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ABSTRACT 

The linear stability of an inviscid, incompressible plane-parallel 

magnetohydrodynamic stratified shear flow with velocity 𝑈⃗⃗ = (𝑈(𝑧), 0, 0) and a 

constant magnetic field confined between two horizontal parallel plates is analyzed. 

The governing equations with suitable boundary conditions are solved using normal 

mode approach. Approximate analytical solutions are found to determine the growth 

rate. The effects of various non-dimensional parameters like Brunt-vaisala frequency 

(N), Magnetic Pressure Number (S), Magnetic Reynolds Number (Rm) and 

Richardson Number (Ri) with respect to wave number is shown graphically. 
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1. INTRODUCTION 

The linear stability of a stratified shear flow of an inviscid, incompressible fluid has been 

extensively studied by many authors. The standard method for obtaining stability criteria from 

the linearized equations for an inviscid incompressible fluid in a plane parallel flow is normal-

mode analysis, which leads to the Rayleigh stability equation ( Drazin and Reid [5], Drazin 

and Howard [6]). The normal-mode stability of plane parallel flows of an inviscid, 

incompressible stratified fluid has been analyzed by Taylor [16] and Goldstein [7]. 
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Drazin [6] discussed the stability of parallel flow in a parallel magnetic field at small 

magnetic Reynolds number. Kent ([9], [10]) studied the effect of varying magnetic field on 

the stability of parallel flows. Agarwal and Agarwal [1] analyzed the stability of 

heterogeneous shear flow in the presence of parallel magnetic field. Kochar and Jain [11] and 

Rathy and Harikishan [14] have also discussed the same problem. Small perturbations of a 

parallel shear flow in an inviscid, incompressible stably stratified fluid are studied by Collyer 

[3]. 

The Kuo’s eigen value problem (Kuo [12]) governs the normal mode stability of 

barotropic zonal flows of an inviscid, incompressible fluid on a  - plane. Barston [2] has 

introduced a new method in the linear stability analysis of plane parallel flows of inviscid, 

incompressible homogeneous fluid.  Stability of stratified shear flows in channels with 

variable cross section was studied by Reddy and Subbiah [15]. Linear stability of inviscid, 

parallel and stably stratified shear flow under the assumption of smooth strictly monotonic 

profiles of shear flow and density is studied by Hirota and Morrison [8]. 

In the present study, the work of Padmini and Subbiah [13] is extended to study the effect 

of uniform magnetic field. The stability of stratified shear flow of an inviscid, incompressible 

fluid confined between two rigid planes at  𝑧 = ±L under the influence of uniform magnetic 

field is considered. The following analysis is based on the linear velocity profile with long 

wavelength approximations. 

2. FORMULATION OF THE PROBLEM 

Consider an electrically conducting stratified inviscid Boussinesq fluid flowing between two 

horizontal plates. A uniform magnetic field is applied. We use Cartesian coordinates (x, y, z) 

taking the mid-point between two parallel plates as origin. The plates are considered at a 

distance 2L apart. Under the above mentioned assumptions the schematic representation of 

the problem is given in Figure 1. 

 

Figure 1 Schematic representation of the problem 

With the Boussinesq’s approximation, the governing equations for the motion of an 

inviscid, incompressible, stratified shear fluid confined between two horizontal infinite rigid 

planes under horizontal magnetic field are 

∇. q⃗   = 0         (1) 

∂q⃗⃗ 

∂t
+ (q⃗ . ∇)q⃗  = 

−∇p

ρ0
− 

ρgẑ

ρ0
+ μ

m
(∇ × H⃗⃗ ) × H⃗⃗      (2) 

𝜕𝜌

𝜕𝑡
+ (q⃗ . ∇)ρ  =  0         (3) 
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∂H⃗⃗ 

∂t
    =   ∇2 H⃗⃗ +  ∇ × (q⃗  × H⃗⃗ )       (4) 

∇. H⃗⃗   = 0          (5) 

where q⃗ , , p, g, ,  μ
m

 and H⃗⃗  denote the velocity, density, pressure,  acceleration due to 

gravity, resistivity, magnetic permeability and the magnetic field  respectively.  

If the fluid is confined between two horizontal rigid planes at 𝑧 = ±L, the boundary 

conditions are 

q⃗ = 0                            at  z = ± L        (6) 

The equilibrium state is given by  

−
∂pe

∂z
− ρ

e
g = 0          (7) 

The dimensionless forms have been rendered for the quantities with respect to the 

characteristic length (L) and the characteristic velocity (U0) as the following:  

𝑡 =
Lt∗

U0
 ,  p = ρ0 U0

2p∗, ρ =  
ρ0U0

2N0
2

Lg
ρ∗,  H⃗⃗ =  H0H⃗⃗ 

∗ and (x,y,z) = L(x*,y*,z*)  (8) 

where N2 = −
g

ρ0
(
dρ

dz
) is the Brunt-Vaisala frequency which is assumed to be positive for 

static stability and N0
2  is a typical value of Brunt-Vaisala frequency in the flow domain. 

Substitute the above dimensionless quantities in the governing equations, equations (1) - (5) 

reduce to (on removing asterisks) 

∇. q⃗   = 0         (9) 

∂q⃗⃗ 

∂t
+ (q⃗ . ∇)q⃗  = −∇p −  𝑅𝑖 gk̂ +  S(∇ × H⃗⃗ ) × H⃗⃗       (10) 

𝜕𝜌

𝜕𝑡
+ (q⃗ . ∇)ρ  =  0         (11) 

∂H⃗⃗ 

∂t
   = 

1

𝑅𝑚
∇2 H⃗⃗ +  ∇ × (q⃗  × H⃗⃗ )      (12) 

∇. H⃗⃗   = 0         (13) 

where, S =  
μmH0

2

ρU0
2 , Magnetic Pressure Number 

𝑅𝑚 = 
LU0


, Magnetic Reynolds Number  

𝑅𝑖 =  
gβL2

ρ0U0
2, Richardson Number 

The boundary condition in non-dimensional form is 

q⃗ = 0                            on  z = ± 1        (14) 

Decomposing the flow into a basic state and a disturbance as (U(z) + u, v,w), ρe(z) + ρ , 
pe(z) + p and(H0 + hx, hy, hz), the basic state U(z), ρe, pe, H0 are governed by the 

equations above. 

The linearized perturbation equations for infinitesimal normal modes of the form 

f(z)eik(x+ly−σ t), (k and l are the horizontal and transverse wave number and σ  the complex 

wave velocity) are obtained as 

ik(u + lv) +
∂w

∂z
   = 0 

ik(U − σ)u + w.
∂U

∂z
   = −ik (p + H0S(hy − lhx)) 

ik(U − σ)v     = −ik (p − H0S(hy − lhx)) 
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ik(U − σ)w   = −
∂p

∂z
−  𝑅𝑖 ρ + H0S (ik(1 + l)hz  −

∂hy

∂z
−

∂hx

∂z
) 

ik(U − σ)ρ − 
N2

N0
2w   = 0 

ik(hx +  lhy) +
∂hz

∂z
   = 0 

(−ikσ −
1

𝑅𝑚
 (–k2(1 + l2) +

∂2

∂y2
)) hx  = ikl(H0u + Uhy − H0v) −H0

∂w

∂z
+

∂

∂z
(Uhz) 

(−ikσ −
1

𝑅𝑚
(−k2(1 + l2) +

∂2

∂y2
) ) hy = −ik(H0u + Uhy − H0v) − H0

∂w

∂z
 

(−ikσ −
1

𝑅𝑚
(−k2(1 + l2) +

∂2

∂y2
) ) hz = ik((1 + l)H0w− Uhz)           (15) 

The associated boundary conditions are 

u = v = w = 0              on z =  1        (16) 

3. EIGEN VALUES AND EIGEN FUNCTIONS FOR LONG WAVES 

Here, we consider the analysis for long wave approximation (i.e) k is assumed to be small and 

the flow is assumed to be bounded between two plates 𝑧 =  1. In order to get closed form 

solutions, we consider the linear velocity profile as the basic flow U(z) =  z.  

Hence equation (15) reduces to the form 

ik(u + lv) +
∂w

∂z
  = 0 

ik(−σ + z)u + w  = −ik (p + H0S(hy − lhx))  

ik(−σ + z)v = −ik (p − H0S(hy − lhx)) 

ik(−σ + z)w  = −
∂p

∂z
−  𝑅𝑖 ρ + H0S (ik(1 + l)hz  −

∂hy

∂z
−

∂hx

∂z
) 

ik(−σ + z)ρ − 
N2

N0
2w = 0 

ik(hx +  lhy) +
∂hz

∂z
  = 0 

(−ikσ −
1

𝑅𝑚
 (–k2(1 + l2) +

∂2

∂y2
)) hx =  ikl(H0u + zhy −H0v)  − H0

∂w

∂z
+

∂

∂z
(zhz)  

(−ikσ −
1

𝑅𝑚
(−k2(1 + l2) +

∂2

∂y2
) ) hy = −ik(H0u + zhy −H0v) − H0

∂w

∂z
  

(−ikσ −
1

𝑅𝑚
(−k2(1 + l2) +

∂2

∂y2
) ) hz =  ik((1 + l)H0w− zhz)   (17) 

We assume the series expansions with respect to the wave number k in the form 

f = f0 + kf1 + k
2f2 +         (18) 

where, f = (u, v,w, σ, ρ, hx, hy, hz)  

Substituting equation (18) into equation (17) and equating the coefficients of same degree 

terms and neglecting k2 we get the following set of differential equations: 

Zeroth order equations: 

iu0 + ilv0 +
∂w0

∂z
  = 0  

iT(z)u0 + w0    = −ip0 

iT(z)v0   = −ilp0 
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−
∂p0

∂z
− 𝑅𝑖 ρ0   = 0 

iT(z)ρ0 −
N2

N0
2 v0   = 0        (19) 

ihx0 + ilhy0 +
∂hz0

∂z
 = 0 

−
1

𝑅𝑚
(
∂2hx0

∂z2
)  = i(1 + l)H0u0 

−
1

𝑅𝑚
(
∂2hy0

∂z2
)   =  i(1 + l)H0v0 

−
1

𝑅𝑚
(
∂2hz0

∂z2
)  = i(1 + l)H0w0      (20) 

where 𝑇(z) = z − σ0 

First order equations: 

iu1 + ilv1 +
∂w1

∂z
    = 0 

iT(z)u1 +w1 − iσ1u0  = −ip1 − iH0S(hy0 − lhx0) 

iT(z)v1 − iσ1v0  = −ilp1 + iH0S(hy0 − lhx0) 

∂p1

∂z
+ 𝑅𝑖 ρ1   = −H0S (

∂hx0

∂z
+

∂hy0

∂z
)  

iT(z)w1 − iσ1w0  = −ilp1 − Slhx0(1 + y) 

iT(z)ρ1 − iσ1ρ0 −
N2

N0
2w1  = 0        (21) 

ihx1 + ilhy1 +
∂hz1

∂z
  = 0 

−
1

𝑅𝑚
(
∂2hx1

∂z2
)  = i(1 + l)u1H0 − iT(z)hx0 + hz0 

−
1

𝑅𝑚
(
∂2hy1

∂z2
)  =  i(1 + l)v1H0 − iT(z)hy0 

−
1

𝑅𝑚
(
∂2hz1

∂z2
)   =  i(1 + l)w1H0 − iT(z)hz0     (22) 

The boundary conditions (16) reduces to 

u0 = u1 = 0,   v0 = v1 = 0,  w0 = w1 = 0      (23) 

By simplifying equation (19) interms of w0, we get 

T(z)2
∂2w0

∂z2
+

Ri N2

 N0
2 (1 + l

2)w0 = 0          (24) 

The solution of Equation (24) is given by 

𝑤0 =

{
 

 
A T(z)m1 + B T(z)m2,                                                      𝜆 > 0

𝑇(𝑧)
1

2(C + D log (T(z)),                                                          𝜆 = 0

𝑇(𝑧)
1

2 (Ecos (𝑘𝑙𝑜𝑔(𝑇(𝑧))) + Fsin (𝑘𝑙𝑜𝑔(𝑇(𝑧)))) , 𝜆 < 0

 

where  m1,2 =
1√λ

2
, λ = 1 − 4 Ri

 N2

N0
2 (1 + l

2), 𝑘 =
√−𝜆

2
, A, B, C, D, E and F are arbitrary 

constants.  

By applying the boundary conditions that the velocity should vanish at the boundaries (i.e) 

w0 = 0  𝑎𝑡 𝑧 =  1, we obtain the value of  𝜎0 as 



K.Sumathi, T.Arunachalam and R.Panneerselvi 

 http://iaeme.com/Home/journal/IJMET 561 editor@iaeme.com 

σ0 =

{
 
 

 
 1+e

2nπi
m1−m2

1−e
2nπi

m1−m2

,              λ ≥ 0

1+𝑒
𝑛𝜋
𝑘

1−𝑒
𝑛𝜋
𝑘

,                      λ < 0

        (25) 

The solution of equations (19) and (20) can be obtained as  

u0 = {

C7T(z)
m1−1 + C8T(z)

m2−1,                                                                                λ ≥ 0

𝑇(𝑧)
1
2

𝑖
(cos (𝑘𝑙𝑜𝑔(𝑇(𝑧)))(

𝐸

2
−𝑘𝐹

1+𝑙2
− 𝐸) + sin (𝑘𝑙𝑜𝑔(𝑇(𝑧))) (

𝑘𝐸+
𝐹

2

1+𝑙2
− 𝐹)) ,             λ < 0

   

v0

=

{
 
 

 
 

C5T(z)
m1−1 + C6T(z)

m2−1,                                                                                      λ ≥ 0

−𝑙𝑇(𝑧)−
1

2

𝑖(1 + 𝑙2)
(cos (𝑘𝑙𝑜𝑔(𝑇(𝑧))) (𝑘𝐹 −

𝐸

2
) + sin (𝑘𝑙𝑜𝑔(𝑇(𝑧)))(

𝑘𝐸 +
𝐹

2

1 + 𝑙2
− 𝐹)) ,   λ < 0

 

w0   

= {
T(z)m1 + BT(z)m2 ,                                                                                                λ ≥ 0

𝑇(𝑧)
1

2 (cos (𝑘𝑙𝑜𝑔(𝑇(𝑧))) + sin (𝑘𝑙𝑜𝑔(𝑇(𝑧)))) ,                                           λ < 0
 

 ρ0 = {

C1T(z)
m1−1 + C2T(z)

m2−1,                                                                                  λ ≥ 0

𝑁2𝑇(𝑧)−
1

2

𝑖𝑁0
2 (cos (𝑘𝑙𝑜𝑔(𝑇(𝑧))) + 𝐹sin (𝑘𝑙𝑜𝑔(𝑇(𝑧)))) ,                                λ < 0

 

p0 = {

C3T(z)
m1 + C4T(z)

m2 ,                                                                                            λ ≥ 0

𝑇(𝑧)
1

2

𝑖(1 + 𝑙2)
(cos (𝑘𝑙𝑜𝑔(𝑇(𝑧)))(𝑘𝐹 −

1

2
) + sin (𝑘𝑙𝑜𝑔(𝑇(𝑧))) (−𝑘 −

𝐹

2
)) ,       λ < 0

 

hx0 = 𝑅𝑚 {
𝐶11 𝑇(𝑧)

𝑚1+1 + 𝐶12 𝑇(𝑧)
𝑚2+1,                                                                     λ ≥ 0   

T(z)
3

2 (C44cos (𝑘𝑙𝑜𝑔(𝑇(𝑧))) + 𝐶45 sin(𝑘𝑙𝑜𝑔(𝑇(𝑧)))) ,                     𝜆 < 0
 

hy0 = 𝑅𝑚 {
𝐶13 𝑇(𝑧)

𝑚1+1 + 𝐶14 𝑇(𝑧)
𝑚2+1,                                                                    λ ≥ 0

 𝑇(𝑧)
3

2 (𝐶42 cos (𝑘𝑙𝑜𝑔(𝑇(𝑧)))+ 𝐶43𝑠𝑖𝑛 (𝑘𝑙𝑜𝑔(𝑇(𝑧)))) ,                          λ < 0
 

hz0 = 𝑅𝑚 {
𝐶9 𝑇(𝑧)

𝑚1+2 + 𝐶10 𝑇(𝑧)
𝑚2+2 ,                                                                    λ ≥ 0

 𝑇(𝑧)
5

2 (C40cos (𝑘𝑙𝑜𝑔(𝑇(𝑧))) + C41𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(𝑇(𝑧)))) ,                            λ < 0
 

Equation (21) is simplified interms of 𝑤1 as 

T(z)2
∂2w1
∂z2

+
𝑅𝑖 N2

N0
2
(1 + l2)w1 = σ1 (T(z)

2
∂2w0

∂z2
− 𝑅𝑖 (1 + l2) i ρ0) 

−iH0S (1 + l)T(z) (
∂ hx0

∂z
+

∂ hy0

∂z
)        (26) 

The value of σ1 can be obtained from the above equation by applying the boundary 

condition that v1(±1) =  0  
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σ1 = {

S 𝑅𝑚 C39

𝑅𝑖 C37−C38
,                                       λ ≥ 0

−S 𝑅𝑚 C62

C61
,                                        λ < 0

      (27) 

For the sake of brevity the constants are given in Appendix. 

4. RESULTS AND DISCUSSION 

In this work, we have presented the numerical results concerning linear stability of an 

inviscid, incompressible hydromagnetic stratified shear flow by considering the basic state 

velocity profile as linear. To determine the effects of the system parameters on the wave 

numbers, we plot the growth rate. Figures (2) – (11) depict the growth rate as a function of 

wave number and Magnetic Reynolds number for various parameters when 𝜆 > 0. 

Figure. 2 shows the effect of Magnetic Reynolds number Rm on the growth rate. It shows 

that increase in Magnetic Reynolds number increases the growth rate with the increase in 

wave number thereby instability is triggered. Figure. 3 shows the effect of magnetic pressure 

number S on the growth rate. It is found that increasing magnetic pressure number leads to 

increase in the growth rate and have a destabilizing effect. The variation of growth rate with 

wave number is shown in Figure. 4 for various values of l. It is seen from Figure. 4 that 

increase in l increases the growth rate. It means that transverse wave number destabilize the 

flow against wave number.  

In Figure. 5 the growth rate for various n is given. It shows that, there exists infinite 

number of modes for the given stability problem. In Figure. 6 we present the variation of 

growth rate with respect to wave number for different values of Ri. The result indicates that 

growth rate increases with Ri for unstable disturbances and for small Richardson number the 

flow becomes stable and as Richardson number increases the flow becomes unstable. Figure. 

7 depicts the dependence of the growth rate on the Magnetic Reynolds number for various 

values of k when Ri = 0.1. From this, we conclude that with the increase in k the growth rate 

increases and leads to unstable disturbances. 

The variation of growth rate with Rm for different values of l is displayed in Figure. 8. 

The result indicates that increase in l decreases the growth rate thereby destabilize the flow 

field. Figure. 9 shows the nature of growth rate with Rm for various values of Ri. It is 

understood from the figure that growth rate increases with the increase in Ri and results in 

unstable disturbances. Figure. 10 shows the graphs of the growth rates of the most unstable 

modes against the Magnetic Reynolds number (Rm). Figure. 11 portrays the growth rate as a 

function of Brunt-Vaisala frequency. It is noticed that increasing Brunt-Vaisala frequency 

stabilizes the system.  

Figures (12) – (20) gives the idea about growth rate vs wave number, Magnetic Reynolds 

number and magnetic pressure number when 𝜆 < 0. The growth rate as a function of wave 

number is given in Figure.12 and Figure. 13 for several values of Rm. We can see from both 

the figures that the disturbances are stable for small as well as large Magnetic Reynolds 

number. Figures. 14 and 15 depict the growth rate as a function of wave number for small (S 

<< 1) and large (S >> 1) magnetic pressure number. It is observed from figures that the flow 

becomes stable in both cases.  

The growth rate is shown in Figure. 16 as a function of wave number. It is found from the 

figure that the flow field is stable for smaller values of Brunt-Vaisala frequency and becomes 

unstable for larger Brunt-Vaisala frequency. Figure. 17 gives the growth rate vs wave number 

for different l. It is seen that the fluid becomes unstable with the increase in l. The growth rate 

as a function of wave number is shown through Figures. 18 and 19 for n and Ri. It is found 
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from Figure. 18 that there exists infinite number of normal modes for the given system. From 

Figure. 19, it is evident that increase in Ri stabilizes the fluid flow. 

Figure. 20 shows the variation of growth rate as a function of Rm for various k. It is 

observed that increase in k depreciates the growth rate thereby stabilize the system. Figure. 21 

depicts the growth rate interms of Magnetic pressure number for different k. It is noticed that 

increase in k declines the growth rate and therefore the system becomes stable. Figures (22) – 

(25) show the velocity profile for various non dimensional parameters. It is observed that the 

velocity profile increases with the increase in k and l when 𝜆 > 0. Velocity profile decreases 

with the increase in k and increases with the increase in Ri when 𝜆 < 0. 

5. CONCLUSION 

We have analyzed in this work the effect of magnetic field on the linear stability of an 

idealized stratified shear flow using series expansion method. Here we have discussed 

different cases and estabilized the conditions for stability. Analysis is made using the normal 

mode approach to study the stability of fluid flow and the analysis is restricted to long wave 

approximation. The behavior of various nondimensional numbers like Magnetic Pressure 

Number, Magnetic Reynolds Number, longitudinal wave number, transverse wave number, 

Brunt- Vaisala frequency and Richardson number on the stability of parallel shear flow 

confined between the plates  𝑧 = ±L. From the results obtained, it is concluded that 

• Richardson number plays a significant role in the stability of parallel stratified shear 

flows. 

• Increase in wave number increases the growth rate for varying Magnetic Pressure 

Number and Magnetic Reynolds Number when 𝜆 > 0  thereby destabilizes the flow. 

• Increase in transverse wave number destabilizes the fluid flow. 

• With the increase in Richardson number the flow becomes unstable (𝜆 > 0 ) 

• The flow becomes unstable with the increase in wave number as Magnetic Reynolds 

Number increases. 

• As Magnetic Reynolds Number increases, the flow is unstable for increase in 

Richardson number and Magnetic Pressure Number. 

• As Brunt – Vaisala frequency increases there exists a stable fluid flow. 

• Increase in Magnetic Reynolds Number, Magnetic Pressure Number and Richardson 

Number stabilize the fluid flow with the increase in wave number when 𝜆 < 0.   

• Increase in Brunt – Vaisala frequency and transverse wave number results in 

instability of the flow region. 

• Growth rate decreases for varying wave number and thereby stabilizes the flow with 

the increase in Magnetic Reynolds Number and Magnetic Pressure Number (𝜆 < 0 ).  
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Figure 2 Growth rate vs wave number  Figure 3 Growth rate vs wave number  

for various Rm      for various S 

  

Figure 4 Growth rate vs wave number  Figure 5 Growth rate vs wave number  

for various l      for various n 

    

Figure 6 Growth rate vs wave number Reynolds  Figure 7 Growth rate vs Magnetic Number  

for various Ri       for various k 
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Figure 8 Growth rate vs Magnetic Reynolds Figure 9 Growth rate vs Magnetic Reynolds  

Number for various l     Number for various Ri 

    

Figure 10 Growth rate vs Magnetic   Figure 11 Growth rate vs Brunt – Vaisala  

Reynolds Number for various S      frequency 

    

Figure 12 Growth rate vs wave number  Figure 13 Growth rate vs wave number  

for various Rm     for various Rm (Rm << 1) 
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Figure 14 Growth rate vs wave number   Figure 15 Growth rate vs wave number  

for various S       for various S (S << 1) 

     

Figure 16 Growth rate vs wave number   Figure 17 Growth rate vs wave number  

for various N        for various l 

      

Figure 18 Growth rate vs wave number   Figure 19 Growth rate vs wave number  

for various n       for various Ri 
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Figure 20 Growth rate vs Magnetic  Figure 21 Growth rate vs Magnetic Pressure  

Reynolds Number for various Rm    Number for various S 

      

Figure 22 Velocity profile for various k ( 𝜆 > 0)     Figure 23 Velocity profile for various k ( 𝜆 > 0 ) 

    

Figure 24 Velocity profile for various k ( 𝜆 < 0)     Figure 25 Velocity profile for various k( 𝜆 < 0 ) 
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𝐶30 = 𝐶19
𝑚1𝐶20

𝑚2 − 𝐶20
𝑚1𝐶19

𝑚2 𝐶60 = 𝐶48𝑐𝑜𝑠(𝑘𝑙𝑜𝑔(1 − 𝜎0)) 

−
𝐶57(1 − 𝜎0)

1

2𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0))

𝐶55
 

+𝐶50𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0)) 

𝐶31 = 𝐶19
𝑚1−1𝐶20

𝑚2 − 𝐶20
𝑚1−1𝐶19

𝑚2  𝐶61 = 𝐶47𝑐𝑜𝑠(𝑘𝑙𝑜𝑔(1 − 𝜎0)) 

+𝐶49𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0)) 

−
𝐶59(1 − 𝜎0)

1

2𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0))

𝐶58
 

−
𝐶56(1 − 𝜎0)

1

2𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0))

𝐶55
 

𝐶32 = 𝐶19
𝑚2−1𝐶20

𝑚2 − 𝐶20
𝑚2−1𝐶19

𝑚2  𝐶62 = 𝐶48𝑐𝑜𝑠(𝑘𝑙𝑜𝑔(1 − 𝜎0)) 

+𝐶50𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0)) 

−
𝐶60(1 − 𝜎0)

1

2𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0))

𝐶58
 

−
𝐶57(1 − 𝜎0)

1

2𝑠𝑖𝑛(𝑘𝑙𝑜𝑔(1 − 𝜎0))

𝐶55
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