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A TOPOLOGICAL APPROACH IN CORDIAL GRAPHS

A. DIVYA1 AND D. SASIKALA

ABSTRACT. The focus of this paper is to introduce CI-Lower and CI-Upper ap-
proximation in cordial incidence topological space. Some effective characteri-
zations and properties are studied. Furthermore, results are proved with some
counter examples and are discussed using graphs.

1. INTRODUCTION AND PRELIMINARIES

Z. Pawlak [3] initiated Rough set theory in 1982. Some basic ideas of rough
sets and many applications have been presented recently by Z.Pawlak and Skow-
ron [4, 5]. Lower and upper approximations of Pawlak’s definitions originally
developed with the reference to an equivalence relation. In 2013, M.E. Abd Ei-
Monsef, A.M. Kozae and M.J. Iqelan [1] initiated near approximation in topo-
logical space. Pawlak and Skowron [4, 5] have been derived many lower and
upper approximations properties. Our work depends on some ideas in terms of
cordial incidence topology. We hope that, cordial incidence topological space
will play a pivotal role for knowledge modification extraction and processing.

The following summary of definitions are used in the subsequent sequel.

Definition 1.1. [2] A mapping f : V (G) → {0, 1} is called binary vertex labeling
of G and f(v) is called the label of the vertex v of G under f . The induced edge
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labeling f ∗ : E(G) → {0, 1} is given by f ∗(e = uv) = |f(u)− f(v)|. Let us denote
vf (0), vf (1) be the number of vertices of G having labels 0 and 1 respectively under
f and ef (0), ef (1) be the number of edges of G having labels 0 and 1 respectively
under f ∗.

Definition 1.2. [2] A binary vertex labeling of a graph G is called a cordial label-
ing if |vf (0) − vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. A graph G is called cordial if it
admits labeling.

Definition 1.3. [2] A binary vertex labeling of a graph G with induced edge la-
beling f ∗ : E(G) → {0, 1} defined by f ∗(uv) = |f(u) + f(v)|(mod2) is called sum
cordial labeling if |vf (0)− vf (1)| ≤ 1 and |ef (0)− ef (1)| ≤ 1. A graph G is called
sum cordial if it admits sum cordial labeling.

Definition 1.4. [6] Let G = (V (G), E(G)) be a simple graph with sum cordial
labeling and with out isolated vertex. Define S0G and S1G as follows. S0G =

{Av(0)|v ∈ V } and S1G = {Av(1)|v ∈ V } such that Av(0) and Av(1) is the set of all
vertices adjacent to v of G having label 0 and 1 respectively. Since G has no isolated
vertex, S0G∪S1G forms a subbasis for a topology τCG on V is called Cordial graphic
topology of G and it is denoted by (V, τCG).

Definition 1.5. [6] Let G = (V (G), E(G)) be a simple graph with sum cordial
labeling and with out isolated vertex. Define SE(0G) and SE(1G) as follows. SE(0G) =

{Ie(0)|e ∈ E} and SE(1G) = {Ie(1)|e ∈ E} such that Ie(0) and Ie(1) is the incidence
vertices having label 0 and 1 respectively. Since G has no isolated vertex, SE(0G) ∪
SE(1G) forms a subbasis for a topology τCI on V is called cordial incidence topology
of G and it is denoted by (V, τCI).

Definition 1.6. [1] Let A ⊆ X, then the upper approximation (resp.the lower
approximation) of A is given by:

RA = {x ∈ X : Rx ∩ A 6= ∅},
RA = {x ∈ X : Rx ⊆ A},

where Rx ⊆ X to denote the equivalence class containing x ∈ X and X/R to
denote the set of all elementary set of R.

Proposition 1.1. [1] In an approximation space K = (X,R) if A and B are two
subsets of X then:
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(1) RA ⊆ A ⊆ ARA

(2) R∅ = R∅ = ∅, RX = RX = X

(3) R(A ∪B) = RA ∪RB
(4) R(A ∩B) = RA ∩RB
(5) If A ⊆ B, then RA ⊆ RB

(6) If A ⊆ B, then RA ⊆ RB

(7) R(A ∪B) ⊇ RA ∪RB
(8) R(A ∩B) ⊆ RA ∩RB
(9) RAc = [RA]c

(10) RAc = [RA]c

(11) R(RA) = RRA = RA

(12) R(RA) = RRA = RA

Lemma 1.1. [1] Let (X, τ) be a topological space, then int(Ac) = [cl(A)]c, for all
A ⊆ X.

Lemma 1.2. [1] Let A and B be two subsets of X in a topological space (X, τ). If
A is open then A ∩ cl(B) ⊆ cl(A ∩B).

2. CI-LOWER AND CI-UPPER APPROXIMATION

Definition 2.1. Let G = (V (G), E(G)) be a sum cordial graph and admits cordial
incidence topology τCI induced by V and H be the subgraph of G, then the interior
and closure of H has the following form,

intCI(V (H)) = ∪{U ∈ τCI |U ⊆ V (H)},
clCI(V (H)) = ∩{U ∈ τ cCI |V (H) ⊆ U}.

Example 1. Let us consider the sum cordial graph with V = {v1, v2, v3, v4} and
E = {e1, e2, e3}. s
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FIGURE 1

From the figure 1, Ie1(0) = {v1, v2}, Ie2(1) = {v2, v3}, Ie3(0) = {v3, v4}, SE(0G) =

{{v1, v2}, {v3, v4}} and SE(1G) = {{v2, v3}.
Thus SE(0G) ∪ SE(1G) = {{v1, v2}, {v2, v3}, {v3, v4}}

τCI = {V, ∅, {v1, v2}, {v3, v4}, {v2, v3}, {v2, v3, v4}, {v2}, {v3}, {v1, v2, v3}}.
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τ cCI = {V, ∅, {v3, v4}, {v1, v4}}, {v1, v2}, {v4}, {v1}, {v1, v3, v4}, {v1, v2, v4}}.

Now let us consider the subgraph H of G as follows,

s

s s
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FIGURE 2

From figure 2 we have, V (H) = {v1, v2, v3}, intCI{V (H)} = {v1, v2, v3} and
clCI{V (H)} = {v1, v2, v3, v4} = V .

Definition 2.2. Let G = (V (G), E(G)) be an approximation space and τCI be
the cordial incidence topology induced by V and let H be the subgraph of G, then
CI-lower (resp. CI-upper) approximation of H is defined by:

LCI [V (H)] = intCI(V (H)),
UCI [V (H)] = clCI(V (H)).

Definition 2.3. Let G = (V (G), E(G)) be an approximation space and τCI be
the cordial incidence topology induced by V and let H be the subgraph of G, then
CI-boundary region of H is defined by,

BCI [V (H)] = UCI [V (H)]− LCI [V (H)].

3. PROPERTIES OF CI-LOWER AND CI-UPPER APPROXIMATION

Proposition 3.1. Let G = (V (G), E(G)) be an approximation space and τCI be
the cordial incidence topology induced by V . If H and S are two subgraphs of G
then:

(1) LCI [V (H)] ⊆ V (H) ⊆ UCI [V (H)]

(2) LCI [V (∅)] = UCI [V (∅)] and LCI [V (G)] = UCI [V (G)]

(3) V (H) ⊆ V (S) then LCI [V (H)] ⊆ LCI [V (S)]

(4) V (H) ⊆ V (S) then UCI [V (H)] ⊆ UCI [V (S)] .
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Proof.

(1) Proof is obvious.
(2) Obviously the result is true, since V (G) and [V (∅)] are exact sets in τCI .
(3) Let v1 ∈ LCI [V (H)], then there exists U ∈ τCI , such that v1 ∈ U ⊆ V (H).

Hence v1 ∈ U ⊆ V (S), since V (H) ⊆ V (S) such that U ∈ τCI and
v1 ∈ LCI [V (S)].
⇒ LCI [V (H)] ⊆ LCI [V (S)].

(4) Similarly, UCI [V (H)] ⊆ UCI [V (S)].

�

Proposition 3.2. Let G = (V (G), E(G)) be an approximation space and τCI be
the cordial incidence topology induced by V . If H is a subgraph of G then:

(1) LCI [V (H)c] = [UCI(V (H))]c,
(2) UCI [V (H)c] = [LCI(V (H))]c.

Proof.

(1) Since LCI [V (H)c] = ∪{U ∈ τCI |U ⊆ V (H)c}, U ∈ τCI then V − U ∈ τ cCI ,
⇒ LCI [V (H)c] = ∪{V − [V − U ] ∈ τCI |V − (V − U) ⊆ V − V (H)}

= V − ∩{V − U ∈ τ cCI |V (H) ⊆ (V − U)}
= V − UCI [V (H)]

= [UCI(V (H))]c.
Hence, LCI [V (H)c] = [UCI(V (H))]c

(2) Similarly, UCI [V (H)c] = [LCI(V (H))]c.

�

Proposition 3.3. Let G = (V (G), E(G)) be approximation space and τCI be the
cordial incidence topology induced by V . If H and S are two subgraphs of G then:

(1) LCI [V (H) ∩ V (S)] = LCI [V (H)] ∩ LCI [V (S)],
(2) UCI [V (H) ∪ V (S)] = UCI [V (H)] ∪ UCI [V (S)],
(3) LCI [V (H) ∪ V (S)] ⊇ LCI [V (H)] ∪ LCI [V (S)],
(4) UCI [V (H) ∩ V (S)] ⊆ UCI [V (H)] ∩ UCI [V (S)].

Proof.

(1) Since V (H) ∩ V (S) ⊆ V (H) and V (H) ∩ V (S) ⊆ V (S)

⇒ LCI [V (H)∩V (S)] ⊆ LCI [V (H)] and LCI [V (H)∩V (S)] = LCI [V (S)]
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⇒ LCI [V (H) ∩ V (S)] ⊆ LCI [V (H)] ∩ LCI [V (S)](3.1)

Since LCI [V (H)] ∈ τCI and LCI [V (S)] ∈ τCI then LCI [V (H)]∩LCI [V (S)]

∈ τCI ,
⇒ LCI [V (H)]∩LCI [V (S)] is contained in V (H)∩V (S). Thus we have,

LCI [V (H)] ∩ LCI [V (S)] ⊆ LCI [V (H) ∩ V (S)](3.2)

From (3.1) and (3.2) we have,
LCI [V (H) ∩ V (S)] = LCI [V (H)] ∩ LCI [V (S)]

(2) Similarly, UCI [V (H) ∪ V (S)] = UCI [V (H)] ∪ UCI [V (S)]

(3) Since V (H) ⊆ V (H) ∪ V (S) and V (S) ⊆ V (H) ∪ V (S)

⇒ LCI [V (H)] ⊆ LCI [V (H)∪V (S)] and LCI [V (S)] ⊆ LCI [V (H)∪V (S)]

⇒ LCI [V (H)] ∪ LCG[V (S)] ⊆ LCI [V (H) ∪ V (S)]

(4) Similarly, UCI [V (H) ∩ V (S)] ⊆ UCI [V (H)] ∩ UCI [V (S)].

�

Remark 3.1. The following results are not true:

(1) LCI{LCI [V (H)]} = UCI{LCI [V (H)]} = LCI [V (H)],
(2) UCI{UCI [V (H)]} = LCI{UCI [V (H)]} = UCI [V (H)].

Example 2. Let G be a simple graph with V = {v1, v2, v3, v4} and E = {e1, e2, e3}.
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FIGURE 3

(1) Let us consider V (H) = {v1, v3}, from the figure 3 then
LCI [V (H)] = {v3}
LCI(LCI [V (H)]) = {v3}
UCI(LCI [V (H)]) = {v3, v4}
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From the above three equations we have,
LCI{LCI [V (H)]} = LCI [V (H)] 6= UCI{LCI [V (H)]}

(2) UCI [V (H)] = {v1, v3, v4}
UCI(UCI [V (H)]) = {v1, v3, v4}
LCI(UCI [V (H)]) = {v3, v4}
From the above three equations we have,

UCI [V (H)] = UCI{UCI [V (H)]} 6= LCI{UCI [V (H)]}

Proposition 3.4. Let G = (V (G), E(G)) be an approximation space and τCI be
the cordial incidence topology induced by V . If H and S are two subgraphs of G,
then the following results are true:

(1) LCI [V (H))− V (S))] ⊆ LCI [V (H)]− LCI [V (S)],
(2) UCI [V (H))− V (S))] ⊇ UCI [V (H)]− UCI [V (S)].

Proof.

(1) Since V (H)− V (S) = V (H) ∩ V (S)c

⇒ intCI [V (H)− V (S)] = intCI [V (H) ∩ V (S)c]

= intCI(V (H)) ∩ intCI(V (S)c).
= intCI(V (H)) ∩ [clCI(V (S))]c

= intCI [V (H)]− clCI [V (S)]

⇒ intCI [V (H)− V (S)] ⊆ intCI(V (H))− intCI(V (S))

⇒ LCI [V (H)− V (S)] ⊆ LCI [V (H)]− LCI [V (S)]

(2) Since clCI(V (H))− clCI(V (S)) = clCI(V (H)) ∩ [clCI(V (S))]c

= clCI [V (H)] ∩ intCI [V (S)c]

⊆ clCI [V (H) ∩ intCI(V (S)c)]

= clCI [V (H) ∩ [clCI(V (S))]c]

= clCI [V (H)− clCI(V (S))]

clCI [V (H)]− clCI [V (S)] ⊆ clCI [V (H)− V (S)]

UCI [V (H))− V (S))] ⊇ UCI [V (H)]− UCI [V (S)]

�

Theorem 3.1. Let G = (V (G), E(G)) be an approximation space and τCI be the
cordial incidence topology induced by V . If H and S are two subgraphs of G then
the results are true:

(1) If V (S) ∈ τCI contained in V(H) then V (S) ⊆ LCI [V (H)],
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(2) If V (S) ∈ τ cCI containing V(H) then UCI [V (H)] ⊆ V (S).

Proof.

(1) Let v1 ∈ V (S). Since V (S) ∈ τCI contained in V (H), which gives that
v1 ∈ intCI [V (H)], hence v1 ∈ LCI [V (H)].

(2) We have UCI [V (H)] = ∩{U ∈ τ cCI |V (H) ⊆ U}, therefore UCI [V (H)] is
contained in every U ∈ τ cCI containing V (H). Since V (S) ∈ τ cCI and
containing V (H), so UCI [V (H)] ⊆ V (S).

�

Theorem 3.2. Let G = (V (G), E(G)) be an approximation space and τCI be the
cordial incidence topology induced by V . If H and S are two subgraphs of G and
V (H) ∩ V (S) = V (∅), then LCI [V (H)] ∩ LCI [V (S)] = V (∅).

Proof. Suppose let us assume that LCI [V (H)] ∩ LCI [V (S)] 6= V (∅), therefore
v1 ∈ LCI [V (H)] and v1 ∈ LCI [V (S)] which implies that v1 ∈ intCIV (H) and
v1 ∈ intCIV (S) then there exists U,W ∈ τCI such that v1 ∈ U ⊆ V (H) and
v1 ∈ W ⊆ V (S), so v1 ∈ U ∩ W ⊆ V (H) and v1 ∈ U ∩ W ⊆ V (S), hence
v1 ∈ V (H) ∩ V (S), thus V (H) ∩ V (S) 6= V (∅). This is contradiction to our
assumption V (H) ∩ V (S) = V (∅). �

Theorem 3.3. Let G = (V (G), E(G)) be an approximation space and τCI be the
cordial incidence topology induced by V . If H and S are two subgraphs of G and
UCI [V (H)] ∩ UCI [V (S)] = V (∅), then V (H) ∩ V (S) = V (∅).

Proof. Let us assume that UCI [V (H)] ∩ UCI [V (S)] = V (∅), suppose v1 ∈ V (H) ∩
V (S) which implies that v1 ∈ V (H) and v1 ∈ V (S). So v1 ∈ clCI(V (H)) and
v1 ∈ clCI(V (S)). Hence v1 ∈ UCI [V (H)] and v1 ∈ UCI [V (S)]. Therefore v1 ∈
UCI [V (H)] ∩ UCI [V (S)]. This is contradiction to our assumption UCI [V (H)] ∩
UCI [V (S)] = V (∅). Hence V (H) ∩ V (S) = V (∅). �

Theorem 3.4. Let G = (V (G), E(G)) be an approximation space and τCI be the
cordial incidence topology induced by V . For any v1 ∈ UCI [V (H)] if and only if for
every U ∈ τCI containing v1 such that U ∩ V (H) 6= V (∅).

Proof. Suppose let us assume that there exists U ∈ τCI containing v1 such that
U ∩ V (H) = V (∅). Then V (H) ⊂ V (G) − U and V (G) − U ∈ τ cCI , so hence
UCI [V (H)] ⊂ V (G)−U . Therefore UCI [V (H)]∩U = V (∅), thus v1 /∈ UCI [V (H)],
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which is contradiction to v1 ∈ UCI [V (H)]. Thus U ∩ V (H) 6= V (∅) for every
U ∈ τCI containing v1.

Conversely, let us assume that U ∩ V (H) 6= V (∅) for every U ∈ τCI containing
v1. Suppose let v1 /∈ UCI [V (H)] then there exists U ∈ τCI containing v1 such
that U ∩ V (H) = V (∅), which is contradiction to U ∩ V (H) 6= V (∅). Hence
v1 ∈ UCI [V (H)]. �

Theorem 3.5. Let G = (V (G), E(G)) be an approximation space and τCI be the
cordial incidence topology induced by V . If H is subgraph of G then:

(1) V (G)− UCI [V (H)] = LCI [V (G)− V (H)],
(2) V (G)− LCI [V (H)] = UCI [V (G)− V (H)].

Proof.

(1) Let v1 ∈ V (G) − UCI [V (H)], which implies v1 /∈ UCI [V (H)] then there
exists U ∈ τCI containing v1 such that V (H) ∩ U = V (∅). So v1 ∈ U ⊂
V (G)− V (H) thus v1 ∈ LCI [V (G)− V (H)]. Therefore,

V (G)− UCI [V (H)] ⊆ LCI [V (G)− V (H)].(3.3)

Let v1 ∈ LCI [V (G) − V (H)]. Then there exists U ∈ τCI such that v1 ∈
U ⊂ V (G) − V (H), so v1 /∈ UCI [V (H)], which implies that v1 ∈ V (G) −
UCI [V (H)]. Therefore,

LCI [V (G)− V (H)] ⊆ V (G)− UCI [V (H)].(3.4)

From (3.3) and (3.4), V (G)− UCI [V (H)] = LCI [V (G)− V (H)]

(2) Suppose let us take, v1 ∈ V (G) − LCI [V (H)], then v1 /∈ LCI [V (H)] then
for every U ∈ τCI containing v1 such that U 6⊂ V (H), which implies that
U ∩ V (H)c 6= V (∅) then v1 ∈ UCI [V (G)− V (H)]. Therefore,

V (G)− LCI [V (H)] ⊆ UCI [V (G)− V (H)].(3.5)

Let v1 ∈ UCI [V (G) − V (H)], then for every U ∈ τCI containing v1

such that U ∩ V (H)c 6= V (∅), so U 6⊂ V (H), which implies that v1 /∈
LCI [V (H)], hence v1 ∈ V (G)− LCI [V (H)]. Therefore,

UCI [V (G)− V (H)] ⊆ V (G)− LCI [V (H)].(3.6)

From (3.5) and (3.6), V (G)− LCI [V (H)] = UCI [V (G)− V (H)].

�
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Theorem 3.6. Let G = (V (G), E(G)) be an approximation space and τCI be the
cordial incidence topology induced by V . If H is subgraph of G then:

(1) UCI [V (H)] = V (G)− LCI [V (G)− V (H)],
(2) LCI [V (H)] = V (G)− UCI [V (G)− V (H)].

Proof.

(1) Suppose v1 ∈ UCI [V (H)], then for every U ∈ τCI containing v1 such
that U ∩ V (H) 6= V (∅), which implies that U 6⊂ V (G) − V (H). So v1 /∈
LCI [V (G)− V (H)], v1 ∈ V (G)− LCI [V (G)− V (H)]. Therefore,

UCI [V (H)] ⊆ V (G)− LCI [V (G)− V (H)].(3.7)

Let v1 ∈ V (G)− LCI [V (G)− V (H)] then v1 /∈ LCI [V (G)− V (H)], hence
for every U ∈ τCI containing v1 such that U 6⊂ V (G) − V (H). which
means U ∩ V (H) 6= V (∅) so v1 ∈ UCI [V (H)].Therefore,

V (G)− LCI [V (G)− V (H)] ⊆ UCI [V (H)].(3.8)

From (3.7) and (3.8), UCI [V (H)] = V (G)− LCI [V (G)− V (H)].

(2) Let v1 ∈ LCI [V (H)], then there exists U ∈ τCI such that v1 ∈ U ⊂
V (H). Hence v1 /∈ UCI [V (G) − V (H)], which implies that v1 ∈ V (G) −
UCI [V (G)− V (H)]. Therefore,

LCI [V (H)] ⊆ V (G)− UCI [V (G)− V (H)].(3.9)

Let v1 ∈ V (G) − UCI [V (G) − V (H)] then v1 /∈ UCI [V (G) − V (H)], then
there exists U ∈ τCI such that v1 ∈ U ∩ [V (G) − V (H)] = V (∅), which
means v1 ∈ U ⊂ V (H). So v1 ∈ LCI [V (H)]. Therefore,

V (G)− UCI [V (G)− V (H)] ⊆ LCI [V (H)].(3.10)

From (3.9) and (3.10), LCI [V (H)] = V (G)− UCI [V (G)− V (H)].

�

CONCLUSION

In this paper, we have defined interior and closure for subgraph H of G in
cordial incidence topology. This sort of study would help to determine the blood
path way in the human heart and kidney.
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