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A NOTE ON CONNECTEDNESS IN TOPOLOGICAL SPACES

D. SASIKALA1 AND M. DEEPA

ABSTRACT. In this paper, we introduce two new types of connectedness namely
j-connectedness and

1
2 j-connectedness in a topological space. Also, we discuss

some of their basic properties and analyze the characterization using theorems.

1. INTRODUCTION

Connectedness is one of the most important topological property. In 1975,
Pipetone and Russo introduced semiconnectedness [6] in a topological space.
Based on the sets of preopen , α open, β open, the concepts of preconnected-
ness [7], α connectedness [6] and β connectedness [3] were introduced. In
1982, Mashhour et.al [4] introduced preopen sets and pre continuous function
in topological space.

In 2005, the concept of (α, β) semi-connectedness [2] was introduced by En-
nis Rosas, Carlos Carpintere and Jose Sanabria. In 2015, Tapi, Bhagyashri Deole
introduced semiconnectedness and preconnectedness in Biclosure spaces [8].
The new concepts of half b-connectedness in topological space was introduced
by T.Noiri and Shyamapada Modak in 2016 [5]. In 2017, Tyagi, Sumit Singh
and Manoj Bhardwaj introduced Pβ connectedness in topological space [9]. I.
Arokiarani and D. Sasikala introduced a new type of set namely j-open sets in
2011, [1].
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In this paper, we define and examine the notions of j-separated and j-connected
sets with the help of j-open sets. Also we introduce the stronger form of j-
connectedness namely

1
2 j- connectedness. Here we discuss some of the proper-

ties using theorems.

2. PRELIMINARIES

Definition 2.1. [1] A subset A in a topological space (X, τ) is said to be j-open if
A ⊆ int(pcl(A)). The complement of j-open set is j-closed.

Definition 2.2. [5] Two subsets A and B of a topological space X are said to be
half separated if and only if A ∩ cl(B) = ∅ or cl(A) ∩B = ∅.

Definition 2.3. [9] A preopen subset A of a topological space X is said to be Pβ-
open if for each x ∈ A there exists a β-closed set F such that x ∈ F ⊆ A that is
preopen set A is expressed as a union of β-closed sets.

Definition 2.4. [9] Non-empty subsets A and B of a topological space X is said to
be Pβ-connected if A ∩ Pβcl(B) = ∅ = Pβcl(A) ∩B.

Definition 2.5. [9] A subset S of a topological space X is said to be Pβ-connected
if S is not the union of two Pβ-separated sets in X.

Theorem 2.1. [5] Let A and B be two non-empty sets in a space X. The following
statements hold:

(i) If A and B are half b-separated and A1 ⊆ A and B1 ⊆ B, then A1, B1 are
also half b-separated.

(ii) If A ∩ B = ∅ and one of A and B is b-closed or b-open, then A and B are
half b-separated.

(iii) If one of A and B is b-closed or b-open and if H = A ∩ (X − B) and
G = B ∩ (X − A), then H and G are half b-separated.

Definition 2.6. [5] Two subsets P and Q in a space X are said to be cl-cl separated
if and only if cl(P ) ∩ cl(Q) = ∅.

Definition 2.7. [1] A function f : X → Y is said to be

(i) j-continuous if the inverse image of each open set in Y is j-open in X.
(ii) j-irresolute if for each point x ∈ X and each j-open set V of Y containing

f(x), there exist a j-open set U of X containing x such that f(U) ⊂ V
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(iii) j-closed if the image of each closed set in X is j-closed in Y.

3. J-CONNECTEDNESS

Definition 3.1. Two non-empty subsets P and Q of a topological space (X, τ) is
said to be j-separated if and only if P ∩ jcl(Q) = jcl(P ) ∩Q = ∅.

Definition 3.2. A topological space (X, τ) is said to be j-connected if X cannot be
expressed as a union of two non-empty j-separated sets in X.

Theorem 3.1. A topological space X is j-connected if and only if the only subsets of
X that are both j-open and j-closed in X are the null set and X itself.

Proof. Let P be a non-empty proper subset of X which is both j-open and j-closed
in X. Then there exists a sets U = P and V = X − P which forms a j-separation
of X. Conversely, assume that if U and V forms a j-separation of X andX = U∪V .
This implies U is non-empty and different from X. Since U ∩ V = U ∩ (jcl(V )) =

jcl(U) ∩ V = ∅. Hence both sets are j-open and j-closed. �

Remark 3.1. Every two j-separated sets are always disjoint since P ∩ Q ⊆ P ∩
jcl(Q) = ∅. The converse of the above theorem may not be true as shown by the
following example.

Example 1. LetX = {p, q, r, s}, τ = {∅, X, {p}, {s}, {p, s}, {q, r}, {p, q, r}, {q, r, s}}.
Here the subsets {r} and {q, s} are disjoint sets but not j-separated. Since {r} ∩
jcl{q, s} = {r} ∩ {q, r, s} 6= ∅.

Theorem 3.2. Two subsets P and Q of X are j-separated if and only if there exists
a two j-open sets U and V such that P ⊂ U , Q ⊂ V and P ∩ V = ∅, Q ∩ U = ∅.

Proof. Let P and Q be j-separated sets and V = X − jcl(P ), U = X − jcl(Q).
Then U and V are j-open sets in X such that P ⊂ U and Q ⊂ V . Also P ∩ V = ∅,
Q ∩ U = ∅. Conversely, suppose U and V ∈ jO(X) such that P ⊂ U , Q ⊂ V

and P ∩ V = ∅, Q ∩ U = ∅. Since X − U and X − V are j-closed then jcl(P ) ⊂
X − V ⊂ X −Q and jcl(Q) ⊂ X − U ⊂ X − P . Therefore, jcl(P ) ∩Q = ∅ and
jcl(Q) ∩ P = ∅. Hence P and Q are j-separated. �

Theorem 3.3. Let P and Q be two non-empty subset in a space X. Then the follow-
ing statements hold:
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(i) If P ∩ Q = ∅ such that each of the sets P and Q are both j-closed(j-open),
then P and Q are j-separated.

(ii) Suppose P and Q are j-separated sets, P1 ⊆ P and Q1 ⊆ Q, then P1 and
Q1 are also j-separated sets.

(iii) If each of these sets P and Q are both j-closed(j-open) and ifR = P∩(X−Q)
and S = Q ∩ (X − P ), then R and S are j-separated.

Proof. (i) Since P and Q are both j-open(j-closed) and P∩Q = ∅, then P = jcl(P )

and Q = jcl(Q). This implies P ∩ jcl(Q) = ∅ and Q ∩ jcl(P ) = ∅. Hence P and
Q are j-separated.
(ii) Since P1 ⊆ P , then jcl(P1) ⊂ jcl(P ). We show that P1 ∩ jcl(Q) = jcl(P1) ∩
Q1 = ∅. Since P and Q are j-separated, then P ∩ jcl(Q) = ∅. This implies
P1 ∩ jcl(Q) = ∅ and P1 ∩ jcl(Q1) = ∅. Similarly, Q ∩ jcl(P1) = ∅. Hence P1 and
Q1 are j-separated.
(iii) If P and Q are j-open ,then X−P and X−Q are j-closed. Since R ⊂ X−Q,
jcl(R) ⊂ jcl(X − Q) = X − Q and so jcl(R) ∩ Q = ∅. Thus S ∩ jcl(R) = ∅.
Similarly R ∩ jcl(S) = ∅. Hence R and S are j-separated. �

Definition 3.3. A point p ∈ X is called j-limit point of a set P ⊂ X if each j-open
set U ⊆ X containing p contains a point of P other than x.

Theorem 3.4. Let P and Q be two non-empty disjoint subsets of a space X and
R = P ∪ Q. Then P and Q are j-separated if and only if P and Q are j-closed(j-
open) in R.

Proof. Let P and Q be j-separated sets. Using the definition of j-separated, P does
not contains j-limit of Q. Therefore, Q contains all the j-limit points of Q. Then
the limit points lie in P ∪Q and also Q is j-closed in P ∪Q. Hence Q is j-closed
in R. Similarly, P is j-closed in R. �

Theorem 3.5. If a subset P of X is j-connected, then jcl(P) is also j-connected.

Proof. Assume the contrary, if jcl(P ) is disconnected. Then there exists two non-
empty j-separated sets R and S in X such that P = R ∪ S, in consideration of
P = (R∩P )∪ (S ∩P ) and jcl(R∩P ) ⊂ jcl(R) and jcl(S ∩P ) ⊂ jcl(S) and also
R ∩ S = ∅ which implies jcl(R ∩ P ) ∩ S = ∅. Hence jcl(R ∩ P ) ∩ (S ∩ Q) = ∅.
Equivalently, jcl(S ∩ P ) ∩ (R ∩ S) = ∅. Therefore P is j-connected. Hence P is
j-connected implies jcl(P ) is also j-connected. �
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Theorem 3.6. Let P ⊆ Q∪R such that P be a non-empty j-connected set in X and
Q, R are j-separated. Then only one of the following conditions hold:

(i) P ⊆ Q and P ∩R = ∅ .
(ii) P ⊂ R and P ∩Q = ∅ .

Proof. Suppose P ∩ R = ∅ implies P ⊆ Q. If P ∩ Q = ∅, then P ⊆ R. Since
Q∩R then both P ∩Q = ∅ and P ∩R = ∅ does not hold. Similarly, assume that
P ∩ Q 6= ∅ and P ∩ R 6= ∅. Then, by the theorem 3.3 (ii), P ∩ Q and P ∩ R are
j-separated such that P = (P ∩Q) ∪ (P ∩R) which contradicts the definition of
j-connectedness of P. �

Remark 3.2. In difference, connectedness of a topological space (X, τ), if a topol-
ogy τ1 on the space X is strictly finer than the another topology τ2 on X, then
j-connectedness of (X, τ1) 6=⇒ j-connecteness of (X, τ2). Also j-connectedness of
(X, τ2) 6=⇒ j-connectedness of (X, τ1). This result is verified by the following ex-
ample.

LetX = {1, 2, }with τ1 = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X}, τ2 = {∅, {1},
{2}, {1, 2}, X}. Then τ2 ⊂ τ1. In (X, τ1), PO(X)=JO(X). In (X, τ2), PO(X) =

{∅, {1}, {2}, {1, 2}, X} = JO(X). But in (X, τ2), X cannot be expressed as the
union of two j-separated sets in X. Therefore, (X, τ2) is j-connected as (X, τ1) is not
j-connected.

Theorem 3.7. Let X be a topological space and X = P ∪Q be a j-separation of X.
If Y is a j-connected subset of X, then Y is completely contained in either P or Q.

Proof. Let X = P ∪ Q be a j-separation of X. Suppose Y intersecting both P and
Q, then Y can be denoted by Y = (P ∩ Y ) ∪ (Q ∩ Y ). It denotes j-separation
of Y. This is a contradiction. Therefore, Y is completely contained in either P or
Q. �

Theorem 3.8. Let P and Q be two non-empty subsets of X. If P and Q are j-
connected and not j-separated in X, then P ∪Q is j-connected.

Proof. Assume P ∪Q is not j-connected. Then there exist j-separated sets R and
S such that P ∪Q = R∪S. This implies P ⊂ R∪S. Therefore, P ⊂ R or P ⊂ S.
Similarly, Q ⊂ R ∪ S implies Q ⊂ R or Q ⊂ S. Suppose P ⊂ R and Q ⊂ R

implies P ∪ Q ⊂ R and S = ∅. This is a contradiction. Therefore, P ⊂ R and
Q ⊂ S or P ⊂ S and Q ⊂ R. In the first case, jcl(P ) ∩ Q ⊂ jcl(R) ∩ S = ∅ and
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jcl(Q) ∩ P ⊂ jcl(S) ∩ R = ∅. Similarly, we have this result for the second case.
This implies P and Q are j-separated in X. It contradicts our assumption. Hence
P ∪Q is j-connected. �

Theorem 3.9. If {Gσ\σ ∈ τ} is a non-empty family of j-connected subset of a
topological space X such that

⋂
limσ∈τ Gσ 6= ∅ then

⋃
limσ∈τ Gσ 6= ∅ is j-connected.

Proof. Assume that H =
⋃

limσ∈τ Gσ and H is not j-connected. Then H = R∪S,
where R and S are j-separated sets in X. Since V

⋂
limσ∈τ Gσ 6= ∅. Now we take

point x in
⋂

limσ∈τ Gσ. Therefore, x ∈
⋃
limσ∈τ Gσ = H. Since H = R ∪ S

implies x ∈ R or x ∈ S. Suppose that x ∈ R. Since x ∈ Gσ for each σ ∈ τ .
Therefore, Gσ and R intersect for each σ ∈ τ . Using the theorem 3.8, Gσ ⊂ R

or Gσ ⊂ S. Since R and S are disjoint, Gσ ⊂ R for all σ ∈ τ and hence H ⊂ R.
Therefore we have S = ∅. This is a contradiction to our assumption. Hence
H =

⋃
limσ∈τ Gσ 6= ∅ is j-connected. �

Definition 3.4. Let X be a topological space x ∈ X. The j-component of X contain-
ing x is the union of all j-connected subsets of X containing x.

Definition 3.5. A topological space X is called as locally j-connected at x ∈ X if
for each j-neighbourhood U containing x, there is a j-connected neighborhood V of
x contained in U i.e. x ∈ V ⊆ U . The space X is locally j-connected if it is locally
j-connected at each of its points.

Theorem 3.10. A space X is locally j-connected if and only if for each j-open set U
of X, each j-component of U is j-open in X.

Proof. Suppose that X is locally j-connected. Let U be j-open in X. Let C be the
j-component of U. If we take a point x in C, we select a neighborhood V of x
such that V ⊂ U . Since V is j-connected, this implies V entirely contained in the
j-component C of U. Hence C is j-open in X. Conversely, assume that U ⊆ X be
a j-open and x ∈ U . By our hypothesis, the j-component V of U containing x is
j-open. Hence X is locally j-connected in X. �

4.
1
2 J-CONNECTEDNESS

Definition 4.1. Two subsets P and Q in a space X are said to be
1
2 j-separated if and

only if P ∩ jcl(Q) = ∅ or jcl(P ) ∩Q = ∅.
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Definition 4.2. A subset P of a space X is said to be
1
2 j-connected(resp. cl-cl con-

nected) if P is not the union of two non-empty half j-separated sets(resp. cl-cl
separated) sets in X.

From the above definitions, we have the following implications:

cl-cl separated ⇒ separated
⇓

1
2 j-separated⇐ j-separated

The converse of the above implications need not be true as shown in the follow-
ing examples.

Example 2. Let X = {p, q, r, s} with a topology τ = {∅, X, {p}, {p, q}}, τ c =

{∅, X, {q, r, s}, {r, s}}. The j-open sets are ∅, X, {p}, {p, q}, {p, r}, {p, s}, {p, q, r},
{p, q, s}, {p, r, s}. The j-closed sets are ∅, X, {q, r, s}, {r, s}, {q, s}, {q, r}, {s}, {r}, {q}.
Here {p} and {q, r, s} are

1
2 j-separated sets as {p} ∩ jcl{q, r, s} = ∅ but jcl{p} ∩

{q, r, s} 6= ∅. Therefore the two sets {p} and {q, r, s} are not j-separated.
Since jcl(P ) ⊂ cl(P ) for every subset P of X, every cl-cl separated set is

1
2 j-separated.

But the converse may not be true as shown by the example 2. The sets {p} and
{q, r, s} are

1
2 j-separated. But cl{p} ∩ cl{q, r, s} 6= ∅. Therefore the sets {p} and

{q, r, s} are not cl-cl separated.

Theorem 4.1. A topological space (X, τ) is
1
2 j-connected if and only if it cannot be

expressed as the union of disjoint non-empty j-open set and a non-empty j-closed
set.

Proof. Let X be a
1
2 j-connected space. Suppose that X = P ∪Q, where P ∩Q = ∅.

Also P be a non-empty j-open set and Q be a non-empty closed set in X. Then
P ∩ jcl(Q) = ∅ since Q is j-closed set in X. Therefore P and Q are

1
2 j-separated.

Hence X is not a
1
2 j-connected space. This is a contradiction.

Conversely, suppose that X is not a
1
2 j-connected space, then there exist non-

empty
1
2 j-separated sets R and S such that X = R ∪ S. Let R ∩ jcl(S) = ∅. Set

P = X − jcl(S) and Q = X − P . Then P ∪Q = X and P ∩Q = ∅. P and Q are
non-empty j-open set and j-closed set respectively. Hence X can be expressed as
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the disjoint union of non-empty j-open set and non-empty j-closed set. Similar
argument is used for the another case jcl(R) ∩ S = ∅. �

Theorem 4.2. Let X be a topological space if P is a
1
2 j-connected subset of X and R,

S are the
1
2 j-separated subsets of X with P ⊂ R ∪ S then either P ⊂ R or P ⊂ S.

Proof. Let P be a
1
2 j-connected set. Take P ⊂ R ∪ S. Since R and S are

1
2 j-

separated, jcl(R)∩S = ∅ or S ∩ jcl(R) = ∅. Consider S ∩ jcl(R) = ∅. Therefore,
we set P = (P ∩ R) ∪ (P ∩ S), then (P ∩ S) ∩ jcl(P ∩ R) ⊂ S ∩ jcl(R) = ∅.
Suppose P ∩ R and P ∩ S are non-empty sets. Then P is not

1
2 j-connected. This

is a contradiction. Hence either P ∩R = ∅ or P ∩ S = ∅ which implies P ⊂ R or
p ⊂ S. Similar argument is used for another case jcl(S) ∩R = ∅. �

Theorem 4.3. In a topological space (X, τ), j-irresolute image of a
1
2 j-connected

space is
1
2 j-connected.

Proof. Let X be a
1
2 j-connected space and f : X → Y be a j-irresolute function.

Suppose that we take f(x) is not a
1
2 j-connected subset of Y such that f(x) =

R ∪ S. Since R and S are
1
2 j-separated i.e. jcl(R) ∩ S = ∅ or R ∩ jcl(S) =

∅. Since a function f is irresolute, therefore we have jcl(f−1(R)) ∩ f−1(Q) ⊂
f−1(jcl(R))∩ f−1(S) = f−1(jcl(R)∩ (S)) = ∅ or f−1(R)∩ jcl(f−1(S) ⊂ f−1(R)∩
f−1(jcl(Q)) = f−1(R ∩ jcl(S)) = ∅. But R 6= ∅, there exist a point r ∈ X

such that f(r) ∈ R and hence f−1(R) 6= ∅. Equivalently, we have f−1(S) 6=
∅. Therefore, f−1(R) and f−1(S) are non-empty

1
2 j-separated sets such that

X = f−1(R) ∪ f−1(S) which implies X is not a
1
2 j-connected space. This is

a contradiction to our assumption that f(x) is not a
1
2 j-connected subset of Y.

Hence f(x) is a
1
2 j-connected space. �

Theorem 4.4. In a topological space (X, τ), the continuous image of a
1
2 j-connected

space is
1
2 j-connected.

Proof. Let f : X → Y be a continuous function and X be
1
2 j-connected space.

Suppose that f(X) is not
1
2 j-connected subset of Y. Then there exists

1
2 j-separated

sets R and S in Y such that f(X) = R ∪ S. Since R and S are
1
2 j-separated,

Therefore jcl(R)∩ S = ∅ or R∩ jcl(S) = ∅. Since f is j-continuous, jcl(f−1(R)∩
f−1(S)) ⊂ f−1(jcl(R)∩f−1(S)) = f−1(jcl(R)∩S) = ∅ or f−1(R)∩ jcl(f−1(S)) ⊂
f−1(R)∩f−1(jcl(S)) = f−1(R∩jcl(S)) = ∅. SinceR 6= S, Then there exist a point
r ∈ X such that f(r) ∈ R and hence f−1(R) 6= ∅. Similarly, f−1(S) 6= ∅. This
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implies f−1(R) and f−1(S) are
1
2 j-separated sets such that X = f−1(R)∪ f−1(S).

Therefore, X is not a
1
2 j-connected space. This is a contradiction to the fact that

X is
1
2 j-connected space. Hence f(X) is

1
2 j-connected in Y. �

Lemma 4.1. Let f : X → Y be a j-continuous function. Then jcl(f−1(S) ⊆
f−1(cl(S)) for each S ⊆ Y .

Theorem 4.5. If f : X → Y be a j-continuous function and τ is
1
2 j-connected set

in a space X, then f(T ) is cl-cl connected in Y.

Proof. Suppose that f(T ) is not cl-cl connected in Y. There exists two non-empty
cl-cl separated sets R and S of Y such that f(T ) = R ∪ S. Let us take a set
C = T∩f−1(R) and D = T∩f−1(S). Since f(T )∩R 6= ∅ then T∩f−1(R) 6= ∅ and
also C 6= ∅. Similarly, D 6= ∅. Now we have C∪D = (T∩f−1(R))∪(T∩f−1(S)) =
T ∩ (f−1(R) ∪ f−1(S)) = T ∩ f−1(R ∪ S) = T ∩ f−1(f(T )) = T . Since f is
continuous, by lemma 4.1, C ∩ cl(D) ⊂ f−1(R) ∩ cl(f−1(Q)) ⊂ f−1(cl(R)) ∩
f−1(cl(S)) = f−1(cl(R) ∩ cl(S)) = ∅. This is a contradiction to our assumption
that T is

1
2 j-connected. Hence f(T ) cl-cl connected in Y. �

Theorem 4.6. If P is
1
2 j-connected then jcl(P ) is also

1
2 j-connected.

Proof. Suppose that jcl(P ) is not
1
2 j-connected. Then it can be expressed as a

union of two
1
2 j-separated sets R and S in X. Since P = (R ∩ P ) ∪ (S ∩ P ) and

jcl(R ∩ P )∩ S = ∅, jcl(R ∩ P )∩ (S ∩ P ) = ∅. This implies P is not
1
2 j-connected,

contradiction. Hence jcl(P ) is
1
2 j-connected. �

Theorem 4.7. If f : X → Y is bijective j-closed function and T is
1
2 j-connected in

Y, then f−1(T ) is cl-cl connected in X.

Proof. Let f : X → Y be a j-closed bijective i.,e one-one and onto, then f−1 :

Y → X is a continuous bijection. Since T is
1
2 j-connected in Y, by theorem 4.5,

f−1(T ) is cl-cl connected in X. �
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