

gη-CONTINUOUS IN TOPOLOGICAL SPACES

D. Subbulakshmi¹, Dr. K. Sumathi² & Dr. K. Indirani³

¹Assistant professor, Department of Mathematics Rathnavel Subramaniam College of Arts and

Science, Tamilnadu, India, Email : subbulakshmi169@gmail.com.

² Department of Mathematics, PSGR Krishnammal College for Women Coimbatore – 641004,

Tamilnadu,India, ksumathi@psgrkcw.ac.in

³ Department of Mathematics, Nirmala College for Women, Coimbatore – 641004,

Tamilnadu,India, indirani009@ymail.com

Abstract: In this paper a new class of functions namely $g\eta$ -continuous in the light of $g\eta$ -closed sets in topological spaces are introduced. Further some of their characterizations are investigated.

Keywords: $g\eta$ -closed sets, continuous, semi-continuous, α -continuous, r-continuous, η -continuous, g-continuous, g*-continuous, sg-continuous, g α -continuous, g α -cont

1. Introduction

In recent years a number of generalizations of open sets have been developed by many mathematicians. In 1963, Levine [7] introduced the notion of semi-open sets in topological spaces. In 1984, Andrijevic [1] introduced some properties of the topology of α -sets. In 2016, Sayed and Mansour introduced [16] new near open set in Topological Spaces. Motivated by various open and closed sets are discussed in the previous literature, in this paper a new class of gη-continuous has been introduced using the concept of η-open sets and gη-closed sets by Subbulakshmiet al [19, 20]. Further we study the basic properties of gη-continuous.

2. Preliminaries

Definition 2.1

A subset A of a topological space (X, τ) is called

(i) α -open set [1] if A \subseteq int (cl(int (A))), α -closed set if cl (int (cl(A))) \subseteq A.

(ii) pre-open set [12] if A \subseteq int (cl (A)), pre-closed set if cl (int(A)) \subseteq A.

(iii) semi-open set [7] if A \subseteq cl(int (A)), semi-closed set if int (cl(A) \subseteq A.

(iv) regular-open set [15] if A = int (cl(A)), regular-closed set if A = cl (int (A))).

(v) β -open (or semi-pre-open) set [2] if $A \subseteq (cl(int (cl(A))), semi-pre-closed set if int(cl(int(A))) \subseteq A.$ $(vi) n open set [10] if <math>A \subseteq int (cl(int(A))) \sqcup cl(int(A))$ n closed set if cl (int (cl(A))) Ω

(vi) η -open set [19] if $A \subseteq int (cl(int(A))) \cup cl (int (A)), \eta$ -closed set if cl (int (cl (A))) $\cap int(cl(A)) \subseteq A$.

Definition 2.2

A subset A of a space (X, τ) is called

(i) g-closed set [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(ii) g*-closed set [22] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

(iii) ga-closed set [11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

(iv) α g-closed set [10] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(v) sg-closed set [4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .

(vi) gar-closed set [17] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in (X, τ) .

(vii) rg-closed set [14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in (X, τ) .

(viii) gpr-closed set [6] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open in (X, τ) .

(ix) gq-closed set [20] if $\eta cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in(X, τ).

Definition 2.3

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

(i) continuous [3] if f -1 (V) is a closed in (X, τ) for every closed set V of (Y, σ) .

(ii) semi-continuous [7] if f -1 (V) is a semi-closed in (X, τ) for every closed set V of (Y, σ) .

(iii) α -continuous [11] if f -1 (V) is a α -closed in (X, τ) for every closed set V of (Y, σ).

(iv) r-continuous [9] if f -1 (V) is a r-closed in (X, τ) for every closed set V of (Y, σ) .

(v) g-continuous [3] if f -1 (V) is a g-closed in (X, τ) for every closed set V of (Y, σ) .

(vi) g*-continuous [13] if f -1 (V) is a g*-closed in (X, τ) for every closed set V of (Y, σ) .

(vii)sg-continuous [21] if f -1 (V) is a sg-closed in (X, τ) for every closed set V of (Y, σ) .

(viii) ga-continuous [5] if f -1 (V) is a ga-closed in (X, τ) for every closed set V of (Y, σ) .

(ix) α g-continuous [10] if f -1 (V) is a α g-closed in (X, τ) for every closed set V of (Y, σ).

(x)gar-continuous [18] if f -1 (V) is a gar-closed in (X, τ) for every regular-closed set V of (Y,

σ).

(xi)rg-continuous [14] if f -1 (V) is a rg-closed in (X, τ) for every regular-closed set V of (Y, σ) .

(xii)gpr-continuous [6] if f -1 (V) is a gpr-closed in (X, τ) for every regular-closed set V of (Y, σ).

3. gη-CONTINUOUS MAPPINGS

Definition 3.1

A function $f : (X, \tau) \to (Y, \sigma)$ is called η -continuous if f - 1 (V) is a η -closed in(X, τ) for every closed set V of (Y, σ) .

Definition 3.2

A function $f : (X, \tau) \to (Y, \sigma)$ is called gq-continuous if f - 1 (V) is a gq-closed in(X, τ) for every closed set V of(Y, σ).

Theorem 3.3

Let (X, τ) and (Y, σ) be a topological spaces. Then for a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$. The following results are true.

- (i) Every continuous function is $g\eta$ -continuous.
- (ii) Every semi-continuous function is gn-continuous.
- (iii) Every α -continuous function is gη-continuous.

(iv)Every r-continuous function is gn-continuous.

(v) Every η -continuous function is $g\eta$ -continuous.

(vi)Every g-continuous function is gn-continuous.

(vii) Every g*-continuous function is gη-continuous.

(viii) Every sg-continuous function is gη-continuous.

(ix) Every ag-continuous function is gq-continuous.

(x) Every ga-continuous function is $g\eta$ -continuous.

Proof: (i). Let $f: (X, \tau) \to (Y, \sigma)$ be continuous and V be an closed set in Y. Then f - 1 (V) is closed in X. Since every closed set is $g\eta$ -closed, f - 1 (V) is $g\eta$ -closed in X. Thus, inverse image of every closed set is $g\eta$ -closed. Therefore, f is $g\eta$ -continuous.

Proof of (ii) to (x) are similar to (i).

Remark: The converse of the above theorem need not be true as may be seen by the following example.

Example 3.4 Let $X = Y = \{a, b, c\}, \tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : X \rightarrow Y$ as f(a) = a, f(b) = c, f(c) = b. Then $f - 1(\{c\}) = \{b\}, f - 1(\{a, c\}) = \{a, b\}, f - 1(\{b, c\}) = \{b, c\}$. Therefore, f is gn-continuous. Since the inverse image of every closed set in Y is gn-closed in X. But,

(i). Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$.

Define $f: X \to Y$ as f(a) = c, f(b) = b, f(c) = a. Then $f - 1(\{b\}) = \{b\}$ is not closed, semi closed, α -closed, r-closed in X. Here the set $\{b\}$ is closed in Y. Therefore, f is not continuous, semi continuous, α -continuous, r-continuous.

(ii). Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Define $f : X \to Y$ as f(a) = c,

f (b) = b, f (c) = a. Then f -1 ({b, c}) = {a, b} is not η -closed, sg-closed in X. Here the set {b, c} is closed in Y. Therefore, f is not η -continuous, sg-continuous.

(iii). Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \varphi, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Define $f: X \rightarrow Y$ as f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then f - 1 ($\{d\}$) = $\{d\}$ is not g-closed, g^* - closed, ga-closed in X. Here the set $\{d\}$ is closed in Y. Therefore, f is not g-continuous, g^* -continuous, ga-continuous, ga-continuous.

Remark The concept of rg-continuous, gpr-continuous, $g\alpha r$ -continuous and $g\eta$ -continuous are independent.

Example: 3.5 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\)$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Define $f: X \rightarrow Y$ as f(a) = a, f(b) = c, f(c) = b. Here f is $g\eta$ -continuous. But f is not rg-continuous, gpr-continuous, gar-continuous. Since for the closed set $\{a\}$ in Y, $f - 1(\{a\}) = \{a\}$ is not rg-closed, gpr-closed, gpr-closed in X.

Example: 3.6 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\)$ and $\sigma = \{Y, \phi, \{a\}\}.$ Define $f : X \rightarrow Y$ as f(a) = b, f(b) = a, f(c) = c. Here f is rg-continuous, gpr-continuous, gar-continuous. But not gp-continuous. Since for the closed set $\{b, c\}$ in Y, $f - 1(\{b, c\}) = \{a, c\}$ is not gp-closed in X.

Theorem 3.7

A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then the following statements are equivalent. (i) f is gn-continuous.

(ii) The inverse image of each open set in Y is gn-open in X.

Proof:

(i) \Rightarrow (ii) Assume that $f : (X, \tau) \rightarrow (Y, \sigma)$ is gn-continuous. Let U be an open set in Y. Then Y-U is closed in Y. Since f is gn-continuous, f -1(Y-U) is gn-closed in X. But f -1(Y-U) = X-f -1(U). Thus f - 1(U) is gn-open in X.

(ii) \Rightarrow (i) Assume that the inverse image of each open set in Y is gn-open in X. Let V be any closed set in Y. Then Y-V is open in X. But f -1(Y-V) = X-f -1(V) is gn-open in X and so f -1(V) is gn-closed in X. Therefore, f is gn-continuous.

Theorem 3.8

If a function $f : (X, \tau) \to (Y, \sigma)$ is gn-continuous, then $f (gn-cl(A)) \subseteq cl(f(A))$ for every subset A of X.

Proof: Let $f : (X, \tau) \to (Y, \sigma)$ be gη-continuous. Let $A \subseteq X$. Then cl(f(A)) is closed set in Y. Since f is gη-continuous, f -1(cl(f(A))) is gη-closed in X and $A \subseteq f -1(f(A)) \subseteq f -1(cl(f(A)))$, implies gη-cl(A) $\subseteq f -1(cl(f(A)))$. Hence $f (g\eta - cl(A)) \subseteq cl(f(A))$.

Corollary 3.9

Let $f:(X,\,\tau)\to(Y,\,\sigma)$ be a function where X and Y are topological spaces. Then the following are equivalent.

(i) f is gn-continuous.

(ii) For each subset Vof Y, $g\eta$ -cl(f-1(V)) \subseteq f-1cl(V).

Proof:

(i) ⇒(ii) Let V be a subset of Y. Then f - 1(V) is a subset of X. Since f is gη-continuous, $f(g\eta-cl(A)) \subseteq cl(f(A))$, for each subset A of X. Hence in particular $f(g\eta-cl(f-1(V))) \subseteq cl(f(f-1(V))) \subseteq cl(V)$. Hence $g\eta-cl(f-1(V))) \subseteq f - 1(cl(V)$.

(ii) \Rightarrow (i) Let V be a closed subset of Y. Then by (ii), $g\eta$ -cl(f-1(V))) \subseteq f-1(cl(V). This implies, f ($g\eta$ -cl(f-1(V))) \subseteq f (f-1(cl(V))) \subseteq cl(V). Take V = f (A), where A is a subset of X. Then, f ($g\eta$ -cl(A)) \subseteq cl(f(A)). Hence by theorem 3.8 f is $g\eta$ -continuous.

Theorem 3.10

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a function where X and Y are topological spaces. Suppose $G\eta O(X, \tau)$ is closed under arbitrary union, then the following are equivalent.

(i) f is gη-continuous.

(ii) For each point $x \in X$ and each open set V in Y with $f(x) \in V$, there is a $g\eta$ -open set A in X such that $x \in A$ and $f(A) \subseteq V$.

Proof:

(i) \Rightarrow (ii) Let V be an open set in Y and let f (x) \in V, where x \in X, since f is gη-continuous, f -1(V) is a gη-open set in X. Also x \in f -1(V). Take A =f -1(V). Then x \in A and f(A) \subseteq V.

(ii) \Rightarrow (i) Let V be an open set in Y and let $x \in f - 1$ (V). Then $f(x) \in V$ and there exist a gn-open set A in X such that $x \in A$ and $f(A) \subseteq V$. Then $x \in A \subseteq f - 1(V)$. Hence f - 1(V) is a gn-neighbourhood of x and hence it is gn-open. Hence f is gn-continuous.

Theorem: 3.12 Let $f : (X, \tau) \to (Y, \sigma)$ is gq-continuous and $g : (Y, \sigma) \to (Z, \mu)$ is continuous, then their composition $g \circ f : (X, \tau) \to (Z, \mu)$ is gq-continuous.

Proof: Let A be a closed set in Z, since g is a continuous function, g - 1 (A) is closed set in Y. Again since f is gn-continuous, $f - 1(g - 1(A)) = (g \circ f) - 1$ (A) is gn-closed in X. Hence $g \circ f$ gn-continuous.

Remark: The composition of two $g\eta$ -continuous functions need not be $g\eta$ -continuous as seen from the following example.

Example 3.13 Let $X = Y = Z = \{a, b, c\}$ with $\tau = \{X, \varphi, \{b, c\}\}, \sigma = \{Y, \varphi, \{a\}\}$ and $\mu = \{Z, \varphi, \{a\}, \{b, c\}\}$.Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = b, f(b) = c, f(c) = a and $g : (Y, \sigma) \rightarrow (Z, \mu)$ be defined by g(a) = b, g(b) = a, g(c) = c. Then the functions f and g are gq-continuous but their composition $g \circ f : (X, \tau) \rightarrow (Z, \mu)$ is not gq-continuous, since for the closed set $\{a\}$ in $(Z, \mu), (g \circ f) - 1\{b, c\} = \{b, c\}$ is not gq-closed in (X, τ) .

4. gη-irresolute Functions

Definition 4.1

A function $f: (X, \tau) \to (Y, \sigma)$, where X and Y are topological spaces, is called $g\eta$ -irresolute if the inverse image of each $g\eta$ -closed set in Y is a $g\eta$ -closed set in X.

Example 4.2 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ as f(a) = a, f(b) = c, f(c) = b. Then f - 1 ($\{a\}$) = $\{a\}$, f - 1 ($\{b\}$) = $\{c\}$, f - 1 ($\{c\}$) = $\{b\}$, f - 1 ($\{a, c\}$) = $\{a, b\}$, f - 1 ($\{b, c\}$) = $\{b, c\}$. Therefore, f is gn-irresolute. Since the inverse image of every gn-open set in Y is gn-open in X.

Theorem 4.3

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is gη-irresolute if and only if f - 1(V) is gη-open in X, for every gη-open set V in Y.

Proof: Necessity: Let V be $g\eta$ -open set in Y. Then Vc is $g\eta$ -closed in Y. Since f is $g\eta$ -irresolute, f -1 (Vc) is $g\eta$ -closed in X. But f -1 (Vc) = (f -1 (V)) c. Hence (f -1 (V)) c is $g\eta$ -closed in X and hence f -1 (V) in $g\eta$ -open in X.

Sufficiency: Let V be $g\eta$ -closed set in Y. Then Vc is $g\eta$ -open in Y. Since the inverse image of each $g\eta$ -open set in Y is $g\eta$ -open in X, f -1 (Vc) is $g\eta$ -open in X. Also f -1 (Vc) = (f -1 (V)) c. Hence (f -1 (V)) c is $g\eta$ -open in X and hence f -1 (V) is $g\eta$ -closed in X. Hence f is $g\eta$ -irresolute.

Theorem 4.4

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \mu)$ are both gn-irresolute, then $g \circ f: (X, \tau) \rightarrow (Z, \mu)$ is also gn-irresolute.

Proof: Let V be a gq-closed set in Z. Then g -1 (V) is a gq-closed set in Y and f -1(g-1 (V)) is also gq-closed in X, since f and g are gq-irresolutes. Thus $(g \circ f) - 1 (V) = f - 1 (g - 1 (V))$ is gq-closed in X and hence $g \circ f$ is also gq-irresolute.

Theorem 4.5

Let $f : (X, \tau) \to (Y, \sigma)$ be gn-irresolute function and $g : (Y, \sigma) \to (Z, \mu)$ be a gn-continuous function. Then their composition $g \circ f : (X, \tau) \to (Z, \mu)$ is a gn-continuous function. **Proof:** Let V be any closed set in Z. Then $g \cdot 1(V)$ is gn-closed in Y. Since g is gn-continuous and $f \cdot 1(g \cdot 1(V))$ is gn-closed in X, since f is gn-irresolute. But $f \cdot 1(g \cdot 1(V)) = (g \circ f) \cdot 1(V)$, so that $(g \circ f) \cdot 1(V)$ is gn-closed in X. Hence $g \circ f$ is gn-continuous.

Theorem 4.6

Let $f: (X, \tau) \to (Y, \sigma)$ be a function where X and Y are topological spaces. Suppose $G\eta O(X, \tau)$ is closed under arbitrary union, then the following are equivalent.

(i) f is gn-irresolute.

(ii) For each point $x \in X$ and each $g\eta$ -open set V in Y with $f(x) \in V$, there is a $g\eta$ -open set A in X such that $x \in A$ and $f(A) \subseteq V$.

Proof:

(i) \Rightarrow (ii) Let V be an gn-open set in Y and let f (x) \in V, where x \in X, since f is gn-irrrsolute, f -1(V) is a gn-open set in X. Also x \in f -1(V). Take A =f -1(V). Then x \in A and f(A) \subseteq f (f -1(V)) \subseteq V.

(ii) \Rightarrow (i) Let V be an gn-open set in Y and let $x \in f - 1$ (V). Then $f(x) \in V$ and there exist a gn-open set A in X such that $x \in A$ and $f(A) \subseteq V$. Then $x \in A \subseteq f - 1(V)$. Hence f - 1(V) is a gn-neighbourhood of x and hence it is gn-open. Hence f is gn-irresolute.

Remark: The concept of rg-irresolute, gpr-irresolute, gar-irresolute and gn-irresolute are independent.

Example 4.7 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Define $f : X \rightarrow Y$ as f(a) = a, f(b) = b, f(c) = c. Here f isrg-irresolute, gpr-irresolute, gar-irresolute. But not gn-irresolute. Since for the gn-closed set $\{b\}$ in Y, f-1 ($\{b\}$) = $\{b\}$ is not gn-closed in X.

Example 4.8 Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Define

 $f: X \rightarrow Y$ as f(a) = b, f(b) = a, f(c) = c. Here f is gq-irresolute. But f is not rg-irresolute, gpr-irresolute, gar-irresolute. Since for the rg-closed, gpr-closed, gar-closedset {c} in Y, f -1 ({c}) = {c} is not rg-closed, gpr-closed, gar-closed in X.

References

- [1] And rijevic D. "Some properties of the topology of α -sets", Mat. Vesnik 36(1984).
- [2] Andrijevic D. "Semi-preopen sets", Mat. Vesnik 38(1) (1986), 24-32.
- [3] Balachandran. K, Sundaram. P & Maki. H, On generalised continuous maps in topological spaces, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math, 12(1991), 5-13.
- [4] Bhattacharya. P, and Lahiri. B. K, Semi-generalized closed set in topology, Indian J. Math. 29 (3) (1987), 375 382.
- [5] Devi. R & Balachandran. K (2001), Some generalizations of α-homeomorphisms in topological spaces, Indian J.Pure Appl.Math, 32(4): 551-563
- [6] Gnanambal. Y, On generalized pre regular closed sets in topological spaces, Indian J.Pure Appl. Math., 28(1997), 351-360.
- [7] Levine N., Semi open sets and semi continuity in Topological spaces, Amer. Math. Monthly,70(1963), 36-41.
- [8] Levine. N, Generalized closed sets in topology, Rend. Circ. Mat. Ser. III, 10, (1975), 347 350.
- [9] Mahmood. S. I. (2012), on generalized regular continuous functions in topological spaces, Kyungpook Math. J., 14:131 -143.
- [10] Maki. H, Devi. R and Balachandran. K, Associated topologies of generalized α closed sets and α generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 15, (1994), 51-63.
- [11] Maki. H, Devi. R and Balachandran. K, Generalized α closed sets in topology, Bull. Fukuoka Univ. Ed. Part III 42, (1993), 13 – 21.
- [12] Mashhour A. S., Abd El Mousef M. E. and El-Deeb S. N., On pre-continuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [13] Murugalingam. M, Somasundaram. S and Palaniammal. S, A generalized star sets. Bulltin of Pure and Applied Science, 24(2):233:238, 2005.
- [14] Palaniappan. N, Rao. K. C., Regular generalized closed sets, kyung-pook Math. J., 33(1993), 211-219.
- [15] Pious Missier. S. and Annalakshmi. M., Between Regular Open Sets and Open Sets, Internat. J. Math. Archive, 7(5) (2016), 128-133.
- [16] Sayed MEL and Mansour FHAL, New near open set in Topological Spaces, J Phys Math, 7(4) (2016). R
- [17] Sekar, S., Kumar, G., On g α r-closed set in Topological Spaces, International Journal Advanced Science and Engineering Research, 2(1), (2017), 460-467.
- [18] Sekar, S., Kumar, G., Contra g α r-continuous functions in Topological Spaces, International Journal of Pure and Applied Mathematics, 108, 4(2016), 791-800.
- [19] Subbulakshmi. D, Sumathi. K, Indirani. K., η-open set in topological spaces, International Journal of Innovative Technology and Exploring Engineering, 8(10s) (2019), 276-282.
- [20] Subbulakshmi. D, Sumathi. K, Indirani. K., gη-closed set in topological spaces, International Journal of Recent Technology and Engineering, 8(3)(2019), 8863-8866.
- [21] Sundaram. P, Maki. H and Balachandran. K, Semi-generalized continuous maps and semi-
- [22] T1/2 spaces, Bull. Fukuoka Univ. Ed. Part-III, 40:33-40, 1991.
- [23] Veerakumar. M. K. R. S, Between g* closed sets and g closed sets Antartica J. Math, Reprint.