

GH-Closed Sets in Topological Spaces

D. Subbulakshmi, K. Sumathi, K. Indirani

Abstract: In this paper a new class of sets namely gy-closed sets in the light of y-open sets in topological spaces are introduced. Further some of their characterizations are investigated

Keywords: gn-closed sets, gn-open sets, gn-neighbourhoods.

I. INTRODUCTION

In recent years a number of generalizations of open sets have been developed by many mathematicians. In 1963, Levine [5] introduced the notion of semi-open sets in topological spaces. In 1984, Andrijevic [1] introduced some properties of the topology of $\alpha\text{-sets}$. In 2016, Sayed and Mansour introduced [11] new near open set in Topological Spaces. Motivated by various open and closed sets discussed in the previous literature, in this paper a new class of sets called gη-closed sets has been introduced using the concept of $\eta\text{-open}$ sets by Subbulakshmiet al [12]. Further we study the basic properties of gη-closed sets.

II. PRELIMINARIES

Definition: 2.1

A subset A of topological space (X,τ) is called

- (i) α -open set [1] if A \subseteq int(cl(int(A))), α -closed set if cl(int(cl(A))) \subseteq A.
- (ii) pre-openset [9] if A \subseteq int(cl (A)), pre-closed set if $cl(int(A)) \subseteq A$.
- (iii) semi-openset [5] if $A \subseteq cl(int(A))$, semi-closed set if $int(cl(A) \subseteq A)$.
- (iv) regular open set [10] if A = int(cl(A)), regular closed set if A = cl(int(A)).
- (v) β -open (or semi pre open) set [2] if $A \subseteq (cl(int(cl(A))), semi-pre-closed set if int(cl(int(A))) \subseteq A. (vi) <math>\eta$ -open set [12] if $A \subseteq int(cl(int(A))) \cup cl(int(A)), \eta$ -closed set if cl (int (cl (A))) \cap int(cl(A)) \subseteq A.

Definition: 2.2

A subset A of a topological space (X,τ) is called

Manuscript published on 30 September 2019

* Correspondence Author

D. Subbulakshmi*, Department of Mathematics, RathnavelSubramaniam College of Arts and Science, Sulur - 641402. <u>subbulakshmi169@gmail.com</u>

Dr. K. SUMATHI Department of gMathematics, PSGR Krishnammal College for Women, Coimbatore – 641004. ksumathi@psgrkcw.ac.in

Dr. K. INDIRANI Department of Mathematics, Nirmala College for Women, Coimbatore - 641018. indirani009@ymail.com

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

- (i) g-closed set [6] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) g*-closed set [13] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).
- (iii) g α -closed set [8] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).
- (iv) αg -closed set [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (v) gs-closed set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open $in(X, \tau)$.
- (vi) sg-closed set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

III. GENERALIZED H-CLOSED SETS

Definition : 3.1 A subset A of a topological space X is called generalized η -closed set if $\eta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. The class of all generalized η -closed sets is denoted by $G\eta C(X)$.

Theorem: 3.1 Every closed set is gη-closed.

Proof: Let A be any closed set in X and $A \subseteq U$, where U is open. Since every closed set is η -closed, $\eta cl(A) \subseteq cl(A) = A$. Therefore $\eta cl(A) \subseteq A \subseteq U$. Hence A is $g\eta$ -closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.1 Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$. The set $\{a, b\}$ is $g\eta$ -closed but not closed.

Theorem : 3.2 Every semi-closed set is $g\eta$ -closed.

Proof: Let A be any semi-closed set in X and $A \subseteq U$, where U is open. Since every semi-closed is η -closed, $\eta cl(A) \subseteq scl(A) = A$. Therefore $\eta cl(A) \subseteq A \subseteq U$. Hence A is gn-closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.2 Let $X=\{a,b,c\}$ with $\tau=\{X,\phi,\{a\}\}$. The set $\{a,c\}$ is $g\eta$ -closed but not semi-closed.

Theorem : 3.3 Every α -closed set is $g\eta$ -closed.

Proof: Let A be any α -closed set in X and A \subseteq U, where U is open. Since every α -closed set is η -closed, η cl(A) \subseteq α cl(A) = A. Therefore η cl(A) \subseteq A \subseteq U. Hence A is g η -closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.3 Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. The set $\{b\}$ is $g\eta$ -closed but not α -closed.

Theorem: 3.4 Every regular.

The converse of the above theorem is need not be true as seen from the following example.

GH-Closed Sets in Topological Spaces

Example : 3.3 Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. The set $\{b\}$ is $g\eta$ -closed but not α -closed.

Theorem: 3.4 Every regular closed set is gη-closed.

Proof: Let A be any regular closed set in X and A \subseteq U, where U is open. Since every regular closed set is closed. By theorem 3.1, Ais gn-closed.

The converse of the above theorem is need not be true as seen in the following example.

Example : 3.4 Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. The set $\{c\}$ is $g\eta$ -closed but not regular closed.

Theorem : 3.5 Every η -closed set is $g\eta$ -closed.

Proof: Let A be any η -closed set in X and A \subseteq U, where U is open. Since A is η -closed. Therefore $\eta cl(A) = A \subseteq U$. Hence A is $g\eta$ -closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.5Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. The set $\{c\}$ is $g\eta$ -closed but not η -closed.

Theorem: 3.6 Every g-closed set is gη-closed.

Proof: Let A be any g-closed set in X then cl (A) \subseteq U whenever A \subseteq U, where U is open. Since every closed set is η -closed, η cl(A) \subseteq cl(A) = A. Hence A is $g\eta$ -closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.6Let $X = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{b\}, \{c, d\}, \{b, c, d\}\}$. The set $\{d\}$ is $g\eta$ -closed but not g-closed.

Theorem: 3.7 Every g*-closed set is gη-closed.

Proof: Let A be any g*-closed set in X. Since every g*-closed set is g-closed. By theorem 3.6, A is $g\eta$ -closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.7Let $X = \{a, b, c, d\}$ with $\tau = \{X, \varphi, \{a\}, \{b, d\}, \{a, b, d\}\}$. The set $\{a\}$ is $g\eta$ -closed but not g^* -closed.

Theorem: 3.8 Every sg-closed set is gη-closed.

Proof: Let A be any sg-closed set in X then $scl(A) \subseteq U$ Whenever $A \subseteq U$, where U is semi-open. Since every semi-closed set is η -closed, $\eta cl(A) \subseteq scl(A) \subseteq U$. Since every open set is semi-open set. And U is open in X. Hence A is $g\eta$ -closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.8Let $X = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. The set $\{a, b, d\}$ is $g\eta$ -closed but not sg-closed.

Theorem : 3.9 Every αg -closed set is $g\eta$ -closed.

Proof: Let A be any αg -closed set in X then $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$, where U is open. Since every α -closed set is η -closed, $\eta cl(A) \subseteq \alpha cl(A) \subseteq U$. Hence A is $g\eta$ -closed set in X.

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.9Let $X = \{a, b, c, d\}$ with $\tau = \{X, \varphi, \{c\}, \{a, b\}, \{a, b, c\}\}$. The set $\{b\}$ is $g\eta$ -closed but not αg -closed.

Theorem : 3.10 Every ga-closed set is gn-closed.

Proof: Let A be any ga-closed set in X then α cl(A) \subseteq U

whenever $A \subseteq U$,where U is α -open. Since every α -closed set is η -closed, η cl(A) $\subseteq \alpha$ cl(A) \subseteq U. Since every open set is α -open set. And U is open in X. Hence A is $g\eta$ -closed set in X

The converse of the above theorem is need not be true as seen from the following example.

Example : 3.10Let $X = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a\}, \{b, d\}, \{a, b, d\}\}$. The set $\{a\}$ is gn-closed but not ga-closed.

Theorem: 3.11 Every gs-closed set is gη-closed.

Proof: Let A be any gs-closed set in X then $sclA \subseteq U$ whenever $A \subseteq U$, where U is open. Since every semi-closed set is η -closed, $\eta cl(A) \subseteq scl(A) \subseteq U$. Hence A is $g\eta$ -closed set in X.

Remark : 3.1 Finite union (intersection) of $g\eta$ -closed sets need not be $g\eta$ -closed.

Example : 3.11(i) Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Here the sets $\{a\}$ and $\{b\}$ are $g\eta$ -closed sets, but $\{a\} \cup \{b\} = \{a, b\}$ is not $g\eta$ -closed set.

ii) Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$. Here the sets $\{a, b\}$ and $\{a, c\}$ are $g\eta$ -closed sets, but $\{a, b\} \cap \{a, c\} = \{a\}$ is not $g\eta$ -closed set.

Remark: 3.2The following example show that rg-closed, α gr-closed, gpr-closed and g η -closedare independent of each other.

Example:3.12Let (X,τ) be a topological space where $X=\{a,b,c\}$ with $\tau=\{X,\phi,\{a\},\{c\},\{a,c\}\}$. Here the set $\{a\}$ is gn-closed but not rg-closed, gpr closed and αgr -closed set. Also the set $\{a,c\}$ is rg-closed, gpr closed and αgr -closed set but not gn-closed.

closed semi-closed r-closed α-closed

 η -closed $g\alpha$ -closed

rg-closedgη-closed

sg-closedgar-closed

gs-closed g-closed g*-closed

Remark :3.3 From the above discussion we have the following implications.

A B means A implies B but not conversely, A means A and B are independent.

Theorem: 3.12 For a gη-closed set A,ηcl(A) — Acontains no non-empty closed set, and the converse is true if the intersection of a closed set and a η-closed set is a closed set.

Proof: Necessity: Let M be a non-empty closed set in X such that $M \subseteq \eta cl(A) - A$. Then $A \subseteq X - M$. Since A is $g\eta$ -closed set and X - M is open, $\eta cl(A) \subseteq X - M$. That is $M \subseteq X - \eta cl(A)$. So $M \subseteq (X - \eta cl(A)) \cap (\eta cl(A) - A)$. Therefore $M = \varphi$.

Sufficiency: Let us assume that $\eta cl(A)$ — Acontains no nonempty closed set. Let $A \subseteq U$, where U is open. Suppose that $\eta cl(A)$ is not contained in U, $\eta cl(A)$) \cap Ucis non-empty closed set contained in $\eta cl(A)$ — Awhich is a contradiction.

Therefore $\eta cl(A) \subseteq U$. Hence A is $g\eta$ -closed.

Theorem : 3.13 If A is a gn-closed set in X and A \subseteq B

 $\subseteq \eta cl(A)$. Then B is also gy-closed in X.

Proof: Let $B \subseteq U$, where U is open. Since $A \subseteq B \subseteq U$ and A is $g\eta$ -closed, $\eta cl(A) \subseteq U.As$ $B \subseteq \eta cl(A), \eta cl(B) \subseteq \eta cl(A)$. Hence $\eta cl(B) \subseteq U$. Therefore B is $g\eta$ -closed in X.

Theorem : 3.14 Let A be a gη-closed set in X. Then A is η-closed if and only if $\eta cl(A) - A$ is closed.

Proof: Let A be a gη-closed set in X. If A is η-closed then $\eta cl(A) - A = \varphi$, which is a closed set. Conversely, let $\eta cl(A) - A$ does not contain any non-emptyclosed set and hence $\eta cl(A) - A$ does not contain any non-empty closed set. So $\eta cl(A) - A$ is a closed subset of itself and then $\eta cl(A) - A = \varphi$. This implies that $A = \eta cl(A)$. Therefore A is a η -closed set.

Remark :3.4The assumption that A is $g\eta$ -closed in theorem 3.14, is necessary. Let $X = \{a, b, c, d\}$ with $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$, Let $A = \{a, b, c\}$. Here η -closed sets and $g\eta$ -closed setsare $\{X, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c,d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Although η cl(A) — $A = \{d\}$ is closed, A is not η -closed, since it is not $g\eta$ -closed.

Definition : 3.2 For a subset A of(X, τ), the intersection of all gη-closed sets containing A is called the gη-closure of A and is denoted by gη-cl(A).

That is, $g\eta$ -cl(A) = cl (A) = \bigcap { M : A \subseteq M, M is $g\eta$ -closed in X }

Remark : 3.5Since the arbitrary intersection of $g\eta$ -closed sets is not necessarily $g\eta$ -closed, $g\eta$ -cl(A) is not necessarily a $g\eta$ -closed set.

Remark : 3.6If A and B are any two subsets of (X, τ) , then $(i)g\eta$ -cl $(\phi) = \phi$ and $g\eta$ -cl(X) = X.

(ii) $A \subseteq B \Rightarrow g\eta\text{-cl}(A) \subseteq g\eta\text{-cl}(B)$.

 $(iii)g\eta\text{-cl}(g\eta\text{-cl}(A)) = g\eta\text{-cl}(A).$

(iv)g η -cl(AU B) \supseteq g η -cl(A) Ug η -cl(B)

(v)g η -cl(A \cap B) \subseteq g η -cl(A) \cap g η -cl(B).

Theorem : 3.15 For a subset A of(X, τ) and $x \in X$, $g\eta\text{-cl}(A)$ contains x if and only if $X \cap A \neq \phi$ for every $g\eta$ -open set X containing x.

Proof: Let $A \subseteq X$ and let $x \in g\eta\text{-cl}(A)$. If possible let there exists a $g\eta$ -open set A containing x such that $X \cap A = \varphi$. $A \subset Xc,g\eta\text{-cl}(A) \subset Xc$ and then $x \notin g\eta\text{-cl}(A)$, which is a contradiction. Therefore $X \cap A \neq \varphi$ for every $g\eta$ -open set X containing x.

Conversely, assume that $x \notin g\eta cl(A)$. Then there exists a $g\eta closed$ set M containing A such that $x \notin M$. Therefore $x \in M$ cand M c is $g\eta copen$, M $c\cap A = \phi$, which is a contradiction. Hence $x \in g\eta cl(A)$ if and only if $X \cap A \neq \phi$, for every $g\eta copen$ set X containing x.

IV. GH-OPEN SETS AND GH-NEIGHBOURHOODS IN TOPOLOGICAL SPACES

In this section the notion of $g\eta$ -open sets is introduced and using that, the characterizations of $g\eta$ -neighbourhoods are obtained.

Definition : 4.1 A subset A of a topological space(X, τ) is called g η -open set if Ac is g η -closed in X. The family of all g η -open sets in X is denoted by $G\eta O(X, \tau)$.

Retrieval Number: C6674098319/2019©BEIESP DOI:10.35940/ijrte.C6674.098319 Journal Website: <u>www.ijrte.org</u> Definition : 4.2 For a subset A of (X, τ) , the union of all gyopen sets contained in A is called the gy-interior of A and is denoted by gy-int(A).

That is, $g\eta$ -int $(A) = \bigcup \{M: A \supseteq M, M \text{ is } g\eta\text{-open in } X\}.$

Remark :4.1 Every open set is $g\eta$ -open set.

Remark : 4.2(i) Finite intersection of g η -open sets need not be g η -open.

(ii) Finite union of gη-open sets need not be gη-open.

Theorem : 4.1 Suppose η -int(A) \subseteq B \subseteq Aand if A is $g\eta$ -open in X, then B is also $g\eta$ -open in X.

Proof: Suppose that η -int(A) \subseteq B \subseteq A and A is $g\eta$ -open in X, then Ac \subseteq Bc \subseteq g η -cl (Ac). Since Ac is $g\eta$ -closed in X, by theorem 3.13, B c is $g\eta$ -closed in X. Hence B is $g\eta$ -open in X

Theorem : 4.2 A subset $A \subseteq X$ is $g\eta$ -open if and only if $M \subseteq \eta$ -int(A), whenever M is a closed set and $M \subseteq A$.

Proof: Necessity: Let A be a gn-open set and let $M \subseteq A$, where M is closed. Then X - A is a gn-closed set contained in the open set X - M. Hencencl(X - A) $\subseteq X - M$. Since η cl(X - A) $= X - \eta$ -int(A), we have $X - \eta$ -int(A) $\subseteq X - M$. Thus $M \subseteq \eta$ -int(A).

Sufficiency: Let M be closed and M \subseteq A implies M \subseteq η -int(A). Let $X - A \subseteq U$, where U is open. Then $X - U \subseteq A$, where X - U is closed. By hypothesis $X - U \subseteq \eta$ -int(A). That is, $X - \eta$ -int(A) $\subseteq U$. Then η -cl(X - A) $\subseteq U$ implies X - A is $g\eta$ -closed. Therefore A is $g\eta$ -open.

Definition : 4.3 Let x be a point in a topological space X. A subset N of X is said to be a $g\eta$ -neighbourhood of x if and only if there exists a $g\eta$ -open set G such that $x \in G \subseteq N$.

Definition : 4.4 A subset N of a topological space X is called a gn-neighbourhood of $A \subseteq X$ if and only if there exists a gn-open set G such that $A \subseteq G \subseteq N$.

Theorem : 4.3 Every neighbourhood N of $x \in X$ is a gnneighbourhood of x.

Proof: Let N be a neighbourhood of a point $x \in X$. By definition of neighbourhood, there exists an open set G such that $x \in G \subseteq N$. Since every open set is $g\eta$ -open, N is a $g\eta$ -neighbourhood of x

Remark : 4.3In general, a gn-neighbourhood of $x \in X$ need not be neighbourhood of x in X as seen from the following example.

Example : 4.1 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $g\eta$ -open sets are $\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. The set $\{b, c\}$ is a $g\eta$ -neighbourhood of $\{c\}$, since the $g\eta$ -open set $\{b, c\}$ is such that $c \in \{b, c\} \subseteq \{b, c\}$. However, the set $\{b, c\}$ is not a neighbourhood of the point $\{c\}$, since no open set G exists such that $\{c\} \in G \subseteq \{b, c\}$.

Remark : 4.4 The $g\eta$ -neighbourhoodN of $x \in X$ need not be $g\eta$ -open in X.

Example :4.2 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{b, c\}\}$. Then $g\eta O(X, \tau) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$. The set $\{a, c\}$ is a $g\eta$ -neighbourhood of

 $\{c\}$, since $c \in \{c\} \subseteq \{a, c\}$.

GH-Closed Sets in Topological Spaces

But the set $\{a, c\}$ is not $g\eta$ -open.

Theorem : 4.4 If a subset Nof a space X is $g\eta$ -open, then N is a $g\eta$ -neighbourhood of each of its points.

Proof: Let N be $g\eta$ -open and $x \in N$. Then N is a $g\eta$ -open set such that $x \in N \subseteq N$. Since x is an arbitrary point of N, it follows that N is a $g\eta$ -neighbourhood of each of its points.

Theorem : 4.5 Let X be a topological space. If M is gn-closed subset of X and $x \in M$ c, then there exists a gn-neighbourhoodN of x such that $N \cap M = \varphi$.

Proof: Let M be a gη-closed subset of X and $x \in M$ c. Then M c is a gη-open set of X. By theorem 3.14, M c is a gη-neighbourhood of each of its points. Hence there exists a gη-neighbourhoodN of x such that $N \subset M$ c. That is $N \cap M = \varphi$.

Definition : 4.5 Let x be a point in a topological space X. The set of all $g\eta$ -neighbourhoods of x is called the $g\eta$ -neighbourhood system at x and is denoted by $g\eta$ -N(x).

Theorem : 4.6 Let X be a topological space and for each $x \in X$, the $g\eta$ -neighbourhood system $g\eta$ -N(x) has the following properties:

- (i) For all $x \in X, g\eta-N(x) \neq \varphi$.
- (ii) $N \in g_{\eta}-N(x)$ implies $x \in X$.
- (iii) $N \in g\eta N(x)$, $M \supset N$ implies $N \in g\eta N(x)$.
- (iv) $N \in g\eta$ -N(x) implies there exists $M \in g\eta$ -N(x) such that $M \subset N$ and $M \in g\eta$ -N(y) for every $y \in M$. Proof:
- (i) Since X is a gη-open set, it is a gη-neighbourhood of every $x \in X$. Hence there exists at least one gη-neighbourhood (namely X) for each $x \in X$. Therefore gη-N(x) \neq φ for every $x \in X$.
- (ii) Let $N \in g\eta$ -N(x), then N is a $g\eta$ -neighbourhood of x.By definition of $g\eta$ -neighbourhood, $x \in N$.
- (iii) Let $N \in g\eta$ -N(x) and $M \supset N$. Then there is a $g\eta$ -open set G such that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is a $g\eta$ -neighbourhood of x. Hence $M \in g\eta$ -N(x).
- (iv) Let $N \in g\eta$ -N (x), then there is a $g\eta$ -open set M such that $x \in M \subset N$.Since M is a $g\eta$ -open set, it is a $g\eta$ -neighbourhood of each of its points, Therefore $M \in N(y)$ for every $y \in M$.

REFERENCES:

- 1. Andrijevic D. "Some properties of the topology of α -sets", Mat.Vesnik 36(1984).
- 2. Andrijevic D."Semi-preopen sets", Mat. Vesnik 38(1) (1986), 24-32.
- Arya S. P and Nour. T. M, Characterizations of s-normal spaces, Indian J. Pure Appl. Math.21 (1990), no. 8, 717-719.
- 4. Bhattacharya. P, and Lahiri. B. K, Semi-generalized closed set in topology, Indian J. Math. 29 (3) (1987), 375 382.
- Levine N., Semi open sets and semi continuity in Topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Ser. III, 10, (1975), 347 – 350.
- Maki. H, Devi. R and Balachandran. K, Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 15, (1994), 51-63.
- 8. Maki. H, Devi. R and Balachandran. K, Generalized αclosed sets in topology, Bull. Fukuoka Univ. Ed. Part III 42, (1993), 13 21.

- Mashhour A. S., Abd El Mousef M. E.and El-Deeb S. N., On precontinuous and weak pre-continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- Pious Missier. S. and Annalakshmi. M., Between Regular Open Sets and Open Sets, Internat. J. Math. Archive, 7(5) (2016), 128-133.
- Sayed MEL and Mansour FHAL, New near open set in Topological Spaces, J Phys Math, 7(4) (2016). R
- Subbulakshmi. D, Sumathi. K, Indirani. K., η-open sets in topological spaces, International Journal of Innovative Technology and Exploring Engineering,8(10s)(2019), 276-282.
- 13. Veerakumar. M. K. R. S,Between g*-closed sets and g closed sets Antartica J. Math, Reprint.

AUTHORS PROFILE

D. Subbulakshmi, Department of Mathematics,

RathnavelSubramaniam College of Arts and Science, Sulur - 641402. subbulakshmi169@gmail.com

Dr. K. SUMATHI Department of Mathematics,

PSGR Krishnammal College for Women, Coimbatore – 641004. ksumathi@psgrkcw.ac.in

Dr. K. INDIRANI Department of Mathematics, Nirmala College for Women, Coimbatore - 641018. indirani009@ymail.com

