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Abstract: This study deals with the controllability of multi-term fractional-order stochastic systems
with impulsive effects and state-dependent delay that exhibit damping behavior. Based on fractional
calculus theory, the Caputo fractional derivative is utilized to analyze the controllability of fractional-
order systems. Mittag–Leffler functions and Laplace transform are used to derive the solution set
of the problem. Sufficient conditions for the controllability of nonlinear systems are achieved using
fixed-point techniques and stochastic theory. Finally, the results stated in the paper are validated
using examples.
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1. Introduction

Fractional calculus is a more precise technique of describing the behavior of complex
systems with non-integer-order dynamics. Many real-world systems do not follow tradi-
tional integer-order differential equations exactly. Fractional calculus is used to model and
control non-integer-order viscoelastic materials and systems with damping and rigidity.
For example, chemical processes and reactors with non-integer-order reaction kinetics can
be modeled using fractional calculus. Damping control in car suspension systems and
vibration control in structures are two examples of such applications. Fractional-order
differential equations (FDEs) are a class of non-integer-order differential equations, which
have been addressed for various physical processes. Comparable to ordinary derivatives,
fractional derivatives provide a more precise description of the rate of change of a function
or process over time. Several authors have explored the application of FDEs in the last few
years [1–5]. Fractional derivatives capture memory or hereditary effects that are essential
to modeling systems with long-term dependencies, delays, or non-local interactions. Appli-
cations, like conservation laws about energy forms in fractal space, have been revealed by
fractal generalized variational structures using the semi-inverse method, as discussed in [6],
and a new fractional pulse narrowing transmission line model in electrical and electronic
engineering is discussed in [7]. A new technique in tempered fractional calculus in both
Riemann–Liouville and Caputo sense with applications in physical sciences is studied
in [8]. The Caputo fractional derivative naturally incorporates initial conditions, which
is suitable for solving fractional differential equations with initial values, and it is well
suited for modeling real-world phenomena with memory effects. Multi-term fractional
differential equations with initial values are mainly used to model problems in engineering
and other areas of applications. In particular, multi-term fractional differential equations
have been used to model many types of visco-elastic damping problems.
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Control theory emphasizes the importance of controllability as it allows for the manip-
ulation of a system’s behavior. Several branches of research, including control engineering
and dynamical system controllability theory, have been used. Approaches to controllability
analysis of fractional-ordered systems via fixed point techniques have been investigated
by [9], and researchers have focused on various delays on fractional-order systems for
controllability criteria with possible applications in [10–17]. The formation of new con-
trol systems that increase system performance and provide a powerful framework for
describing and understanding complex dynamic systems with predictive capabilities by
means of useful models has been studied in [18–20]. A process that has some measure of
randomness or uncertainty is said to be stochastic. Stochastic processes are widely used in
techniques where arbitrary circumstances, such as changes in stock prices, meteorological
patterns, or the transmission of diseases, have an impact on the behavior of the system.
Study results on stochastic theory for controllability are given in [21–23]. Impulsive ef-
fects can significantly alter the behavior of a system. They can introduce sudden changes,
discontinuities, or jumps in a system’s variables, leading to deviations from the expected
or predicted behavior. This alteration can affect stability, convergence, and overall system
dynamics. The impulsive effect can be intentionally applied to control or manipulate a
system. By strategically introducing impulses, it is possible to drive the system toward
desired states, induce specific behaviors, or stabilize unstable dynamics. The monograph
created by Bainov and Simeonov in [24] contains the fundamental understanding of im-
pulsive differential equations. Controllability results for an impulsive differential system
with state-dependent delay (SDD) and distributed delays in control have been analyzed
in [25,26]. Fractional models with delay are very useful for analyzing population dynamics,
neural networking, and physiology as they allow us to understand how a system’s behavior
changes over time delays.

Damping is a phenomenon in which energy is dissipated to minimize the amplitude of
vibrations in a system. As reported in [27,28], controllability criteria with damping phenom-
ena have been explored. In recent years, this area has seen significant advances in solving
both linear and nonlinear systems with certain delays in the analysis of controllability
results. Step techniques were used in [29] to explore the necessary and sufficient criteria for
examining controllability analysis for state delay and impulses with damping. The damp-
ing behavior of a system with certain delays has been discussed in [30–32]. Studies of
interest regarding non-integer-order-type systems with SDD have been enormous in recent
years. According to [33], the theory of existence yields a fractional system with resolvent
operators and SDD. The existence theory of integro-differential and SDD in fractional order
is studied in [34]. Moreover, second-order systems for controllability results with SDD
have been established in [35,36]. A non-integer-order system with SDD combined with
integro-differential terms is investigated in [37]. Based on the above analysis, it is valuable
to study the controllability concept for multi-term fractional-order stochastic systems with
impulsive effects and SDD with damping behavior.

The structure of this paper is as follows: In Section 2, a review of basic definitions
and lemmas is provided. In Section 3, the controllability result is derived for a damped
impulsive stochastic system with SDD by employing fixed point analysis. In Section 4, the
illustrated result is demonstrated.

2. Problem Formulation

Consider an impulsive stochastic multi-term fractional system with SDD involving
damping behavior

C
0 Dζ

t y(t)−BC
0 Dη

t y(t) = Cu(t) + h̃(t, y$̂(t,yt)) + σ̃(t, y$̂(t,yt))
dw(t)

dt
, t ∈ M′ = [0, T], (1)

y(0) = y0, y′(0) = y1, (2)

∆y(t) = Jp(y(tp)), ∆y′(t) = J̃p(y′(tp)), t = tp, p = 1, 2, . . . , q, (3)
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where C
0 Dζ

t and C
0 Dη

t denote fractional derivatives of orders η ∈ (0, 1] and ζ ∈ (1, 2] in a
Caputo sense. H denotes Hilbert space; y(·) ∈ Rn is a state variable that takes values in H
with the inner product (·, ·) and the norm ‖ · ‖; and B ∈ Rn×n and C ∈ Rn×m are known
constant matrices. u ∈ L2([0, T],U ) is a control input for U ∈H , and C is a bounded linear
operator. In abstract space, B, ys(Θ) = y(s + Θ) denotes the function ys : (−∞, Θ]→H ,
and the function $̂ : M′ ×B→ (−∞, T] is continuous.

PC(M′, H ) is piecewise continuous for y : M′ → H , such that y(tp) = y(t−p ) and
y(t+p ) exist for p = 1, 2, . . . , q. Except for some tp, the norm ‖y‖PC = supt∈M′ |y(t)| ≤ ∞ is
continuous every where. ∆y(tp) = y(t+p )− y(t−p ), where y(t+p ) = limδ→0+ y(tp + δ) and
y(t−p ) = limδ→0− y(tp + δ) represent the upper and lower bounds of y(t). Similarly, ∆y′(tp)
can be defined. Let (Ω, F ,P) be the complete probability space with filtration, {Ft}t≥0,
generated by an m-dimensional Wiener process with probability measure P on Ω. Rm is
the m-dimensional Euclidean space. The Wiener process, {W(t)}t>0, exists in complete
probability space (Ω,F,P). y(t) is a measurable and F-adapted H -valued process with
the norm ‖y‖2 = sup{E‖y(t)‖2, t ∈ M′}, such that y(·) ∈ PC(M′, L 2(Ω,F,P; H )); here,
E(·) symbolizes the expectation with respect to measure P. The appropriate functions
h̃, σ̃, Jp, J̃p are continuous, as specified later.

The filtration, {Ft}t≥0, on the H -valued F measurable function is defined for the
stochastic process, y(t) : Ω→H , which is the collection of random variables in (Ω,F,P).
The representation FT = Ft, where Ft = σ(W(s) : 0 ≤ s ≤ t), is σ-algebra generated
by W. The Q-Wiener process is denoted as W(t) = ∑∞

p=1
√

λpβpep, t ≥ 0 for tr(Q) < ∞,
which satisfies Qep = λpep. Here, {βp}p≥1 is a sequence of Brownian motions, and{

ep
}

p≥1 is completely orthonormal. A Q-Hilbert–Schmidt operator, φ, is defined for

‖φ‖2
Q = tr(φQφ∗) = ∑∞

p=1
∥∥√λpφep

∥∥2
< ∞, where ‖φ‖2

Q = 〈φ, φ〉.
(B, ‖·‖B) is the abstract space, and as reported in [38], a semi-norm linear space of

F0-measurable function satisfies the fundamental axioms:

• If the function y : (−∞, T]→H is continuous for every t ∈ [0, T), such that y0 ∈ B,
then
(i) yt ∈ B;
(ii) ‖y(t)‖ ≤ N1‖yt‖B;
(iii) ‖yt‖B ≤ N2(t)‖y0‖B +N3(t) sup{‖y(s)‖ : 0 ≤ s ≤ T};
holds, where N1 > 0, N2,N3 : [0, ∞) → [0, ∞) is independent of y. Here, N3 is
continuous, and N2 is locally bounded.

Definition 1. The CFD of order ζ (0 ≤ p1 ≤ ζ < p1 + 1) for the function h̃ : R+ → R is
known as

C
0 Dζ

t h̃(t) =
1

Γ(p1 − ζ + 1)

∫ t

0

h̃(p1+1)(θ)

(t− θ)ζ−p1
dθ.

The Laplace transform (LT) of the CFD is known as

L{C
0 Dζ

t h̃(t)}(s) = sζ H̃(s)−
m−1

∑
k=0

h̃(k)(t)sζ−1−k.

Definition 2. For z ∈ C, the M-L function of Eζ(z)

Eζ(z) =
∞

∑
j=0

zj

Γ(ζ j + 1)
, ζ > 0,

The two-parameter M-L function, Eζ,η(z),
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Eζ,η(z) =
∞

∑
j=0

zj

Γ(ζ j + η)
,

The LT of the M-L function, Eζ,η(z),

L{tη−1Eζ,η(±atζ)}(s) = sζ−η

sζ ∓ a
.

For η = 1,

L{Eζ(±atζ)}(s) = sζ−η

sζ ∓ a
.

Lemma 1 ([39]). For y0 = ϕ̃ and y(·)|M′ ∈ PC, such that y : (−∞, T]→H is a function, then

‖ys‖B ≤
(
ZT + J ϕ̃

0

)
‖ϕ̃‖B +NT sup{‖y(Θ̃)‖; Θ̃ ∈ [0, max{0, s}]}, s ∈ V

(
$̂−
)
∪M′.

Lemma 2 ([40]). A convex, closed and nonempty subset of Banach space X is denoted by Z .
Assuming F and D as the operators and the following:

(i) For all x, y ∈ Z , Fx +Dy ∈ Z ;
(ii) F is continuous and compact;
(iii) D is a contraction mapping.

Then, ∃ r ∈ Z , such that r = F r +Dr.

Definition 3. The stochastic process, y ∈ M′ ×Ω→H , is known as the solution to (1)–(3) if
the following are met:

(i) y(t) ∈ Ft-adapted measurable ∀ t ∈ M′;
(ii) y(t) ∈H satisfying

y(t) =Eζ−η(Btζ−η)y0 −Btζ−ηEζ−η,ζ−η+1(Btζ−η)y0 + tEζ−η,2(Btζ−η)y1

+
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))−
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1

× (B(T − tp)
ζ−η)Jp(y(tp)) +

q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))

+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)h̃(s, y$̂(s,ys))ds +

∫ t

0
(t− s)ζ−1

× Eζ−η,ζ(B(t− s)ζ−η)σ̃(s, y$̂(s,ys))
dw(s)

ds
+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds.

3. Main Result

In this part, we assume the following hypothesis to demonstrate the controllability
result for the system (1)–(3).

Hypothesis 1. Functions h̃: M′ ×B→H and σ̃: M′ ×B→H are continuous and ∃ Kh̃ > 0
and Kσ̃ > 0, such that

E‖h̃(t, y1)− h̃(t, y2)‖ ≤ Kh̃‖y1 − y2‖2
B,

E‖σ̃(t, y1)− σ̃(t, y2)‖ ≤ Kσ̃‖y1 − y2‖2
B.
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Hypothesis 2. The continuous function, νh̃: (0, ∞]→ (0, ∞], and integrable function, α: M′ →
(0, ∞], exist such that

E‖h̃(t, ψ)‖ ≤ α(t)νh̃(‖ψ‖B), lim inf
ω→∞

νh̃(ω)

ω
= µ̃ ≤ ∞.

Hypothesis 3. The continuous function, νσ̃: (0, ∞] → (0, ∞], and integrable function, α1:
M′ → (0, ∞], exist such that

E‖σ̃(t, ψ)‖ ≤ α1(t)νσ̃(‖ψ‖B), lim inf
ω→∞

νσ̃(ω)

ω
= µ̃ ≤ ∞.

Hypothesis 4. The maps Jp,J̃p: B → H are continuous and βp, γp: [0, ∞) → (0, ∞),
p = 1, 2, . . . , q exist

E‖Jp(y)‖2 ≤ βp(E‖y‖2), lim inf
r→∞

βp(r)
r

= Υp ≤ ∞,

E‖J̃p(y)‖2 ≤ γp(E‖y‖2), lim inf
r→∞

γp(r)
r

= Υ̃p ≤ ∞.

Hypothesis 5. A bounded and continuous function J ϕ̃:V (̂−)→ (0, ∞) is well defined in t→ ϕ̃t
from V ($̂−) to B, such that ‖ϕ̃‖B ≤ J ϕ̃(t)‖ϕ̃‖B ∀ t ∈ V (̂−), where V ($̂−) = $̂(s, ϕ̃) ∈
M′ ×B.

Hypothesis 6. The linear operator, W, is defined by

Wu =
∫ T

0
(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)Cu(s)ds,

in which a bounded invertible operator, W−1, exists, such that ‖W−1‖ ≤ l and C : U → H is
bounded, continuous ∃ is a constant R, such that

R = ‖(T − s)ζ−1[Eζ−η,ζ(B(T − s)ζ−η)]C‖2

For brevity,

C1 = supt∈M′‖Eζ−η(BTζ−η)‖2, C2 = supt∈M′‖Btζ−ηEζ−η,ζ−η+1(BTζ−η)‖2,

C3 = supt∈M′‖tEζ−η,2(BTζ−η)‖2, R = ‖(t− s)ζ−1[Eζ−η,ζ(B(T − s)ζ−η)]C‖2,

C4 = ‖Eζ−η,ζ(B(t− s)ζ−η)‖2, ‖W−1‖ = l.

Defining the control function,

u(t) = C∗[(T − s)ζ−1Eζ−η,ζ(B(T − t)ζ−η)]∗W−1ŷ,
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where

ŷ =yT − Eζ−η(BTζ−η)y0 + BTζ−ηEζ−η,ζ−η+1(BTζ−η)y0

− TEζ−η,2(BTζ−η)y1 −
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))

+
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1(B(T − tp)
ζ−η)Jp(y(tp))

−
q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))

−
∫ T

0
(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)(σ̃(s, y$̂(s,ys))dw(s))

−
∫ T

0
(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)h̃(s, y$̂(s,ys))ds.

E‖u(t)‖2 ≤81R2l2T
(

E‖yT‖2 + C1E‖y0‖2 + C2E‖y0‖2 + C3E‖y1‖2

+ C1

q

∑
p=1

βp(r)E‖y(s)‖2 + C2

q

∑
p=1

βp(r)E‖y(s)‖2 + C3

q

∑
p=1

γp(r)E‖y(s)‖2

+ C4
T2ζ−1

2ζ − 1
(νh̃ + νσ̃)[(ZT + J ϕ̃

0 )‖ϕ̃‖B +NTr]

[ ∫ T

0
(α(s) + α1(s))ds

])
.

Theorem 1. If assumptions Hypothesis (1)–(6) are true, then system (1)–(3) is controllable on
M′ if

1 ≤ 9

(
q

∑
p=1

[Υp + Υ̃p] +
T2ζ−1

2ζ − 1
µ̃2[
∫ T

0
(α(s) + α1(s))ds]

)
[1 + 81R2l2T].

Proof. Define an operator, φ, as

(φy)(t) =Eζ−η(Btζ−η)y0 −Btζ−ηEζ−η,ζ−η+1(Btζ−η)y0 + tEζ−η,2(Btζ−η)y1

+
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))−
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1

× (B(T − tp)
ζ−η)Jp(y(tp)) +

q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))

+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)h̃(s, y$̂(s,ys))ds +

∫ t

0
(t− s)ζ−1

× Eζ−η,ζ(B(t− s)ζ−η)σ̃(s, y$̂(s,ys))
dw(s)

ds
+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds.

Using the concept of Krasnoselkii’s fixed-point theorem, it is proven that φ has a fixed
point and the system (1)–(3) is controllable on M′. Separate the proof into several steps
using Lemma 2. Let us define Br = {y ∈ B : ‖y‖∞ ≤ r}; using Lemma 1, Br is closed,
bounded, and convex set in B ∀ r.

Step 1: φBr ⊂ Br.
If we assume φBr ⊂ Br is not true, then
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r ≤E‖φy(t)‖2

≤9E‖Eζ−η(Btζ−η)y0‖2 + 9E‖Btζ−ηEζ−η,ζ−η+1(Btζ−η)y0‖2 + 9E‖tEζ−η,2(Btζ−η)y1‖2

+ 9E‖
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))‖2 + 9E‖
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1

× (B(T − tp)
ζ−η)Jp(y(tp))‖2 + 9E‖

q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))‖2

+ 9E‖
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)h̃(s, y$̂(s,ys))ds‖2 + 9E‖

∫ t

0
(t− s)ζ−1

× Eζ−η,ζ(B(t− s)ζ−η)σ̃(s, y$̂(s,ys))dw(s)‖2 + 9E‖
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds‖2

r ≤9C1E‖y0‖2 + 9C2E‖y0‖2 + 9C3E‖y1‖2 + 9C1

q

∑
p=1

βp(r)E‖y(s)‖2 + 9C2

q

∑
p=1

βp(r)E‖y(s)‖2

+ 9C3

q

∑
p=1

γp(r)E‖y(s)‖2 + 9C4
T2ζ−1

2ζ − 1
νh̃[(ZT + J ϕ̃

0 )‖ϕ̃‖B +NTr]
∫ T

0
α(s)ds

+ 9C4
T2ζ−1

2ζ − 1
νσ̃[(ZT + J ϕ̃

0 )‖ϕ̃‖B +NTr]
∫ T

0
α1(s)ds + 81R2l2T

×
[

E‖yT‖2 + C1E‖y0‖2 + C2E‖y0‖2 + C3E‖y1‖2 + C1

q

∑
p=1

βp(r)E‖y(s)‖2 + C2

q

∑
p=1

βp(r)E‖y(s)‖2

+ C3

q

∑
p=1

γp(r)E‖y(s)‖2 + C4
T2ζ−1

2ζ − 1
[νh̃ + νσ̃][(ZT + J ϕ̃

0 )‖ϕ̃‖B +NTr]
( ∫ T

0
(α(s) + α1(s))ds

)]

r ≤9
(
[C1 + C2]

[
E‖y0‖2 +

q

∑
p=1

βp(r)E‖y(s)‖2
]
+ C3

[
E‖y1‖2 +

q

∑
p=1

γp(r)E‖y(s)‖2
]

+ C4
T2ζ−1

2ζ − 1
[νh̃ + νσ̃][(ZT + J ϕ̃

0 )‖ϕ̃‖B +NTr]
[ ∫ T

0
(α(s) + α1(s))ds

])
×
[
1 + 81R2l2T

]
+ 81R2l2T(E‖yT‖2)

Hence,

1 ≤ 9

(
q

∑
p=1

[Υp + Υ̃p] +
T2ζ−1

2ζ − 1
µ̃2[
∫ T

0
(α(s) + α1(s))ds]

)
[1 + 81R2l2T],

which is contrary to the assumption; hence, ΦBr ⊂ Br.
Step 2: Consider the decomposition

φ(y) = φ1(y) + φ2(y),
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where

φ1(y(t)) =
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η h̃(s, y$̂(s,ys))ds

+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ)σ̃(s, y$̂(s,ys))dw(s).

φ2(y(t)) =Eζ−η(Btζ−η)y0 −Btζ−ηEζ−η,ζ−η+1(Btζ−η)y0 + tEζ−η,2(Btζ−η)y1

+
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))−
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1

× (B(T − tp)
ζ−η)Jp(y(tp)) +

q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))

+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds.

Let y1, y2 ∈ Br, then

E‖φ1(y1)(t)− φ1(y2)(t)‖2 ≤2E‖
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η [h̃(s, y1$̂(s,ys))− h̃(s, y2$̂(s,ys))]ds‖2

+ 2E‖
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η [σ̃(s, y1$̂(s,ys))− σ̃(s, y2$̂(s,ys))]ds‖2

≤ 2C4
T2ζ−1

2ζ − 1
Kh̃‖y1$̂(s,xs) − y2$̂(s,xs)‖

2 + 2C4
T2ζ−1

2ζ − 1
Kσ̃‖y1$̂(s,xs) − y2$̂(s,xs)‖

2

≤ 2C4
T2ζ−1

2ζ − 1

(
[Kh̃ + Kσ̃]µ̃

2

)
sup

0≤s≤T
E‖y1(s)− y2(s)‖2

≤ K0‖y1(s)− y2(s)‖2,

where

K0 = 2C4
T2ζ−1

2ζ − 1

(
[Kh̃ + Kσ̃]µ̃

2

)
.

Thus, φ1(y(t)) is contractive.
Step 3: Let y ∈ Br,

E‖φ2(y)(t)‖2 ≤7E‖Eζ−η(Btζ−η)y0‖2 + 7E‖Btζ−ηEζ−η,ζ−η+1(Btζ−η)y0‖2

+ 7E‖tEζ−η,2(Btζ−η)y1‖2 + 7E‖
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))‖2

+ 7E‖
q

∑
p=1

(B(T − tp))
ζ−ηEζ−η,ζ−η+1(B(T − tp)

ζ−η)Jp(y(tp))‖2

+ 7E‖
q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))‖2

+ 7E‖
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds‖2

≤ 7

[
(C1 + C2){E‖y0‖2 +

q

∑
p=1

βp(r))E‖y(s)‖2}+ C3[E‖y1‖2 +
n

∑
p=1

γp(r)E‖y(s)‖2] + R2T‖u(s)‖2

]

which implies that E‖φ2(y)(t)‖2 is bounded.
Step 4: Let 0 ≤ Γ1 ≤ Γ2 ≤ T,
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E‖φ2(y)(Γ2)− φ2(y)(Γ1)‖2

≤8E‖[Eζ−η(B(Γ2)
ζ−η)− Eζ−η(B(Γ1)

ζ−η)]y0‖2

+ 8E‖B(Γ2 − Γ1)
ζ−η [Eζ−η,ζ−η+1(B(Γ2)

ζ−η)− Eζ−η,ζ−η+1(B(Γ1)
ζ−η)]y0‖2

+ 8E‖(Γ2 − Γ1)[Eζ−η,2(B(Γ2)
ζ−η)− Eζ−η,2(B(Γ1)

ζ−η)]y1‖2

+ 8E‖
q

∑
p=1

[Eζ−ηB(Γ2 − tp)
ζ−η − Eζ−ηB(Γ1 − tp)

ζ−η ]Jp(y(tp))‖2

+ 8E‖
q

∑
p=1

(B(Γ2 − tp)
ζ−η −B(Γ1 − tp)

ζ−η)

× [Eζ−η,ζ−η+1B(Γ2 − tp)
ζ−η − Eζ−η,ζ−η+1B(Γ1 − tp)

ζ−η ]Jp(y(tp))‖2

+ 8E‖
q

∑
p=1

((Γ2 − tp)− (Γ1 − tp))[Eζ−η,ζB(Γ2 − tp)
ζ−η − Eζ−η,ζB(Γ1 − tp)

ζ−η ]J̃p(y′(tp))‖2

+ 8E‖
∫ Γ1

0
[(Γ2 − s)ζ−1Eζ−η,ζ(B(Γ2 − s)ζ−η)− (Γ1 − s)ζ−1Eζ−η,ζ(B(Γ1 − s)ζ−η)]

× Cu(s)ds‖2 + 8E‖
∫ Γ2

Γ1
[(Γ2 − s)ζ−1Eζ−η,ζ(B(Γ2 − s)ζ−η)]Cu(s)ds‖2

≤8E‖[Eζ−η(B(Γ2)
ζ−η)− Eζ−η(B(Γ1)

ζ−η)]y0‖2

+ 8E‖B(Γ2 − Γ1)
ζ−η [Eζ−η,ζ−η+1(B(Γ2)

ζ−η)− Eζ−η,ζ−η+1(B(Γ1)
ζ−η)]y0‖2

+ 8E‖(Γ2 − Γ1)[Eζ−η,2(B(Γ2)
ζ−η)− Eζ−η,2(B(Γ1)

ζ−η)]y1‖2

+ 8E‖[Eζ−η(B(Γ2 − tp))
ζ−η − Eζ−η(B(Γ1 − tp)

ζ−η)]‖2
q

∑
p=1

βp(r)E‖y(s)‖2

+ 8E‖(B(Γ2 − tp)
ζ−η −B(Γ1 − tp)

ζ−η)[Eζ−η,ζ−η+1B(Γ2 − tp)
ζ−η − Eζ−η,ζ−η+1B(Γ1 − tp)

ζ−η ]‖2

×
q

∑
p=1

βp(r) + 8E‖((Γ2 − tp)− (Γ1 − tp))[Eζ−η,ζB(Γ2 − tp)
ζ−η − Eζ−η,ζB(Γ1 − tp)

ζ−η ]‖2
q

∑
p=1

γp(r)E‖y(s)‖2

+ 8R2‖
∫ Γ1

0
(Γ2 − s)ζ−1Eζ−η,ζ(B(Γ2 − s)ζ−η)− (Γ1 − s)ζ−1Eζ−η,ζ(B(Γ1 − s)ζ−η)ds‖2E‖u(s)‖2

+ 8R2 (Γ2 − Γ1)
2ζ−1

2ζ − 1
‖u(s)‖2.

So, E‖φ2y(Γ2)− φ2y(Γ1)‖2 → 0 as T → 0. Thus, φ2 is equicontinuous.
Step 5: Let 0 ≤ ε ≤ t; for any y ∈ Br, define an operator, φε, on Br; then,

φε
2y(t) =Eζ−η(Btζ−η)y0 −Btζ−ηEζ−η,ζ−η+1(Btζ−η)y0 + tEζ−η,2(Btζ−η)y1

+
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))−
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1

× (B(T − tp)
ζ−η)Jp(y(tp)) +

q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))

+
∫ t−ε

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds

=Eζ−η(Btζ−η)y0 − (Btζ−η)Eζ−η,ζ−η+1(Btζ−η)y0 + tEζ−η,2(Btζ−η)y1

+
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp))−
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1

× (B(T − tp)
ζ−η)Jp(y(tp)) +

q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y′(tp))

+ T(ε)
∫ t−ε

0
(t− s− ε)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds.
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Since T(t) is a compact operator. Q(t) = {φ2y(t), x ∈ Br} is relatively compact set in H ∀
ε ≥ 0. Furthermore, for every y ∈ Br, we have

E‖(φ2)y(t)− (φε
2)y(t)‖2

≤‖
∫ t

t−ε
[C(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)]

∗
W−1

×
[
yT − Eζ−η(BTζ−η)y0 + BTζ−ηEζ−η,ζ−η+1(BTζ−η)y0 − TEζ−η,2(BTζ−η)y1

−
q

∑
p=1
Eζ−η(B(T − tp)

ζ−η)Jp(y(tp)) +
q

∑
p=1
B(T − tp)

ζ−ηEζ−η,ζ−η+1(B(T − tp)
ζ−η)Jp(y(tp))

−
q

∑
p=1

(T − tp)Eζ−η,2(B(T − tp)
ζ−η)J̃p(y(tp))−

∫ T

0
(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)

× h̃(s, y$̂(s,ys))ds−
∫ T

0
(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)σ̃(s, y$̂(s,ys))dw(s)

]
‖2.

Thus, E‖(φ2)(y)(t)− (φε
2(y)(t))‖2 → 0 as ε→ 0.

Hence, Q(t) = {Φ2y(t), y ∈ Br} is relatively compact in H . φ2 is completely continuous
according to the Arzela–Ascoli theorem. Thus, using Krasnoselkii fixed-point theorem, the operator,
φ, has a fixed point. Thus, system (1)–(3) is controllable on M′.

Corollary 1. In the absence of impulsive conditions, system (1)–(3) reduces to the following form:

C
0 Dζ

t y(t)−BC
0 Dη

t y(t) = Cu(t) + h̃(t, y$̂(t,yt)) + σ̃(t, y$̂(t,yt))
dw(t)

dt
, t ∈ M′ = [0, T], (4)

y(0) = y0, y′(0) = y1. (5)

where C, B, h̃, and σ̃ are defined similar to before. Then, the solution to system (4)–(5) can be
written as

y(t) =Eζ−η(Btζ−η)y0 −Btζ−ηEζ−η,ζ−η+1(Btζ−η)y0 + tEζ−η,2(Btζ−η)y1

+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)h̃(s, y$̂(s,ys))ds +

∫ t

0
(t− s)ζ−1

× Eζ−η,ζ(B(t− s)ζ−η)σ̃(s, y$̂(s,ys))
dw(s)

ds
+
∫ t

0
(t− s)ζ−1Eζ−η,ζ(B(t− s)ζ−η)Cu(s)ds.

where y(t) ∈H satisfies Hypothesis 6; then, for any t ∈ J′, the control can be chosen as

u(t) = C∗[(T − s)ζ−1Eζ−η,ζ(B(T − t)ζ−η)]∗W−1

[
yT − Eζ−η(BTζ−η)y0

−BTζ−ηEζ−η,ζ−η+1(BTζ−η)y0 − TEζ−η,2(BTζ−η)y1

−
∫ T

0
(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)(σ̃(s, y$̂(s,ys))dw(s))

−
∫ T

0
(T − s)ζ−1Eζ−η,ζ(B(T − s)ζ−η)h̃(s, y$̂(s,ys))ds

]
.

Then, the solution to system (4)–(5) satisfies y(t) = y1. Hence, the system is controllable
on M′.

Remark 1. The study of approximate controllability of fractional-order non-instantaneous impul-
sive evolution systems involving SDD is studied in [25]. Controllability results for different types
of linear and nonlinear systems with damping behavior are analyzed in [29,30,32]. Moreover, the
approximate controllability of fractional neutral integro-differential equations with state-dependent
delay in Hilbert space is discussed in [37]. To the best of the authors’ knowledge, there are no studies
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concerning the controllability of multi-term fractional-order impulsive stochastic systems with SDD
involving damping behaviors, which is the main motivation of this study.

4. Example

Example 1. Impulsive damped fractional-order stochastic system involving SDD of the form

CDζ
t Z(t, x) + λCDη

t Z(t, x) =Cu(t, x) + k2 ∂2

∂z2 Z(t, x) +
∫ t

−∞
Π(s− t)Z(s− $̂1(t)$̂2(‖Z(t)‖), x)ds

+

[ ∫ t

−∞
Π̃(s− t)y(s− $̂1(t)$̂2(‖Z(t)‖), x)ds

]
dβ(t)

dt
, t ∈ M′ = [0, T],

Z(0, x) = Z0(x), Z′(0, x) = Z1(x),
Z(t, 0) = Z(t, π) = 0,
∆Z(tp, x) =

∫ tp
−∞ g(tp − s)Z(s, x)dx, p = 1, 2, . . . , q,

∆Z
′
(tp, x) =

∫ tp
−∞ g̃(tp − s)Z(s, x)dx, p = 1, 2, . . . , q.

(6)

Here, the Caputo derivatives, C
0 Dη

t and C
0 Dζ

t , are of the order 0 < η ≤ 1, 1 < ζ ≤ 2
and β(t) is the Wiener process in H = L2[0, π] on (Ω,F,P). For $̂ : M′ ×B → H , then
$̂i : [0, ∞)→ [0, ∞), i = 1, 2.

$̂(t, ψ)(z) = t− $̂1(t)$̂2(‖ψ(0, z)‖).

Furthermore, M′ ×B→H , Π, Π̃ : R→ R is continuous

h̃(t, ψ)(x) =
∫ 0

−∞
Π(s)ψ(s, x)dx,

σ̃(t, ψ)(x) =
∫ 0

−∞
Π̃(s)ψ(s, x)dx.

For z ∈ [0, π], Cu(t, z) : U ⊂ M′ → H is a bounded linear operator and Cu(t, z) :
[0, T]× [0, π]→H is continuous. Define the operator, W, as

(Wu)(ξ) =
∞

∑
n=1

∫ π

0

1
n

sin ns(C(s, ξ), zn)znds, ξ ∈ [0, π].

Furthermore, Jp, J̃p : B→H and g, g̃ > 0 for p = 1, 2, . . . , q,

Jp(ψ)(z) =
∫ tp

−∞
g(tp − s)y(s, z)dz,

J̃p(ψ)(z) =
∫ tp

−∞
g̃(tp − s)y(s, z)dz.

Furthermore, ‖h̃‖ ≤ Kh̃, ‖σ̃‖ ≤ Kσ̃ ‖Jp‖ ≤ KJp , ‖J̃p‖ ≤ KJ̃p
are bounded linear

operators. Thus, the impulsive damped fractional-order stochastic system with SDD (1)–(3)
is represented in abstract form (6). Therefore, system (1)–(3) is controllable on M′, as (6)
satisfies the conditions of Theorem 1.

5. Conclusions

The controllability results of damped impulsive multi-term non-integer-order stochas-
tic systems involving SDD were addressed in this paper. By utilizing Krasnoselskii’s
fixed-point technique, sufficient conditions were proven under certain assumptions. To il-
lustrate the effectiveness of the result, an example was provided. The proposed approach
can be applied to various kinds of multi-order fractional dynamical systems involving
several delay effects, which will be the focus of future analysis.
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