
T2 = —pog (10)

where U(z), V(2), po(2), po(z) are continuously differential functions of z in the flow
domain.

Introducing the nondimensional quantities

Lt* .
t ==, p=poUo’p", p=57"
0

d 4 17
N2 = _%(d_’z’) JH = HoH*,  (xy,2) = L(X*,y*,2%)

where No is a typical value of Brunt-Vaisala frequency in the flow domain, L is the
characteristic length and Uq is the characteristic velocity.

By substituting the above nondimensional quantities into equations (1), (2), (3), (6) and
(8), it reduces to the form (after removing asterisks)

v.§ =0 (11)
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94+(4.7)§ = -Vp— Righ+ S(VxH)xH (12)
P, = _
i qgVp =0 (13)
aﬁ 1 — N — —- —
o =Ly Vx(qu)+M(|7x((|7xH)xH)) (14)
v.H =0 (15)
Where S = Z I;‘;, Magnetic pressure number
0
Rm = % : Magnetic Reynolds number
Ri = ﬂLi, Richardson number
PoUg
M= Hall parameter
UmUon

The relevant boundary conditions in dimensionless form is written as
g=0onz= +1 (16)

On this unsteady flow we superpose infinitesimal disturbances of the form

u=U@)+u,v=V()+v, w=w
p=po(2)+p, p=po(z)+p
H, = H, + h,/, H, = H, +h,/, H, = h;' (17)
The nondimensional perturbations in the form of normal modes is of the form
f(z)ei(kx+kly—kat) (18)

where f(z), function of z stands for perturbed velocity, pressure and magnetic field, k and |
are wave numbers in the x and y direction respectively and o is the growth rate of the

disturbance which in general is a complex constant.
Substituting equations (17) and (18) into equations (10) - (15) leads to

iku + ikly + 2% -0
0z

aU()

ik(—o+U@) +1V(2)u+w. === —ikp — SH, ik(hy, — lh,)

aV(z)

ik(—o+U@) +1V(2)v +w. === —iklp + SH, ik(h, — lh,)

. )
lk(—O' +U(z) +1 V(Z))w = —£ — Rip

—S(H (32— ikth, ) + Hy (%~ ikh ))
ik(—a +U(2) +1 V(Z))p — x—gw =0

ikhy + ikih, +ahz =0

<—iko - L (@? + @k + ;—;)> hy = ikl(U@hy +u H, — V(2)hy —
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—Hy () +h, 22 1 () 2

M(Hyikl (ikih, = 52) = Hyik (32 — iklh, ))

, 1 , , a2 av( ) dh, oh
<—lk0‘—ﬁ((lk)2+(lkl)2+a?)>hy— 2D h, + V()2 - H, 2 - U(2) 22

+ik(V(2)hy + vHy — uH,))

(H (ite) (%x — ikeh, ) + Hy (i) (2 — ikhz))
<—ik0 - ﬁ ((ik)2 + (ikD)? + aa—)> h, = ik(wH, — U(2)h,) + ikl(wH, — V(2)h;)

M ((Hx(ik)z(hy — lhy)) + Hy (1k)*1(hy — lhx)) (19)

Imposing no slip condition on the flow fields, the boundary conditions becomes
u=v=w=0o0n z=+#1 (20)

3. STABILITY ANALYSIS

To make the equation mathematically tractable, we assume the velocity profile to be linear
and the perturbations are restricted to long waves.

Hence, the above set of equations can be modified to the form

iku + ikly + 2% =0
0z
ik(—o+ (1 +D2)u+w = —ikp — SH, ik(h, — lhy)
ik(c+A+Dzv+w = —iklp + SHy ik[h, — lh,]
. _ ap ahy . 6hx
ik(—o+ (1 + D2)w = - Rip—S (Hy (E_ lklhz) + H, ( —ikh ))

ik(—o+ (1 +1)z2)p— §W=0
ikhy + iklh, +22 a“l =0
1 az _
—iko ——— (ik)? + (ikl)? +57) b= ikl(z(hy — hy) +u Hy, — v Hy)
—H, ( ) +h, + zahz

(H (kD) (b, — ikl 52) = H, (ik) (52 — ik hz))

_ _i .1N2 . 2 97 _ 3hz
< iko — = ((ik)? + (k) +azz)>h h, +25% = H, 22 — 7 (ik)h,
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+ik(zhy + vH,

a18)

+M ((ik)z(hy — lhy)(Hy — lHy))

— tu)

. ohy, . . Ohy
+M (Hx(lk) (%2 — ikh,) + H, (kD) (2= -

<—ika e ((ik)2 + (ikD? + a—)) h, = ik(WH, — zh,) + ikl(wH, — zh,)
Rm 9z2) | % x z y z

(21)

By assuming the series expansions with respect to k in the form

f=fotkfitk’fo+-
where f = (u,v,w,0,p,p, hy, hy, h;)

(22)

Substituting equation (22) into above set of equations and retaining the quantities of the zeroth order,

we get
in + ilvo + % =0
iT(Z)uO + Wo = _lpo
iT(Z)UO + Wo = _llpo
9o _ pi _
e Ri pg =0
iT(z)po vz Wo =0 (23)
ihyo + ilhyo + 22 —0
, 0 1 82%h,,
il(ug H, — v, H,) — H, (%) = _E_azzo
, ow, 1 9%h
i(vo Hy —uo Hy) = Hy (52) = o528
, 1 9%h,
lWo( H,+1 Hy) = —E?ZO (24)
where T(z) = (1 + )z — g,
with the relevant boundary condition that
Uy =1y =Wy =0 atz=+1 (25)

By considering the coefficients of first order in k, we get

. . owq
iu +ilvy + P
iT(2)u, — ioyug + wy

iT(2)v, — io1vy + Wy

_% _ . _ ahyo _ ahxo
0z Rip, SHy 0z SIZ-Ix 0z
. . N
iT(z)py — io1po — !
(26)
ihyy + ilhy, + 22
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_ﬁa;:;“ — ioghyy = ilZ(hyo — Ryo) + ilugH, — ilv H, — Hy (6‘”1) + hyo
Pt = I (i Uy)
~ L2 igghye = i2(leo — hyo) — g Hy + vy Hy — Hy 22 4 by
s ahzo+M 6hxo(H 1)
Rin aa:; —ioghye = iwi(Hy +H,) — iz(1 + Dhyg
+M(hy0 - lhxo)( H,+1 Hy) @7)

The appropriate boundary conditions are given by
u1=v1=W1=0 atZ:il (28)
By considering the quantities of second order in k, we get

ity + v, + 22 =0
iT(Z)uZ - i0'1u1 - io-zuo + Wy = _lpz - lS Hy(hyl - lhxl)
iT(z)v, — o1V, — 10,V + Wy = —ilp, +

i S He(hyy — lhyy)

ahyl _SH Ohyq

X 9z

w, =0 (29)

iT(z)WO———Rlp —SH, =0

NZ

iT(2)p, — io1py — 03P — NoZ

ihyy + ilhy, + 2522 =0

9%hy . _ _ _
_é( 62'22 — (1 + lz)hxo) — lo'lhxo - lo-ohxl = llZ(hyl _ hxl) + lluZHy —

ilv,H,

sz

ah
—Hx(a )+hzl+Zah21 y1

2% (Hy +

IH,)

1 (0%h . ] . . .
_ﬁ( aziz -1+ lz)hyO) —io1hyy —ioghy, = iz(hyey — hyl) — iuyH, + iv,H,

Ohyy

—H aWZ

Ohyy
y¥+hzl+za_;+M (H +

1)

1 (9%hy ) , ; ,
_R_( z (1 + lz)hzo) - lo-lhzo - lo-ohzl = lWZ(HX + lHy) - lZ(]. + l)h'Zl
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—M(hyo — lhyo)( Hy + L Hy) (30)

Corresponding boundary conditions are
u2=v2=W2=0 atZ=i1 (31)

Eliminating po, po, Uo, voin favour of w, from (23) we obtain

T(2)2 LW 4 BNZ (1 4 12y = 0 (32)

0z2 Ny?

The solution of equation (28) is given as
wo=AT(z)™ +BT(z)™ (33)

124 . N2 (1412
Where ml‘z = T, A =1—4Ri N_§E1+l)2’

A and B are constants of integration.

To determine the arbitrary constants, we impose the boundary condition that the velocity should
vanish at the boundaries (i.e) wo = 0 at z = + 1, yields
1+1l—0y)™ A+1l=09)™ | _
A +D—=0g)™ (=(A+D—agp)™|

By solving the above determinant the value of o, can be obtained as

2nmi
1+eM1—Mm2

Oy = 1+ l)W (34)

1—eM1—M2

The solution of equations (23) and (24) are given by
Uy = BsT(z)™ ™1 + BgT(z)™2"1
vy = B;T(z)™ ™1 + BgT(z)™M=2"1
wo = T(z)™ + BT(z)™
po = BiT(2)™ ™' + B,T(z)™=""
Po = B3T(2)™ + B, T(2)™> (39)

hxo — _Rm (BgT(Z)m1+l + BloT(Z)m2+1)
hyo = —Rm (By;T(2)™*! + By, T(2)™2*1)
hZO = —Rm (BlgT(Z)m1+2 + Bl4T(Z)m2+2)
By simplifying equ (26) interms of w;, we get
2 :A72
TG 52+ S (P = 04(Gos = REGATE™ ™ + (€
Ri C1g)T(2)™71)

+SRm (C1oT(2)™* + Gy T(2)™2*) (36)

The solution of equ (36) is obtained in the form
wy = CT(2)™ + DT(2)™2 + 0,((By1 — Ri By,)T(2)™ ! + (By; —
Ri B,,)T(z)™1)

+SRm (B,sT(2)™+1 4 B, T(z)™2+1)

By applying the boundary condition w, (+1) = 0 and simplifying for o;, we obtain

S Rm By,

O' =
17 B,,~RiBys

(37)

By solving the set of equs (26) and (27), we get
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u; = (S Rm Bgg — 0,(Bso — Ri Bgy) )T(2)™ ™ + (S Rm Bg; — 0,(Bg, — Ri Bg3))T(2)™271
+ 01((364 — Ri Bgs)T(2)™7% 4+ (Bgg — Ri 367)T(Z)m2_2)
+ SRm (BggT(2)™ + BgoT(2)™2)

v, = (SRm B,y — 0,(B;; — Ri B;,))T(2)™ ' + (S Rm B,3 — 6,(By4 — Ri B,5) )T (z)™2""
+ 01((376 —RiB;;)T(2)™ 2 + (B,g — Ri B79)T(Z)m2_2)
+ SRm (BgyT(2)™ + Bg; T(2)™2)

w; = (S Rm Bsg — 0, (Bsg — Ri B3;))T(2)™ + (S Rm Byg — 0,(Bso — Ri By,) )T (2)™>
+ 01((321 — Ri By,)T(z)™ ™1 4+ (By; — Ri Bz4)T(Z)m2_1)
+ SRm (BysT(2)™ ™1 + B, T(2)™2*1)

p1 = (S Rm By5 — 0,(Bss — Ri B3;))T(2)™~" + (S Rm Byg — 01 (B3 — Ri By))T(2)™2"
+ ‘71((344 — Ri By,)T(2)™ ™2 + (Bys — Ri Bz4)T(Z)m2_2)
+ SRm (B,sT(2)™ + By T(2)™)

P = (S Rm Bys — 0,(By; — Ri B4-8))T(Z)m1 + (5 Rm By — 01(Bsy — Ri 351))T(Z)m2
+ 01((352 — Ri Bs3)T(2)™ ™! + (Bsy — Ri Bss)T(Z)mz_l)
+ SRm (Bs¢T(2)™*! + B, T(2)™2+1)

hyy = Rm(oy(Bg, — Ri Bg3)T(2)™ + 01(Bgy — Ri Bgs)T(2)™
+(S Rm Bgg — 0, (Bg; — Ri Bgg) + Byg1 + Rm By,)T(2)™**
+(S Rm Bgg — 0,(Bog — Ri By;) + Bygg + Rm Byo)T(2)"2+!
+(S Rm By, + M Boz + Bgg + Rm By )T (2)™1 2
+(S Rm By, + M Bgs + Byys + Rm By, )T (2)"2*?
+(Bog + 2(Bg; + RM Bog) )T(2)™*2 + (Byg3 + 2(Bygs + RM Byg5))T(2)™2+3
+Rm(B,1,T(2)™** + 3111T(Z)m2+4))
hy1 = Rm(0;(By1; — Ri B113)T(2)™ + 01(By14 — Ri B115)T(2)™
+(S Rm By — 01(B117 — Ri Byyg) + RmBy3, 2> )T (2)™**
+(S Rm Byyg — 01(B1z9 — Ri Bypq) + RmBy332°)T(2)™2**
+(S Rm By, + Rm By30z2)T(2)™%2 + (S Rm By,3 + Rm B,3,2?)T(z)™2%2
+Rm(( Biy4 4z Byys + M Byyo)T(2)™*3 + (Byy; + 2 Byyg + M Byyg)T(2)™2*3
+RM(B,3,T(2)™** + By35T(2)™2+4))

h;1 = Rm(01(By36 — Ri By37)T(2)™*" + 01(B,35 — Ri By39)T(2)™2**
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+(S Rm By4o — 01 (Biaq — Ri By4))T(2)™+?

+(S Rm By43 — 0, (Bias — Ri By45))T(2)™2+?

+Rm((M By4g — SB14g)T(2)™*3 + (M Byao — S By47)T(2)"2+3

+Rm(B;5,T(2)™*5 + B, T(2)™2+%)) (38)

The simplified form of equation (29) in terms of w, is obtained as

Ri N?
Ng?

2
T(@)? 52+ 50 (14 PIw, = BuspT(2)™72 + BissT()"2 7 + (Busa — 02(ds — REA))T(2)™ " +

(Byss — 0,(ds — Ri dg))T(2)™2™" +By56T(2)™ + Bys,T(2)™ +B, 55T (2)™*1 +
BysoT(2)™2+1 + B, 5o T(2)™1*% + By, T (2)"2+2
+B162T(2)™7%3 + B163T(2)™*% + B164T(2)™** + By6sT(2)™2+* (39)
The solution of equation (39) is obtained as
w, = (E + By;,)T(2)™ + (F + B,,5)DT(2)™
+B166T(2)™ 2 + By, T(2)™"2 + (Bygg — 02(Bygo — Ri By70))T(2)™ ™
+(By71 — 0,(By75 — Ri By73))T(2)™>"" + By76T(2)™*! + By,,T(2)™2*
+B,76T(2)™*2 + By,oT(2)™2*2 + BygoT(2)™*3 + B, T(2)™2+3
+B1g,T(2)™** + By T(2)™2+* (40)
By applying the boundary condition that w,(+1) = 0 and simplifying for o,, we obtain
oy = — D (41)

B19o—Ri B191

For the sake of brevity the constants are given in Appendix.

4. RESULT AND DISCUSSION

In this paper, we have made an attempt to analyze the stability of stratified non-parallel shear
flow with Hall effect. A numerical computation is done to analyze the nature of various
physical quantities which describes the stability characteristics. To understand the effect of
various nondimensional parameters, the growth rate is plotted as a function of these
parameters. Figures (2) — (8) present the growth rate as a function of wave number for
different dimensionless quantities present in the problem when A > 0. The results are
discussed as follows.
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Figure 2. Growth rate vs wave number for various Rm
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Figure 3. Growth rate vs wave number for various M
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Figure 4. Growth rate vs wave number for various S
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Figure 5. Growth rate vs wave number for various N?
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Figure 8. Growth rate vs wave number for various |

Figure 2 presents growth rate as a function of wave number for various Magnetic
Reynolds number. It is understood that increase in Magnetic Reynolds number decreases the
growth rate with increasing wave number. Thus, we may conclude that increase in Magnetic
Reynolds number contributes more to the flow stability. Growth rate as a function of wave
number with increasing Hall parameter is shown in Fig. 3. From Figure 3, it is clear that
increase in Hall parameter decreases the growth rate with the increase in wave number
thereby making the system stable.

Figure 4 explains the variation of growth rate as a function of wave number for various
Magnetic pressure number. It is observed that increase in magnetic pressure number decreases
the growth rate with the increase in wave number. From this, we conclude that with the
increase in wave number, the growth rate increases and leads to decay of disturbances. The
growth rate as a function of wave number is shown through Figure 5 with various Brunt
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Vaisala frequency. We observe from the figure that, initially the system is stable and Brunt —
Vaisala frequency plays a key role on the stability of the system. We can observe that for
smaller Brunt - Vaisala frequency, the system is unstable and as the Brunt — Vaisala
frequency increases, the disturbances tend to decay thereby stabilizing the system.

Figure 6 presents the behavior of growth rate as a function of wave number for different
Richardson number. On careful observation, it can be inferred that with the increase in
Richardson number the growth rate also increases thereby contributes more to the instability
of the flow. Figure 7 depicts the behavior of growth rate with respect to various n. It is
concluded that, infinite number of modes exists for the given stability problem. In the case of
increasing transverse wave number the behavior of growth rate is discussed in Fig 8. It is
noted that increase in transverse wave number decreases the growth rate with the increase in k
and results in the stabilization of the system.

Growth rate vs Brunt Vaisala frequency for various Hall parameter, Magnetic Reynolds
number, Magnetic pressure number and longitudinal wave number is demonstrated in Figures
(9) — (12). From these figures, it is clear that growth rate decreases with the increase in Hall
parameter, Magnetic Reynolds number and longitudinal wave number, increases with increase
in Magnetic pressure number. From all the above cases it can be inferred that the system is
unstable, becomes stable with the increase in the Brunt Vaisala frequency. Figure (4.13)
presents the behavior of growth rate vs Richardson number for various wave number k. It is
concluded that, with the increase in Richardson number growth rate decreases with the
increase in k. this makes the system more stable.
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Figure 9. Growth rate vs Brunt vaisala frequency for various M
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Figure 10. Growth rate vs Brunt vaisala frequency for various Rm
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Figures (14) — (17) portray the nature of growth rate with respect to Hall parameter. From
these Figures, it is clear that growth rate decreases with the increase in wave number,
magnetic Reynolds number and Brunt — Vaisala frequency making the system more stable,
growth of disturbances increases with the increase in and transverse wave number. The
system becomes unstable with increasing transverse wave number.

Figures (18) - (20) give the velocity profile for various Hall parameter, Magnetic pressure
number and wave number. From these Figures, we can conclude that velocity increases with
the increase in the above said parameters.

5. CONCLUSION

The effect due to the inclusion of Hall current on the linear stability of inviscid,
incompressible nonparallel stratified shear flow of a perfectly conducting fluid is analyzed.
Series expansion method is used to solve the equations governing the flow. A theory for non-
parallel stratified shear flow is developed formally and applied in detail for three dimensional
Cartesian coordinate system for 4 > 0. From the results obtained from the previous section,
following conclusions can be drawn.

e The flow field is stable with the increase in Magnetic Reynolds number, Hall parameter,
transverse wave number and Magnetic pressure number.

e The system becomes unstable with the increase in Brunt-Vaisala frequency.
e Increase in Richardson number destabilizes the field of flow.

e The system becomes unstable for various Hall parameter, Magnetic Reynolds number,
Magnetic pressure number and longitudinal wave number with the increase in Brunt Vaisala
frequency.
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The system is stable with the increase in Richardson number for various wave number.

Increase in wave number, magnetic Reynolds number and Brunt — Vaisala frequency results in
the stability of the system, the system becomes unstable with the increase in transverse wave
number.

Velocity profile increases with the increase in Hall parameter, Magnetic Pressure number and
wave number.
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—iSRm(~1H, + (1 + 212)H,)(C 04 + RMCyq5)

+RmCyq,(m, +4)(1 +
_ p; N2 (1+1?)
P= Rllvg (1+1)?
C — Cis2
166 ™ (1m,-2)2—(my—2)+p
C — Cis3
167 ™ (1n,-2)2-(my—2)+p
C — Cisq
168 ™ (my-1)2-(my-1)+p
C — Ciss
169 ™ (m,-1)2—(m,-1)+p
_ ds
Ciro = (my-1)2-(my-1)+p
j— d4‘
G = (my-1)2-(m,—1)+p
_ ds
Cirz = (my-1)2-(my-1)+p
_ ds
Cirs = (my-1)2—(my—1)+p
_ Cis6
Ciza = (m1)2—(my)+p
_ Cis7
Cirs = (m3)2=(my)+p
Ciz6 = oo

(m1+1)2=(my+1)+p

my+1
1)

Ci76a = %(1 +

D

+(m1+1)2(p12_§)_M)

p2

Ci76p = %(5 +6(m;+1) (piz _ l) _ 18(m1+1)2)

» p?

Crree = le,sa (6 ( 1 1) _ 12(7:21+2))

p* P
Cis9

Cirr = (My+1)2—(m+1)+p

3
Crpr = Gi (1 +I L 4 1)2 (1% _ l) _ M)

p p

[ p?

Ciz7p = Clzga (;3 +6(m,+1) (1% — l) — 13(""—2“)2)

C = iy
177¢ P p? p
Ci60

(my+2)2=(my+2)+p

c my+1
C — 160a (1 + 1 )
178a » .

Ci7g =

Cre0a [ 2 1
Cizgp = 1;0 <; +4(m +1) (1; - ;))

Ci61
(my+2)2—(mz+2)+p

[2 my+1
C — 16la (1 + 2 )
179a » .

Ciz9 =

p p?

_ Cisoa (6 ( 1 1) _ 12(m2+2))
p2

1

Cioa [ 2 11
Cizop = 1:1 <; +4(m; +1) (17 - ;))

Cie2
(my+3)2=(my+3)+p

C my+3
Cuona = S22 (1 4 7222)
180a p p

Cigo =

Ci63
(m2+3)2=(ma+3)+p

C163a myp+3
Cigra =222 (1 + —)
181a P P

Cig1 =

Ci64

Cies

Cigz = Cigs

(my+4)2—(my+4)+p’

= a0 —(myr0ip
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dy=—1+0D -0y,
d; = my(m; — D1 +D?,
ds = my(m, —1)(1+ D2,

K. Sumathi, T. Arunachalam and R. Panneerselvi

d,=1+1D -0
dy = i(1+ 12,
dg = i(1+ 12)C,

C184 = C166dIM172 + C167d11’r1272 + C‘IGSdlrr1171 +

C169dlrnz_1 + (C176 - C176a + C176b - C176(:)d1m1+1 +

(C177 - C177a + C177b - C177 c)d1m2+1 + (C178 + C178a -
C178b)d1m1+2 + (C179 + C179a - C179b)d1m2+2 +(C180 -
ClBOa)d1m1+3 + (CISI - ClSla)d1m2+3 + C182dlrnl+4 +

C183 d1m2+4

CIBS = C166d2m1_2 + C167d2m2—2 + CIGSdZWLI_1 +
C169dZTnZ_1 + (C176 + C176a + C176b + C176(:)d2m1+1 +
(C177 + C177a + C177b + Cl77 C)d2m2+1 + (C178 + C178a +
C178b)d2m1+2 + (C179 + Cl79a + Cl79b)d2m2+2 +(C180 +
ClBOa)d2m1+3 + (CIBI + ClSla) dZTnZ-’-3 + ClSZdZTnl‘“‘r +
Crazdy ™"

_gmy—1 ymy my—1 ;my my—1
Cige = d1 dz - dz d1 + dz + a2 g _ g gme
1 2 1 2

mp-1.mq mpy—-1_mq
my—1 ;m my—1 ;m my-1 , d d, —d d
Cigy=d; 2 dyt—d,? "dy " +d, 2 + L —rome

2 mz  my_ gmy Mz
dy"dy —dydy

my my
Cigsd; —Cigad,

my ,my my _my
dy“dy —dydy

Cigg = Cigady™ — Cigsd;™? + + Cigs

Cigo = Ci54Cig6 + Ci55C1g7 + dyy

Ci90 = d3Cig6 + dsCig7,  Cro1 = dsCigg + deCigy
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