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Abstract: Human Activity Identification (HAI) in videos is one 

of the trendiest research fields in the computer visualization. 
Among various HAI techniques, Joints-pooled 3D-Deep 
convolutional Descriptors (JDD) have achieved effective 
performance by learning the body joint and capturing the 
spatiotemporal characteristics concurrently. However, the time 
consumption for estimating the locale of body joints by using 
large-scale dataset and computational cost of skeleton estimation 
algorithm were high. The recognition accuracy using traditional 
approaches need to be improved by considering both body joints 
and trajectory points together. Therefore, the key goal of this 
work is to improve the recognition accuracy using an optical flow 
integrated with a two-stream bilinear model, namely Joints and 
Trajectory-pooled 3D-Deep convolutional Descriptors (JTDD). In 
this model, an optical flow/trajectory point between video frames 
is also extracted at the body joint positions as input to the 
proposed JTDD. For this reason, two-streams of Convolutional 
3D network (C3D) multiplied with the bilinear product is used for 
extracting the features, generating the joint descriptors for video 
sequences and capturing the spatiotemporal features. Then, the 
whole network is trained end-to-end based on the two-stream 
bilinear C3D model to obtain the video descriptors. Further, 
these video descriptors are classified by linear Support Vector 
Machine (SVM) to recognize human activities. Based on both 
body joints and trajectory points, action recognition is achieved 
efficiently. Finally, the recognition accuracy of the JTDD model 
and JDD model are compared. 

 
Index Terms: HAI, Body joints, Optical flow, JDD, JTDD, C3D, 

SVM 

I. INTRODUCTION 

HAI is the process of recognizing the actions of a person 
by using the video sequences which contain a complete 
action execution and retrieving the videos of interest. It can 
be used in different applications like video surveillance, 
human-machine interface, smart home [1], healthcare 
systems [2], etc. In day-by-day, unrealistic numbers of 
videos are created because of the surveillance systems, 
movies, YouTube, etc. As a result, HAI becomes an 
important research area in recent days.  
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Typically, automatic recognition of human abnormal 
activities in surveillance systems may support the people to 
aware the related authority of possible illegal or uncertain 
characteristics. Similarly, the motion recognition in gaming 
applications can recover the human-machine interface. In 
healthcare applications, it can support the patient’s 

rehabilitation like automatic recognition of patient’s actions 
can be utilized to facilitate the rehabilitation processes [3-5].  

In the earlier period, a number of researches have been 
projected for different kind of applications based on HAI. In 
contrast, perfect identification of activities is still a vastly 
demanding process owing to noisy environments, 
occlusions, perspective dissimilarities and so on. Most of the 
recent techniques may provide specific assumptions about 
the conditions under which the video was captured. But 
those assumptions were not often employed in real-time 
applications. Additionally, the two-step approach has been 
developed in which the attributes from raw video frames 
were computed and then obtained features were learned by 
different classifiers. In real-time applications, it was 
infrequently recognized what features were considerable. In 
particular, several activity labels may emerge significantly 
for HAI in terms of their appearances and action models. As 
a result, different deep learning models have been proposed 
to train a hierarchy of attributes by constructing high-level 
attributes from low-level attributes. Those models can be 
trained to achieve a reasonable performance in HAI systems. 

Cao et al. [6] proposed action recognition with JDD to 
aggregate convolutional activations of a 3D-CNN into 
discriminative descriptors according to the joint locales. In 
this method, the video was split into fixed-length clips. For 
each clip, 3D convolutional feature maps were computed. 
The annotated or estimated joints of the video were used for 
localizing points in the 3D feature maps of a convolution 
layer. Then, the activations at each related locale were 
pooled and the pooled activations in a similar clip were 
concatenated together. After that, average pooling and    
normalization were utilized for aggregating snip features 
into video features. Finally, linear SVM was used for the 
classification process. Moreover, this process was further 
extended by obtaining the body joint positions [7]. A two-
stream bilinear C3D framework was proposed to train the 
body joints and extract the spatiotemporal features 
concurrently. After that, the body joint guided feature 
pooling was achieved by sampling in which the pooling 
method was devised as a bilinear product function.  
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However, the time consumption for estimating the locales 
of body joints by using vast data and computational cost of 
skeleton estimation algorithm were high. Also, the 
recognition accuracy was needed to be further improvement 
in an efficient manner.  

Hence, an optical flow extraction is integrated into the 
two-stream bilinear model efficiently to improve the 
recognition accuracy. According to this model, optical flows 
i.e., trajectory points between two video sequences at each 
body joint positions are extracted automatically. To achieve 
this, two C3D streams multiplied with the bilinear product is 
used for extracting the features, generating the pooled 
descriptors for video sequences and capturing the 
spatiotemporal features. After that, the whole network is 
trained for obtaining the video descriptors based on the two-
stream bilinear C3D framework that uses the class label. 
Finally, the linear SVM is used to sort the obtained video 
descriptors for recognizing human actions. Thus, action 
recognition performance is improved by considering the 
optical flow field with body joints efficiently. 

II. LITERATURE SURVEY 

Ji et al. [8] proposed a 3D-CNN framework in which the 
spatiotemporal features were extracted by 3D convolutions. 
Also, the feature from all channels was combined to 
represent the absolute feature. Then, the framework was 
regularized by high-level features. Moreover, the outputs of 
different frameworks were combined for boosting 
recognition performance. This was evaluated on KTH 
dataset and the obtained recognition accuracy was 90.2%. 
Conversely, a number of labelled features were required 
since it uses a supervised algorithm i.e., gradient-based 
learning to train this model. 

Karpathy et al. [9] proposed a large-scale video 
classification with CNN to recognize the YouTube videos. 
In this method, the connectivity of a CNN was extended in a 
time-domain based on different approaches that take 
advantage of local spatiotemporal information. The training 
process was speed-up by suggesting a multi-resolution. The 
performance analysis was done by using UCF-101 dataset 
and the recognition accuracy achieved was 65.4%. 
However, there is a need for improvement on the action 
recognition. The efficiency can be further improved by 
combining the clip-level predictions into the global video-
level predictions. 

Lillo et al. [10] proposed a discriminative hierarchical 
framework. By using this approach, the human activity 
classifier was built to simultaneously model which body 
parts were related to the action of interest with their 
appearance and composition. Also, when useful annotations 
were provided at the intermediate semantic level, powerful 
multiclass discrimination was achieved by learning in a 
max-margin model. For performance evaluation, two 
datasets, namely MSR Action3D and CAD120 datasets were 
used. The recognition accuracy of MSR Action3D and 
CAD120 dataset was 89.46% and 33.59%, respectively. But, 
the accuracy of this model was less. 

Tompson et al. [11] proposed new hybrid architecture by 
using a Deep Convolutional Network (ConvNet) and a 
Markov Random Field (MRF). In this model, a multi-

resolution feature representation was used with overlapping 
fields. Also, this model can approximate MRF loopy belief 
propagation which was subsequently back-propagated 
through and learned by using the same learning method as 
the part-Detector. The recognition accuracy of this model 
was evaluated on two different datasets such as FLIC and 
extended-LSP datasets for elbow and wrist joints. For elbow 
joints, the accuracy of FLIC and extended-LCP datasets was 
95% and 66%, respectively. The accuracy for wrist joints 
using FLIC and extended-LCP datasets were 91% and 62%, 
correspondingly. However, further improvement of its 
performance was required. 

Cao et al. [12] proposed a spatiotemporal Triangular-
chain Conditional Random Field (TriCRF) model for 
activity recognition. Initially, the difficulty of complex 
motion identification with an integrated hierarchical 
framework was addressed. Then, the TriCRF model was 
expanded to the spatial dimension. In this model, the labels 
of behaviour were modeled together and their complex 
dependencies were developed. The accuracy of this model 
was evaluated on composable activity dataset which was 
equal to 79%. However, it requires further improvement by 
incorporating the other layer for learning pose 
representations jointly with actions and activity. 

Wang et al. [13] proposed an action recognition model 
with the help of Trajectory-pooled Deep-convolutional 
Descriptor (TDD). In this model, discriminative 
convolutional feature maps were learned by deep 
architectures and aggregated into valuable descriptors by 
trajectory-constrained pooling. As well, two normalization 
methods such as spatiotemporal normalization and channel 
normalization were used that transforms convolutional 
feature maps and enhance the robustness of TDD. The 
evaluated accuracies for this model using SVM classifier on 
HMDB51 and UCF101 datasets were 65.9% and 91.5%, 
respectively. However, body joints were not considered that 
can help to increase the accuracy efficiently.  

Liu et al. [14] proposed an automatic learning of 
spatiotemporal representation using Genetic Programming 
(GP) for action recognition. In this model, the 
spatiotemporal motion features were automatically learned 
by the motion feature descriptor. The data-adaptive 
descriptors were learned for various databases with multiple 
layers and the GP searching space was simultaneously 
reduced for effectively accelerating the convergence of 
optimal solutions. The average cross-validation 
classification error computed by SVM classifier on the 
training dataset was adopted as the validation measure for 
GP fitness function. Then, the best-so-far result chosen by 
GP was obtained as the optimal action descriptor. The 
accuracy for this model on KTH, YouTube, Hollywood2 
and HMDB51 datasets were 95%, 82.3%, 46.8% and 48.4%, 
respectively. Nevertheless, the processing speed was less. 

III. PROPOSED METHODOLOGY 

In this part, the JTDD methodology is explained in detail.  
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The two-stream bilinear C3D network framework is 
applied for automatically predict the spatiotemporal key 
points in 3D convolutional feature maps with the guidance 

of body joints with optical flow i.e., trajectory points in the 
video sequence. 

 

 
Fig. 1: Architecture of C3D Network 

 

A. Joints and Trajectory-Pooled 3D Deep 
Convolutional Descriptors  

In this process, the C3D network [4] shown in Fig. 1 is 
used which has architecture as: 

                                  
                        

                  

                  
                        

                          

         
Here, the number in parenthesis indicates the number of 

convolutional filters. The number of filters is increased since 
the combination of the features in each layer is richer than 
the previous layers. Therefore, increasing number of filters 
can able to correctly encode the increasingly richer 
representations of the features. There is a ReLu layer after 
each convolutional        layer. 

Body Joints and Optical Flow Mapping Schemes: 
For JTDD, two methods of mapping body joints and 

optical flow to points in 3D convolutional feature maps, 
namely fraction scaling and coordinate mapping are 
compared. Fraction scaling is defined as the fraction of the 
network’s outcome to its input in spatiotemporal-domain for 
scaling the body joint and optical flow coordinates from the 
actual video frame into feature maps as follows: 

   
    

    
       

                   
     

              
                        (1) 

   
    

    
       

                   
                     

                     (2) 

In (1) & (2),        denotes the rounding operator and 
   

    
    

   represents the point coordinate in     3D 
convolutional feature maps corresponding to            
which is the body joint coordinate in the actual video 
sequence and    

    
    

   represents the size ratio of 
   convolutional feature maps to the video clip in spatial and 
temporal dimensions. Similarly,    

    
    

   represents the 
point coordinate in     3D convolutional feature maps 
corresponding to            which is the trajectory point 
coordinate in the actual video sequence and    

    
    

   
represents the fraction of     convolutional feature maps to 
the video snip in spatiotemporal-domain. 

Coordinate mapping is computing an exact coordinate of 
the point at the convolutional feature map corresponding to 
body joint and trajectory point based on the kernel size, 
stride and padding of each layer. Consider    is a point in     
layer,            and            are the coordinate of  . For 
a given  , the corresponding point      is determined by 
mapping    to the         layer. For the convolutional 
layers and pooling layers, the coordinate mapping from     
layer to         layer is developed as follows: 
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In the above equations,   

    
  and         

  are the 
  axis element of stride, kernel size and padding of     
layer, correspondingly. Likewise, this is also applied for 
other dimensions such as         and  , correspondingly. 

For ReLU layers, the coordinate mapping correlation is 
formulated as: 

                                    (9) 
                                   (10) 

Once the values of C3D kernel sizes, strides and paddings 
are applied into (3)-(5) and (9) frequently, the correlation 
between point coordinates in     convolutional feature maps 
and body joint locales in the input video sequence is devised 
as follows: 
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Similarly, by applying the values of kernel size, strides 
and paddings into (6)-(8) and (10) repeatedly, the correlation 
between point coordinates in     convolutional feature maps 
and trajectory points in the input video sequence is devised 
as follows: 
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                                 (14) 

Aggregation of Body Joint Points and Optical Flow: 
For classification, the extracted features of frames over 

time are required to aggregate for obtaining the video 
descriptor. The positions to pool can be determined by 
employing body joints and trajectory points in video frames 
to localize points in 3D feature maps. The pooled 
representation corresponding to each body joint and 
trajectory point in a frame of a video sequence is a   
dimensional feature vector where   denotes the number of 
feature map channels. The   dimensional feature vector 
pooled with the guidance of     body joint at the     frame 

of     clip is denoted by  
   .  

 
 
 

https://www.openaccess.nl/en/open-publications


 
Body Joints and Trajectory Guided 3D Deep Convolutional Descriptors for Human Activity Identification 

1019 

Published By: 
Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number K19850981119/2019©BEIESP 
DOI: 10.35940/ijitee.K1985.1081219 
Journal Website: www.ijitee.org 

Similarly, the   dimensional feature vector pooled with 
the guidance of     trajectory point at the     frame of     

clip is represented by  
   . 

Two methods are used for aggregating the pooled feature 
vectors in all the frames within a video to a video descriptor. 
One is fusing all the pooled feature vectors belonging to one 
frame i.e., a         dimensional feature as: 

 

      
  

     
      

     
        

     
      

     
    

  
     

        
     

        
     

    (15) 

In (15),   and   represent the number of body joints and 
trajectory points in each frame, correspondingly and   
denotes the length of the video sequence. After that, average 
pooling and    norm are used to fuse   frame 
representations                    into a video descriptor 
where   denotes the number of frames within the video 
sequence. 

Another method of aggregation is fusing the pooled 
feature vectors corresponding to the body joints and 
trajectory points in one frame i.e., a       dimensional 
feature as: 

  
   

     
     

      
     

        
     

           (16) 
After that, one frame is characterized by   representations 

   
   

    
   

      
   

   within the same frame. Max + min 
pooling is used for aggregating these representations into a 
frame descriptor. 

B. Two-Stream Bilinear C3D Model using Body Joints 
and Optical Flow 

The original body joint and optical flow guided feature 
pooling in JTDD are realizing by choosing the activations at 
the corresponding points of body joints and trajectory points 
on convolutional feature maps. For a given video sequence, 
a   channel of heat maps           is generated 
with the similar spatiotemporal size of the convolutional 
feature maps to be pooled for each body joint and trajectory 
point at each frame. In the heat map, the value at the 
corresponding point of the body joint position and trajectory 
point is coded as 1, while the others are coded as 0. After 
that, the process of pooling on one feature map guided by 
the heat map of one body joint and trajectory point can be 
formulated as a pixel-wise product between the 3D feature 
map and the 3D heat map followed by a summation over all 
the pixels. After that, a two-stream bilinear C3D model is 
applied to learn the guidance from the body joint positions 
including trajectory points and capture the spatiotemporal 
features automatically [4].  

Thus, by integrating trajectory points with body joint 
positions in the two-stream bilinear framework, video 
descriptors are obtained. Finally, linear SVM [15] is applied 
for classifying the video descriptors and so the human 
actions from video sequences are recognized. 

Normally, the SVM is built as a hyperplane in an infinite-
dimensional space. A perfect HAI is achieved by the 
hyperplane which has the leading space to the adjacent 
training sequences of any class i.e., functional margin. The 
training dataset is represented as a set of instance-label 
pairs                                 where    
denotes the video descriptors (instances) and    denotes the 
labels. The optimal hyperplane with the maximal margin is 

achieved by resolving the below unconstrained optimization 
problem for different classes: 

    
 

 
                

 
          (17) 

In (17),     denotes the penalty parameter and   
denotes the weight of training sequences  . By solving this 
optimization problem, human activities are recognized. 

IV. RESULTS AND DISCUSSIONS 

In this part, the efficiency of JTDD model is analyzed 
with the JDD model in terms of recognition accuracy by 
using Matlab2017b. To evaluate the performance, Penn 
Action dataset is considered which contains 2326 video 
sequences of 15 action classes. Here, 50% dataset is taken as 
the training and the rest 50% is considered as testing dataset. 
For training an attention model, the dataset is splitting into 
1163 training and 1163 testing, randomly. The length of 
videos is from 50 to 100 frames. The body joint coordinates, 
trajectory points and C3D features are acted as baselines. 
Therefore, JTDD with these features is evaluated and 
compared with different pooling settings. The recognition 
accuracy is the portion of True Positive (TP) and True 
Negative (TN) rates among the total number of cases. It is 
computed as: 

         
     

           
                    (18) 

In (18),   is False Positive and    is the False Negative. 
The results of body joint and trajectory point extraction are 
shown in Fig. 2. 

 

 
Fig. 2(a): Input Video Sequence 1 

 

 
Fig. 2(b): Results for Body Joints Extraction of Input 

Video Sequence 1 
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Fig. 2(c): Results for Trajectory Points Extraction of 

Input Video Sequence 1 
 

 
Fig. 2(d): Input Video Sequence 2 

 

 
Fig. 2(e): Results for Body Joints Extraction of Input 

Video Sequence 2 
 

 
Fig. 2(f): Results for Trajectory Points Extraction of 

Input Video Sequence 2 
In below table, the outcomes on Penn Action dataset are 

given. 
 

Table 1: Recognition Accuracy of Baselines and JTDD 
with Various Configurations 

 

Fuse all 
the 

activation
s 

JTDD 
Fractio

n 
Scaling 
(1×1×1

) 

JTDD 
Coordinat

e 
Mapping 
(1×1×1) 

JTDD 
Fractio

n 
Scaling 
(3×3×3

) 

JTDD 
Coordin

ate 
Mappin

g 
(3×3×3

) 
Joint 

coordinate
s + 

trajectory 
coordinate

s 

0.6120 - - - - 

    0.7211 - - - - 
    0.7368 - - - - 

       0.7052 0.8014 0.8599 0.8086 0.8367 
       0.6305 0.7583 0.7834 0.7533 0.7628 

       0.5324 0.7697 0.7601 0.7847 0.7993 
       0.4297 0.7136 0.6845 0.7021 0.7014 

 
From this analysis, it is observed that the accuracy of 

using the coordinates of body joints and optical flow i.e., 
trajectory points as a feature is not effective. By using the 
C3D features which are fusing all the activations of a 
particular layer as a long vector are highly discriminative 
because they attain high outcomes. The recognition 
accuracy of     is slightly poorer to that of    . It is 
perhaps since the original C3D on Penn Action dataset do 
not fine-tune that the second    layer is more fit for the 
classification of the pre-trained database. For JTDD, the 
testing on pooling at different 3D      layers with different 
body joint and trajectory point mapping formats are 
publicized. From Table 1, it is noticed that the JTDD have 
superior performance compared with C3D features that 
express the efficiency of body joint and trajectory point 
guided pooling. The outcomes of various fusing 
combinations with the scores of SVM on Penn Action 
dataset is shown in Table 2 and Fig. 3. 

Table 2: Recognition Accuracy of Fusing JTDD from 
Multiple Layers Together with the Scores of SVM 

 

Fusion Layers 

           
      
        

      
        

JDD JTDD JDD JTDD JDD JTDD 

Accuracy 0.855 0.867 0.981 0.987 0.860 0.873 

 

 
Fig.3: Recognition Accuracy of Fusing JTDD from 

Multiple Layers 
 

In Fig. 3, it is indicated that fusing JTDDs of different 
layers certainly increases the recognition outcomes. The 
combination of JTDDs from        and        increases 
the recognition performance mostly. High accuracy is 
achieved by fusing more complementary features. 

The results of the impact of estimated body joints + 
trajectory points versus ground-truth body joints + trajectory 
points for JDD and JTDD is shown in Table 3 and Fig. 4. 
Table 3: Impact of Estimated Body Joints + Trajectories 
versus Ground-Truth (GT) Body Joints + Trajectories 

for JDD and JTDD 
Method GT Estimated Difference 

JDD          0.819 0.777 0.042 
JTDD          0.835 0.810 0.025 
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Fig.4: Impact of Estimated Body Joints + Trajectories 
versus GT Body Joints + Trajectories for JDD and 

JTDD on Penn Action Dataset 
 

Through Fig. 4, it is noticed that JTDD outperforms 
competing methods significantly on Penn Action Dataset. 
JTDD achieves better accuracy not only with GT body joints 
and trajectory points, but also with estimated body joints 
and trajectory points, greater than JDD in the order of 10%. 

V. CONCLUSION 

In this article, JTDD is proposed to extract the optical 
flow at each body joint positions as the inputs of a C3D 
model by using two streams of C3D networks which are 
multiplied with the bilinear product. Based on this, the 
pooled descriptors for video sequences are generated 
together and the spatiotemporal features are captured. After 
that, the entire network is trained end-to-end by using the 
class label of the two-stream bilinear C3D model to obtain 
the video descriptors. Moreover, the linear SVM is used to 
classify the video descriptors for HAR. Finally, the 
experimental results prove that the recognition accuracy of 
the proposed JTDD model using Penn Action dataset is 
increased to 0.987 while fusing JTDDs from        and 
       with GT body joints and trajectory points. This 
framework can be applicable for real-time applications such 
as surveillance, theft identification, motion identification, 
etc. 
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