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ABSTRACT: Autism Spectrum Disorder (ASD) is the fastest-growing complex disorder and the genetic 
ground of this comprehensive developmental disability is very difficult to research. Autism diagnosis for an 
average child is not done till the age of four, though it can be given at the age of 18 months to two years. 
Hence a computational model that enables the early diagnosis and personalized treatment is the need of the 
hour. In this research work, a deep learning based approach is proposed for Autism Spectrum Disorder 
(ASD) gene prediction. There are various contributors for Autism including genes, mutations, chromosomal 
settings influence of the environment, prenatal influences, family factors and problems during birth. 
Recurrent Neural Network (RNN) based Gated Recurrent Units (GRU) are implemented to develop a model 
that predicts ASD genes, mutations and gene susceptibility. GRUs with their internal memory capability are 
valuable to store and filter information using the update and reset gates. Also GRU offers a powerful tool to 
handle sequence data. The model is trained using three simulated datasets with features representing genes, 
mutations and gene susceptibility to ASD.  Besides, the proposed approach is compared to original RNN and 
Long Short Term Memory Units (LSTM) for ASD prediction. The experimental results confirm that the 
proposed approach is promising with 82.5% accuracy and hence GRU RNN is found to be effective for ASD 
gene prediction. 

Keywords: Autism, Gated Recurrent Units, Genes, Mutations, Prediction, Recurrent Neural Network. 
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I. INTRODUCTION 

In recent times Long Short-Term Memory (LSTM) and 
Gated Recurrent Unit (GRU), which are the notable 
RNN variants have achieved remarkable results in 
areas such as sequential data, speech recognition, 
recommendation systems, image recognition, image 
segmentation, content editing, image restoration and 
natural language processing. The major advantages of 
RNNs are their strong prediction performance and 
potential to identify long-term temporal dependencies 
and variable-length observations. But research works 
have not focused on designing RNN structures for 
classification of ASD gene sequences. Modeling ASD 
gene classification by using the influence of customized 
RNN models is a novel avenue and the main inspiration 
behind this work. 
Yang et al., used BiRen architecture which exploited 
GRU and used DNA sequences to identify enhancers 
[1].  The work demonstrated that the model learned 
representations of enhancers completely from the DNA 
sequence and exhibited better robustness, accuracy, 
and generalizability in predicting enhancers when 
compared to the benchmark enhancer predictor models 
depending on sequence attributes. Che et al., (2017) 
proposed a deep model that directly learnt similarity of 
patients affected by Parkinson’s disease from multiple 
inputs of patient records using a RNN architecture [2]. 
The model learnt the temporal patterns in patient 
sequence and was able to find similarity between two 
patient records using 2D-GRU. The model 

demonstrated promising performance proving the 
usefulness and effectiveness of the proposed 
architecture. Shen et al., (2018) proposed a model 
KEGRU that used Bidirectional Gated Recurrent Unit 
(GRU) network with k-mer embedding , to recognize TF 
binding sites [3]. At first DNA sequences were split into 
k-mer sequences with particular length and striding 
window. A pre-trained word representation model was 
built using word 2 vec algorithm by considering each k-
mer as a single word. In order to carry out the task of 
feature learning and classification, a bidirectional GRU 
model was then built. It was proved that the proposed 
method has an upper edge over state-of-the-art 
methods. Very less work has been done using GRU [4-
10] for disease prediction and specifically Autism 
Spectrum Disorder prediction using DNA sequences is 
not a well researched area. 
An innovative deep learning model based on GRU is 
developed to take advantage of representation of 
variable length data through masking. GRU is relatively 
new, and the performance is on par with LSTM, but 
computationally more efficient. Compared to LSTMs, 
GRUs train faster and perform better on less training 
data. Gene sequence data is codon encoded to 
represent the sequence of strings as numbers. The 
proposed model learns the observations and their 
relationships by applying masking to the inputs and 
uses back-propagation to train all model components. 
The model is able to identify the dependencies existing 
in the gene sequences which were long back in the 
previous time steps and improves the prediction results. 
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The vanishing gradient problem is addressed by GRU 
as the hidden nodes in traditional RNN are replaced by 
GRU node. The primary design of GRUs is that the 
gradient chains do not fade away due to the length of 
sequences as values are conceded completely through 
the cells. Fig. 1 shows the architecture of GRU. GRU 
consists of a reset gate that decides on merging the 
new input with the previous memory, and the update 
gate that identifies the previous memory to be kept 
around.  
Reset Gate: Basically, this gate is employed from the 
model to fix the amount of the past information to 
overlook while calculating current information.  
Update Gate: It allows the model to resolve the 
precedent information from previous time steps that is 
required to be passed to the future. It is really dominant 
as the model can choose to copy the entire information 
from the past and remove the threat of vanishing 
gradient crisis.  
The reset gate allows the unit to disregard the 
previously computed state and the update gate 
computes the modification done during the activation. 
The hidden layer is computed using ht that holds 
information for the present unit and sends it down to the 
network. The update gate decides the information to be 
collected from the current memory content and 
preceding memory content. The model learns to set the 
vector zt closer to 1 and stores a bulk of the previous 
information. During this time 1 -  zt will be nearing 0 and 
hence a majority of the current content will be 
overlooked. 

 

Fig. 1. Gated Recurrent unit. 

Hence it is proposed to investigate the use of GRU RNN 
for recognizing ASD gene sequences, as it is efficient in 
handling unequal length sequences naturally. In our 
previous work [11] traditional decision tree was 
investigated for gene prediction. The GRU model in this 
work brings down the count of parameters required to 
be taught as it shares the parameters. Though various 
variants of RNN [12] are available GRU is applied here, 
as it is easier to train and also has the capability of 
retaining information from the past. This paper aims to 
incorporate the benefits of GRU  architecture in the next 
level of research for the identification of ASD genes, 
mutations and gene susceptibility 

II. MATERIALS AND METHODS 

In this work GRU network exploiting the shared feature 
extraction between user defined layers is employed to 
distinguish ASD causing genes, their susceptibility and 
driving mutations. When deep architectures are created 
using the sequential method there are layers which do 
not share data and do not allow multiple inputs or 
outputs. But the functional models have a lot more 
flexibility and can be easily defined where layers 
connect to more than just previous and next layers. But 
when developing a GRU based functional model, 

instances of layers are initially created and connected 
directly to each other. The proposed methodology 
includes three functional parts such as creating 
datasets, model development and performance 
assessment as depicted in Fig. 2. 

 

Fig. 2. Proposed GRU based ASD Prediction Model. 

Datasets: In the initial phase R script is used to 
simulate the mutations in CDNA sequences collected 
from HGMD database with the help of mutational 
information from SFARI gene database. The corpus is 
constructed with 1000 mutation induced gene 
sequences consisting of ten types of ASD genes and 
four different types of mutations. The three datasets 
CMDS, MDS and GSDS are used here in building the 
GRU based gene prediction, mutation prediction and 
gene susceptibility prediction model respectively. The 
dataset CMDS consists of features such as gene 
features, codon features, alignment features accounting 
to 43 attributes captured from 1000 gene sequences of 
10 gene types. Gene mutation features, amino acid 
change features and published matrix features are 
identified and extracted for preparing the MDS dataset 
comprising 1000 instances related to 4 mutation types 
with a dimension of 15. The GSDS dataset includes 25 
attributes pertaining to gene, mutation, conserved 
protein domains, gene expression profiles and pathway 
interactions of 1000 instances. When the gene score is 
>= 0.8, >0.5 and < 0.8 and <=0.5, the gene 
susceptibility to ASD is defined as high, medium and 
low respectively. 
Given a gene sequence S consisting of codons which 
are substrings named si the Eqn. (1) defines S as 
follows 
S= {s1,s2…..si  },  i = 1 to n where  n =|S| / 3                (1)       
Ex: The gene sequence ACACTGGTTCCA… consists 
of codons ACA CTG GTT CCA… 
A DNA sequence is made up of nucleotide unit 
consisting of anyone of the four nitrogenous nucleotide 
bases namely adenine (A) or guanine (G) or cytosine 
(C) or thymine (T).  
Every codon which is a triplet, codes for an amino acid 
and this codon mapping is mathematically formulated as 
given in Eqn. (2) 
 s1  ε {xp{yq{zr}}},  where <xp / yq / zr> = A/C/G/T where 
p, q, r = 1, 2, 3, 4                                                         (2) 
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For example, the triplet  <x1 y3 z1> represents the 
Codon AGA. 
During protein assembling codons composed of three 
nucleotide bases specify the amino acids and there 
exists 64 possible combinations of such codons  
mapped onto numbers ranging from 1 to 64. The entire 
gene sequence S is converted into a numerical vector V 
of codons CO as in Eqn. (3). 
Vj = [COi]j where i = 1 to nr,  n=4, r=3, j =total number of 
gene sequences                                                           (3) 
The length of each record varies and hence masking is 
done for the maximum codon size of 2582. Masking 
informs the model about the inputs that are observed 
and missing. The length of each record varies and 
hence masking is done for the maximum codon size of 
2582. Masking informs the model about the inputs that 
are observed and missing. Each class value is 
represented by a binary vector and one hot encoding of 
the class values is used in all three datasets. For 
example class 7 is converted into 0000001000 and 2 is 
converted into 0100000000. The problem is modeled as 
classification, in which the expected output is a class 
with 10 possible values. In the final step reshaping of 
the one hot encoded sequences are done into a format 
to be used as input to the GRU. There are 1000 
samples in the training dataset each with a length 2582 
and are assigned class label ranging from one to ten 
that are one hot encoded. 
Model Building: The proposed model applies the 
concept of shared feature extraction between layers 
using the Keras functional API. The proposed model is 
built by creating instances of layers and connecting 
them to each other in pairs. In a functional API the 
model is defined with multiple input or output models 
along with models that share layers. It enables layers to 
be connected to any other layer more than just the 
previous and next layers.  
In this work, there are two parallel sub-models designed 
to infer the output of a GRU feature extractor for 
sequence classification. The input to the model is 2582 
time steps of 1 feature. A GRU layer with 10 memory 
cells is used to interpret this sequence. The foremost 
interpretation model is a shallow single fully connected 
layer and next a deep three layer model is designed. 
The interpretation models output is concatenated into a 
lengthy vector and is passed to the output layer for 
classification.  There are ten neurons in the output layer 
which is a fully connected layer for the 10 possible 
integers that may be output. This layer uses the softmax 
activation function to enable the network to discover and 
output the distribution through the possible output 
values. The GRU model is compared with other RNN 
variants BRNN and LSTM.  
In this model the layers take a more functional form as 
compared to the sequential model. The inputs to each 
layer are explicitly specified and the output of each layer 
is controlled. The layer Input_1 acts as input to GRU 
layer which in turn acts as input to dense_1 and 
dense_2. Further Dense_3 receives dense_2 as input 
and is passed on to dense_4. Now the output from both 
dense_1 and dense_4 is concatenated and given as 
input to dense_5. This allows the tensors to be shared 
with multiple layers. The total parameters used for 
training is 1220 out of the total 2582 parameters. 
The log loss function was used while training the 
network that is apt for classification problems involving 
multiple classes. Log loss minimizes the loss function 

for the training data. Eqn. (4) defines the loss with 
respect to predictions and the true labels  
L(y,p) = - 1 / N ∑  ∑ yij .logpij                                        (4) 
where number of samples is referred by N,  yij indicates 
if label j is the correct classification for instance i, and 
the probability of assigning label j to sample i is given by 
pij . The network weights are iteratively updated through 
Adam optimizer based on training data. The parameter 
values considered are learning rate as 0.01, beta1 as 
0.9, beta2 as 0.999 and epsilon as 1e-08. Adam 
optimizer uses the average of first moment, and the 
second moments of the gradients to adapt the 
parameter learning rates. The optimizer computes an 
exponential moving average of the gradient and that of 
the squared gradient. The accuracy metric along with 
the loss is reported for each training epoch to evaluate 
the skill of the model. A large batch size of 64 is used to 
space out weight updates. The learning rate of 0.01 is 
fixed and when varying dropouts from 0.2 to 0.5 are 
experimented for these datasets it was found that 
dropout of 0.3 was optimal. Varying epochs of 50, 100, 
150, 200, 250 are experimented and the epoch size of 
250 is fixed for the network. Table 1 shows the 
hyperparameters of the model. 

Table 1: Hyperparameters of the proposed model. 

Hyperparameters Values 

Optimizer Adam Optimizer 

Learning Rate 0.01 

Dropout 30% 

Activation function Softmax 

Epochs 250 

Batch size 64 

Learning rate hints the optimizer about moving the 
weights in opposite direction of the gradient for a mini-
batch. In order to avoid overfitting the training data, 
regularization is a good approach. During training, the 
dropout regularization parameter randomly hops 
neurons, that forces others in the layer to choose the 
slack. In each weight update cycle nodes to be dropped-
out with a given probability are arbitrarily chosen. The 
model was tested with different dropout percentages 
varying from 20- 50% and the results were recorded. 

III. RESULTS AND DISCUSSION 

GRU with shared feature extraction between layers has 
been implemented using the Keras functional API which 
is constructive for creating multifarious models such as 
multi-input or multi-output models, directed acyclic 
graphs and models with shared layers. The various 
hyperparameters are configured and the GRU layer is 
implemented. To improve efficiency, data were 
partitioned on mini-batches of size 64 during training 
and testing. The learning rate of 0.01 is used and when 
dropouts from 0.2 to 0.5 were experimented it was 
found that dropout of 0.3 was optimal. The Adam 
optimization algorithm was used and epochs of 50, 100, 
150, 200, 250 are experimented.  
Three models are built under these parameter settings. 
The GRU model is trained using these parameter 
settings with CMDS dataset and the ASD causative 
gene identification model is built. The MDS dataset is 
used to train the mutation prediction model and similar 
experiment is carried out on the GSDS dataset to build 
the gene susceptibility recognition model. The standard 
10 - fold cross-validation technique was applied and the 
performance of the gene prediction, mutation 
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identification and gene susceptibility recognition models 
were evaluated based on prediction accuracy, 
logarithmic loss, precision, recall and F-measure. 
Table 2 depicts the accuracy of the network and it is 
shown that GRU based ASD gene prediction model has 
achieved an accuracy of 82.5% at 250 epochs which is 
higher than that of gene susceptibility identification 
model which is  80.0%.  As depicted in Fig. 3, at 50 
epochs the mutation prediction model achieved an 
accuracy of 80.1%, gradually increased to 81% at 150 
epochs and reached 81.8% at 250 epochs. There is an 
increase of about 2.2% accuracy for the gene 
susceptibility prediction model from 50 to 250 epochs. 
The accuracy of gene prediction model at 50 epochs is 
78.7%, 81.5% at 150 epochs and attains a maximum of 
82.5% at 250 epochs. The experiments prove that 
accuracy of all three models increases as epochs are 
increased. 

Table 2: Epochwise Accuracy of GRU for Three 
Models. 

Epochs 
Gene 

Prediction 
Model 

Mutation 
Prediction 

Model 

Gene 
Susceptibility 

Prediction Model 

50 78.7% 80.1% 77.8% 

100 79.2% 80.6% 78.1% 

150 81.5% 81.0% 78.7% 

200 82.0% 81.5% 79.2% 

250 82.5% 81.8% 80% 

 

Fig. 3. Accuracy of GRU model at different epochs. 

Log Loss calculates the accuracy of a classifier by 
punishing misclassifications. Table 3 illustrates the loss 
of the network and as seen in Fig. 4, the log loss keeps 

reducing as epochs are increasing. The models have 
achieved enhanced performance by reducing its 
misclassifications. Initially at 50 epochs the three 
models had log loss of 0.9845, 0.953 and 1.0849 for 
predicting genes, mutations and susceptibility 
respectively. This gets reduced with a difference of 
0.2683, 0.1339 and 0.2874 respectively for the above 
three models at the end of 250 epochs. The log loss 
associated with classifying the ASD causative genes is 
0.7162 which is comparatively less when compared to 
that of 0.8184 for mutation classification and 0.7615 for 
recognizing the predisposition of genes to the disorder. 
The accuracy and training loss was found to be 
optimum at 250 epochs. The performance of the 
proposed network was compared with the prediction 
models for gene, mutation and gene susceptibility that 
were configured with two Dense layers and a masking 
layer. The learning rate and dropout was fixed as 0.01 
and 0.03 respectively. The performance comparison of 
these three models is shown in Table 4. 

Table 3: Epochwise Log loss of GRU for Three 
Models. 

Epochs 
Gene 

Prediction 
Model 

Mutation 
Prediction 

Model 

Gene 
Susceptibility 

Prediction 
Model 

50 0.9845 0.9523 1.0489 

100 0.9661 0.9515 0.9961 

150 0.8015 0.8893 0.9215 

200 0.7965 0.8417 0.8268 

250 0.7162 0.8184 0.7615 

 

Fig. 4. Epochwise Log loss of GRU model. 

Table 4: Comparative Performance of GRU based Models. 

Metrics 
Gene Prediction 

Model 

Mutation 

Prediction Model 

Gene Susceptibility 
Prediction Model 

Precision 0.83 0.81 0.79 

Recall 0.81 0.82 0.81 

F- Measure 0.82 0.81 0.8 

Accuracy 82.5% 81.8% 80.00% 

Correctly classified instances 414 409 401 

Incorrectly classified instances 86 91 99 

Sensitivity 83.5% 85.2% 82.6% 

Specificity 78.3% 80.3% 77.4% 

75.00%
76.00%

77.00%
78.00%
79.00%

80.00%
81.00%

82.00%
83.00%

5
0

1
0
0

1
5
0

2
0
0

2
5
0

Gene 
Prediction  
Model

Mutation  
Prediction 
Model

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250

Gene 
Prediction  
Model

Mutation  
Prediction 
Model



Sudha 
 
&  Vijaya

                 
International Journal on Emerging Technologies  11(1): 136-141(2020)                      140 

 

Fig. 5. Performance  of GRU Based Gene Prediction 
Model. 

The result analysis indicates that GRU model shows 
promising performance for the ASD gene prediction 
model. It is effective in predicting the ASD genes with a 
precision of 0.83, recall of 0.81 and F-measure of 0.82. 
The GRU based gene susceptibility prediction model 
has correctly identified 401 instances and has achieved 
sensitivity of 82.6%. GRU classifier for the mutation 
prediction has achieved 85.2 % sensitivity, 0.81 
precision and a recall of 0.82. When evaluating the 
specificity, GRU gives a prominent score value of 80.3% 
for identifying the gene mutations whereas it is 78.3% 
and 77.4% for ASD gene and susceptibility prediction 
models. The performance of the GRU based ASD gene 
prediction model is shown in Fig. 5. 
The effectiveness of the GRU classifier is compared 
with other deep learning models developed using DNN, 
BRNN and LSTM in the previous experiments. The 
performance measures like precision, recall, accuracy 
and F-measures are used to compare GRU based 
models with the other deep network architectures. The 
comparative results of accuracy and log loss of GRU 
based ASD gene prediction model with other deep 
models is reported in Table 5 and 6 and the same is 
depicted in Fig. 6 and 7 respectively.  

Table 5: Comparative Results of GRU based ASD 
Gene Prediction Model with other deep Models. 

Metrics BRNN LSTM GRU 

Precision 0.80 0.81 0.83 

Recall 0.77 0.78 0.81 

F- Measure 0.78 0.79 0.82 

Accuracy 81.3% 81.9% 82.5% 

Table 6: Comparative Results of Log Loss of GRU 
Based Prediction Model with other deep Models. 

Model 
Gene 

Prediction 
Model 

Mutation 
Prediction 

Model 

Gene 
Susceptibility 

Prediction 
Model 

BRNN 0.8010 0.9615 0.9459 

LSTM 0.8284 0.9562 0.7811 

GRU 0.7162 0.8184 0.7615 

 

Fig. 6. Comparative performance of BRNN, LSTM, GRU 
models for ASD gene prediction. 

It is proved that GRU model outperforms the other three 
deep models to identify the ASD causing genes. The 
LSTM model achieved precision of 0.81 and recall of 
0.78 whereas GRU has achieved 0.83 and 0.82 for the 
same task. GRU model has comparatively less 
misclassifications for all three models and hence 
evidenced reduced logarithmic loss of 0.7162, 0.8184 
and 0.7615 respectively. Both the layers have learned 
1220 parameters which contributed significantly in the 
classification task. No rigid preprocessing procedures 
are required which can simplify the diagnosis procedure 
and save the computation costs.  

 

Fig. 7. Comparative Results of Log Loss of GRU based 
Prediction Model with other deep Models. 

GRU model in this work involves two sub models which 
are parallelly processed to learn and share the 
parameters thereby reducing the total number of 
parameters needed to learn. Compared to other deep 
models BRNN and LSTM, GRU has the advantage of 
less parameters and easier training. The proposed 
method also outperforms BRNN, LSTM due to less 
number of updations in update gate z and reset gate r. 
The model has extracted gene characteristics 
automatically from CMDS dataset through self learning 
and has exhibited superior performance. The loss 
associated with misclassifications is also reduced for 
GRU based prediction model. 
The exhaustive experiments of GRU architecture on 
three datasets ascertain that the prediction of ASD 
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causative genes and mutations can be done efficiently 
using this model 

IV. CONCLUSION 

In this paper, ASD gene classifier based on GRU RNN 
was implemented and the performance was evaluated. 
For training and testing phase, three datasets CMDS, 
MDS and GSDS were generated. By implementing 
various RNN models, it is confirmed that GRU approach 
outperforms our previous researches in this field. The 
GRU-based model proposed in this work, recognizes 
the variable length sequence information by retaining 
memory from previous activations. The work proves that 
the proposed model is promising and has an upper 
edge over other RNN methods on synthetic datasets. 
Although this paper is focused on ASD gene 
sequences, it is expected that this approaches will be 
extensively helpful for a range of gene sequence 
prediction tasks that will arise in healthcare. 

V. FUTURE SCOPE 

Empirical experiments on simulated datasets show that 
the GRU model outperforms deep learning models like 
LSTM and BRNN. Also it is proved that the proposed 
method is well suited for a variety of gene sequence 
classification problems, and is relevant to the predictive 
tasks in emerging health care applications. Further, the 
proposed method provides constructive insights into 
broad research challenges of gene sequence data 
including 
(1) A common deep learning framework to deal gene 
sequence data. 
(2) An efficient solution to exemplify the variable length 
gene sequence data with masking and codon encoding. 
The work can be extended to the next level with the 
implementation of Bidirectional GRU or a combination of 
RNN architectures to probe the potential of embedded 
layers. 

Conflict of Interest. There is no conflict of interest. 

REFERENCES  

[1]. Yang, B., Liu, F., Ren, C., Ouyang, Z., Xie, Z., Bo, 
X., & Shu, W. (2017). BiRen: predicting enhancers with 
a deep-learning-based model using the DNA sequence 
alone. Bioinformatics, 33(13), 1930-1936. 
[2]. Che, C., Xiao, C., Liang, J., Jin, B., Zho, J., & Wang, 
F. (2017). An rnn architecture with dynamic temporal 
matching for personalized predictions of parkinson's 

disease. In Proceedings of the 2017 SIAM International 
Conference on Data Mining (pp. 198-206). Society for 
Industrial and Applied Mathematics. 
[3]. Shen, Z., Bao, W., & Huang, D. S. (2018). Recurrent 
Neural Network for Predicting Transcription Factor 
Binding Sites. Scientific reports, 8(1), 15270.  
[4]. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. 
(2014). Empirical evaluation of gated recurrent neural 
networks on sequence modeling. arXiv preprint 
arXiv:1412.3555. 
[5]. Cho, K., Van Merriënboer, B., Bahdanau, D., & 
Bengio, Y. (2014). On the properties of neural machine 
translation: Encoder-decoder approaches. arXiv preprint 
arXiv:1409.1259. 
[6]. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. 
(2015, June). Gated feedback recurrent neural 
networks. In International Conference on Machine 
Learning, 37, 2067-2075. 
[7]. Krishnan, K. G., Vanathi, P. T., Raj, S. S., Nancy, M. 
& Parveene, S. S. R. (2019). Image classification using 
deep learning technique. International Journal on 
Emerging Technologies, 10(2), 577-590. 
[8]. Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and 
GRU neural network methods for traffic flow prediction. 
In 2016 31st Youth Academic Annual Conference of 
Chinese Association of Automation (YAC) (pp. 324-
328). IEEE. 
[9]. Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., & 
Wang, J. (2017). Machine health monitoring using local 
feature-based gated recurrent unit networks. IEEE 
Transactions on Industrial Electronics, 65(2), 1539-
1548. 
[10]. Ha, J. W., Kim, A., Kim, D., Kim, J., Kim, J. W., 
Park, J. J., & Ryu, B. (2017). Predicting high-risk 
prognosis from diagnostic histories of adult disease 
patients via deep recurrent neural networks. In 2017 
IEEE International Conference on Big Data and Smart 
Computing (BigComp) (pp. 394-399). IEEE. 
[11]. Sudha, V. P., & Vijaya, M. S. (2017). Decision Tree 
Based Model for the Classification of Pathogenic Gene 
Sequences Causing ASD. In International Conference 
on Smart Trends for Information Technology and 
Computer Communications (pp. 201-212). Springer, 
Singapore. 
[12]. Dey, R., & Salemt, F. M. (2017). Gate-variants of 
gated recurrent unit (GRU) neural networks. In 2017 
IEEE 60th international midwest symposium on circuits 
and systems (MWSCAS) (pp. 1597-1600). 

 
 
 

How to cite this article: Pream Sudha, V. and Vijaya, M. S. (2020). Gated Recurrent Neural Network for Autism 
Spectrum Disorder Gene Prediction. International Journal on Emerging Technologies, 11(1): 136–141. 

 


