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Abstract: Water quality is a major factor when it comes to human and environmental health. The WQI is a key performance indicator for 

water management effectiveness. Water quality changes over time due to several seasonal attributes and physiochemical properties. As 

the seasons change at each site, the weather records are transformed into time series data, and the values of the physiochemical parameters 

shift accordingly. This paper introduces a novel temporal fusion transformer architecture for modelling and forecasting river water quality 

index. The WQI prediction model for the Bhavani River utilizes the temporal fusion transformer to incorporate temporal features from 

various scales of time series data obtained from monitoring stations. The performance results of the study are compared with other existing 

prediction models and demonstrated the effectiveness of the temporal fusion transformer approach for modelling and forecasting river 

water quality. 
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1. Introduction  

The ecosystem has been deteriorating and experiencing 

unanticipated impacts as a result of rising emissions and 

contaminants. As temperatures rise at unprecedented 

rates, the world's largest ice caps are melting at an 

incredible rate. The water data provides an excellent use 

case scenario, particularly when the provided data spans 

previous years from river monitoring stations. Water 

quality parameter levels fluctuate over time and have 

significant environmental impacts. Maintaining high 

standards of water purity is essential for both the 

preservation of our ecosystem and the well-being of 

people. It is essential for drinking, irrigation, recreation, 

and aquatic habitat. Poor water quality negatively impacts 

human health, such as spreading waterborne diseases and 

harming aquatic ecosystems and wildlife. Additionally, 

poor water quality affects industries that rely on water 

resources, such as agriculture and power generation. 

Preserving both human health and the environment 

requires consistent efforts to maintain high water quality 

standards. Regular monitoring and testing are crucial for 

identifying and addressing any potential issues. Effective 

treatment and management of pollutants like sewage and 

agricultural runoff contribute to enhancing water quality. 

The conservation of water resources and regulations on 

industrial and agricultural activities are vital for their 

protection. 

The Autoregressive method uses past time-series data to 

create a regression equation for prediction, while the 

Autoregressive Moving Average model combines AR 

and Moving Average methods to capture the linear 

relationship between variables over time. The 

Autoregressive Integrated Moving Average  odel was 

developed to handle non-stationary data by pre-

processing it before modelling with ARMA. Although 

other prediction techniques such as Hammerstein auto-

regressive [2], Kalman filter [3], and Gray forecast [1] 

method are also available, they are primarily suitable for 

ultra-short-term or single-step forecasting and may not be 

effective for long-term temperature predictions where 

long-term dependencies between variables weaken over 

time. 

Diverse artificial intelligence prediction approaches are 

employed for time series data forecasting, incorporating 

classical machine learning methods as well as deep 

learning techniques. Machine learning methods such as 

support vector regression [4], random forest, and XG 

Boost [5] have been successfully used in many prediction 

tasks. Traditional machine learning algorithms are not 

capable of handling data in the time dimension due to the 

identical relevance of data at each location, which 

obstructs the extraction of useful knowledge, but with the 

emergence of deep learning, significant learning methods 

such as Long Short-Term Memory Neural Network [8], 

Temporal Convolutional Network, and Transformer have 

been enhanced and implemented to extract time series 

features more effectively. Long Short-Term Memory 

Neural Network (LSTM) is an improved RNN model that 

selectively extracts pertinent historical data via a gate 
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structure. In contrast to other sequence modelling 

methods, the Temporal Convolutional Network exhibits 

superior performance in processing sequence 

information, owing to its exceptional parallel processing 

capacity, consistent gradient propagation, and more 

adaptable receptive field compared to Long Short-Term 

Memory (LSTM) networks. Additionally, attention 

mechanisms have been applied to time series prediction 

tasks, such as in the Transformer model. The Transformer 

model is capable of identifying the crucial part of the 

input for each instance through the attention weight 

magnitude, which improves the model's interpretability. 

It also excels in capturing long-term dependencies 

compared to the RNN model. 

The Water Quality Index serves as a means to evaluate 

and communicate the overall water quality of a specific 

water body. It is a numerical index that combines data 

from various water quality parameters, such as pH, 

dissolved oxygen, and pollutant levels, into one value that 

reflects the overall water quality. The WQI is utilized to 

determine the suitability of water for various uses such as 

drinking, irrigation, and recreation. WQI prediction 

models are used to forecast the WQI of a water body 

based on measured values of its water quality parameters. 

These models are constructed using historical water 

quality data and environmental factors like weather and 

land use, to predict future water quality conditions. 

This research aims to develop a TFT-WQI prediction 

model to improve the accuracy and reliability of the water 

quality forecasting model by utilizing historical data and 

incorporating temporal dependencies between data 

points. Time series data are collected from sampling 

stations of the Bhavani River for 5 years 2016-2020. The 

dataset is prepared by carrying out preprocessing tasks 

like normalization, and feature selection, and named as 

WQI-SA dataset. The WQI prediction models are built 

using a sophisticated deep neural architecture, temporal 

fusion transformer, for forecasting the river water quality 

index. 

2. Literature Review  

Ensuring the safety and availability of clean water 

resources is heavily dependent on accurately predicting 

water quality, making water quality prediction a critical 

task. Over the years, researchers have proposed several 

models and techniques to predict water quality indicators 

based on various environmental factors. In recent years, 

deep learning-based models, such as the Temporal Fusion 

Transformer (TFT), have shown promising results in 

WQI prediction. This literature review aims to analyze 

the existing models on water quality prediction and 

evaluate the effectiveness of the TFT model in WQI 

prediction. In this paper, we will briefly discuss some of 

the important works in this field and provide insights into 

the potential of deep learning-based models for WQI 

prediction. 

Abhay Srivastava and Alberto Cano [13] conducted a 

study to explore various deep learning approaches for 

analyzing and forecasting pH levels, including LSTM, 

GRU, RNN, and TFT models, to determine the most 

accurate algorithm to forecast the pH level.  Widely 

monitored and learned the pH level in oceans to preserve 

the health of aquatic ecosystems. Their analysis revealed 

that the TFT model outperformed other deep learning 

approaches in accurately predicting pH levels. The 

researchers utilized the TFT architecture to forecast pH 

anomalies and determine the significance of the predicted 

data.  

Theyazn Aldhyani, Al-Yaari, et. al [16], had developed 

advanced artificial intelligence methods to predict water 

quality index and water quality classification. Artificial 

neural network models, including the nonlinear 

autoregressive neural network and the long short-term 

memory deep learning algorithm, had been created for the 

WQI prediction. The WQC forecasting employed three 

machine learning algorithms: support vector machine, 

nearest neighbour (K-NN), and Naive Bayes. The utilised 

dataset consisted of seven significant parameters, and the 

created models was tested using several statistical 

metrics. The outcomes had shown that the suggested 

models could reliably forecast WQI and categorize water 

quality based on greater resilience. The NARNET model 

fared marginally better than the LSTM model for the 

prediction of WQI values, while the SVM algorithm had 

the highest prediction accuracy (97.01%) for WQC 

values. 

Zhenbo Li, Fang Peng, et al. [12] proposed a hybrid 

model to enhance the precision of DO prediction in 

aquaculture. The model is based on a sparse auto-encoder 

and long-short-term memory network. The SAE pre-

trained hidden layer data comprises deep latent properties 

of water quality, which is then fed into the LSTM to 

progress the forecast accuracy. The experimental 

outcomes yielded that the SAE-LSTM hybrid model 

outperformed LSTM by reducing MSE in the prediction 

stages. The hybrid model also outperformed SAE-BPNN 

by 87.7%, 91.0%, and 90.0%, indicating that it was more 

accurate. 

Lim, B., Arik, S. et.al [11], had presented that multi-

horizon forecasting issues frequently comprised of a 

complicated mixture of inputs such as static, i.e., time-

invariant variables, known future inputs and other 

exogenous time series that had only been seen 

historically, with no previous knowledge. They had 

presented several deep learning models for multi-step 

prediction but they typically consisted of black-box 

models that did not account for the entire range of inputs 
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available in typical cases. In the article, they introduced 

the Temporal Fusion Transformer, a novel attention-

based architecture that combined high-performance 

multi-horizon forecasting with interpretable insights into 

temporal dynamics. The Temporal Fusion Transformer 

(TFT) model utilized recurrent layers for local processing 

and interpretable self-attention layers to learn long-term 

dependencies and temporal relationships at different 

scales. The model had particular components to select 

appropriate features and gating layers to suppress 

unnecessary components, which resulted in high 

performance across a wide range of operating conditions. 

On a variety of real-world datasets, it demonstrated 

considerable performance improvements over previous 

benchmarks and presented three practical applications of 

TFTs interpretability. 

Yurong Yang et al. [14], proposed a CNN-LSTM with 

Attention (CLA) water quality prediction model to 

predict water quality attributes. The study was conducted 

on the Beilun Estuary and the developed water quality 

dataset was used to estimate pH and NH3-N. The missing 

data was filled using wavelet technique and linear 

interpolation was used to denoise the data. The CNN-

LSTM hybrid model was effective in addressing 

nonlinear time series prediction issues, and the attention 

mechanism was capable of capturing longer time 

dependence. The experimental outcomes exhibited that 

the model outperformed others in providing stable 

predictions with varying time lags. 

The literature review has shed light on the various models 

and techniques proposed for water quality prediction. It is 

evident that traditional statistical methods, such as 

ARIMA and regression models, have been widely used 

for WQI prediction, but they have limitations in capturing 

complex nonlinear relationships. Recent studies have 

shown that deep learning-based models, such as the 

Temporal Fusion Transformer (TFT), have outperformed 

traditional models and achieved remarkable results in 

WQI prediction. TFT's ability to handle temporal 

dependencies and capture long-term patterns makes it a 

promising model for predicting WQIs. However, further 

research is needed to optimize the model’s 

hyperparameters and address issues related to data 

preprocessing and feature engineering. The literature 

review suggests that deep learning-based models 

significantly improve the accuracy and reliability of WQI 

prediction, and it opens up exciting opportunities for 

further research in this field. 

3. Temporal Fusion Transformer  

The Temporal Fusion Transformer is a modern method 

for time series analysis using deep learning techniques, 

which has proven to be effective and efficient in various 

applications. TFT is a multi-horizon model which 

incorporates a vast array of covariates into projections. 

The model accepts both static and dynamic variables, the 

effects of which are concealed from the user.  The model 

is equipped with a temporal self-attention decoder that 

permits it to learn long-term patterns by considering the 

adaptability and architecture of the Temporal Fusion 

Transformer. They are a combination of transformer 

models, which are commonly used for natural language 

processing tasks, and temporal convolutional networks 

with time series data. 

The TFT utilizes the transformer architecture and 

temporal fusion mechanism to effectively build 

forecasting models for future predictions. The 

transformer architecture allows TFT to handle large 

amounts of data and incorporate multiple data sources, 

such as sensor data and weather data, providing a more 

comprehensive prediction. The temporal fusion 

mechanism effectively combines the temporal 

information from different data sources to make accurate 

predictions. This principle of incorporating temporal 

information from multiple data sources allows TFT to 

account for temporal variability in accurate predictions. 

TFT is based on the transformer architecture, which is 

known for its ability to effectively process sequential 

data, this makes TFT a great model for time series data. 

Temporal Fusion Transformers architectures have several 

advantages over other deep learning architectures when 

building prediction models. Compared to Recurrent 

Neural Networks (RNNs), TFTs have the ability to handle 

sequential data with much longer time steps than RNNs. 

TFT is an effective choice when building prediction 

models for tasks such as natural language processing and 

time series forecasting, due to its ability to handle 

sequences of varying lengths effectively, and its power in 

handling sequential data.
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Fig.1. Framework for Temporal Fusion Transformer Design [15] 

The TFT is a deep learning model that stands out from 

other models due to its unique building blocks, such as 

variable selection networks, gating mechanisms, 

prediction intervals, static covariate encoders, and 

temporal processing. The TFT's variable selection 

networks enable it to select only the most critical 

variables for data prediction, including both constant and 

time-varying variables. Gating mechanisms provide 

flexibility and avoid unnecessary design components, 

allowing the model to selectively produce nonlinear 

outcomes. Static covariate encoders use gated residual 

networks (GRNs) to produce weight vectors for encoding 

static covariates. Temporal processing is achieved 

through a sequence-to-sequence layer for local processing 

and a multi-head attention block for examining long-term 

dependencies. The TFT combines the LSTM encoder-

decoder layer with other layers, such as self-attention 

layers, to improve model performance. Overall, the TFT 

is a powerful deep learning model that can learn both 

long-term and short-term associations between time-

varying inputs, making it a valuable tool in data 

prediction and analysis. 

The Multi-Head Attention (MHA) layer is a crucial 

element of the Transformer architecture, enabling the 

model to attend to multiple aspects of the input 

simultaneously. In the Temporal Fusion Transformer, the 

MHA layer is utilized to attend to different time steps of 

the input sequence, enabling the model to capture short 

and long-term trends. Comprising multiple sub-layers, 

each attending to a different aspect of the input, the MHA 

layer allows the model to interpret information 

differently, identifying complex input patterns and 

temporal correlations. The Gated Residual Network 

(GRN) is a key building block throughout TFT, 

consisting of ELU and GLU activation functions and two 

dense layers. The GLU is utilized to identify the most 

important features for prediction, and the activation 

functions assist the network in comprehending which 

input transformations are simple and which require more 

complex modelling. The TFT's GRN output goes through 

standard layer normalization and has a residual 

connection, potentially bypassing the input depending on 

its location, and static variables are used accordingly. 

Overall, these elements enable the TFT to identify 

patterns in the input that may not be immediately obvious 

and provide a powerful tool for data prediction and 

analysis.  

The Temporal Fusion Transformer is a powerful new type 

of deep learning architecture that offers a number of 

advantages over variants of recurrent neural networks. 

Temporal Fusion Transformer enhances the 

interpretability of time series forecasting by identifying 

globally relevant variables, enduring temporal variations, 

and significant events for the prediction problem. TFTs 

can capture both long-term and short-term dependencies 

in the data, allowing for more accurate predictions. TFTs 

are able to capture complex relationships in the data that 

are difficult for LSTM, and GRU to learn. Hence TFT is 

chosen in this work for efficiently building a time series 

river water quality prediction model. 

4. Materials and methods  

The water quality index (WQI) of a river is a significant 

parameter used for assessing water quality since it offers 

a comprehensive evaluation of the overall water quality 

status. This study proposes a new method for modelling 

and forecasting river WQI using temporal fusion 

transformers (TFT). TFTs are a type of deep learning 
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model to capture the temporal dependencies between time 

series data. The time series river water quality data was 

used for training TFT, and various hyperparameters were 

appropriately defined while creating the model. Various 

phases of building the WQI forecasting model are 

outlined below. The methodology employed to generate 

the WQI prediction model comprises the following 

phases: 4.1. Data Acquisition and Dataset Preparation 

4.2. Exploratory data analysis and data preprocessing 4.3. 

Building the WQI prediction model 4.4. Validation and 

Model evaluation. Fig.2 illustrates the workflow of the 

proposed research.

 

Fig.  2. Architecture of the Proposed TFT-Based WQI Prediction Model 

4.1 Data Acquisition and Dataset Preparation 

Real-time time series data were collected from sampling 

points along the Bhavani River for the period from 1st 

January 2016 to 31st December 2020. Twenty-six 

physiochemical water quality parameters measured daily 

at eleven sampling locations along the Bhavani River 

have been acquired. The seasonal parameters have been 

collected from the visual crossing site corresponding to 

the locations of the sampling stations.  

Physiochemical Parameters 

The evaluation of water quality heavily relies on 

physiochemical parameters, which offer essential insights 

into the physical, chemical, and biological properties of 

the water. Physical parameters include temperature, total 

suspended solids (TSS), turbidity, fixed dissolved solids 

(FDS), conductivity, and total dissolved solids (TDS). 

Conductivity measures the ability of water to conduct 

electricity, while turbidity indicates the cloudiness of 

water caused by suspended particles. Fixed solids in 

water refer to TSS and TDS residues remaining after 

heating to dryness. 

 The chemical parameters include pH, biological oxygen 

demand, ammonia, alkalinity, fluoride, chloride, 

biological oxygen demand, potassium, sulphate, 

dissolved oxygen, nitrogen, hardness, and chemical 

oxygen demand. A pH of 7 represents neutrality, below 7 

indicates acidity, and above 7 indicates basicity. High 

ammonia levels in river water indicate increased pollution 

from dead plants and animals, algal growth, and faecal 

matter. Alkalinity is the sum of all soluble solids based on 

acid-neutralizing capacity, used in water softening 

calculations. Chloride concentration in freshwater is a 

sign of contamination, with sources including agricultural 

runoff, wastewater, and chloride-containing rock. High 

sulphate levels in natural water are due to magnesium or 

sodium sulphate deposits leaching. Nitrate levels in 

surface water can degrade water quality and may come 

from chemical fertilizers in farming activities. Hardness 

is characteristic of heavily mineralized waters. Dissolved 

oxygen (DO) is a major indicator of water pollution, with 

high concentrations signifying better water quality.  

The biological water quality indicators are total coliform 

and faecal coliform, with the presence or absence of 

living organisms being useful indicators. The 

physiochemical parameters used for the research are 

added in Table 1 and are essential for determining the 

safety of water for drinking, irrigation, and other 

purposes.  
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Table 1. Physiochemical Parameters used in WQI Prediction 

Parameters 
BIS Standard 

(Sn) 
Parameters 

BIS Standard 

(Sn) 

Temperature 28 pH 8.5 

Turbidity 5 Ammonia 50 

Conductivity 150 Alkalinity 200 

TSS 300 Chloride 250 

TDS 1000 Potassium 2.5 

FDS 200 Sulphate 200 

TC 100 Fluoride 1.5 

FC 60 Hardness 100 

BOD 3 DO 7.5 

COD 10 Nitrate 0.503 

 

Seasonal variations are an important factor in assessing 

water quality, as they reflect the changes in water quality 

caused by seasonal patterns and fluctuations. Seasonal 

parameters, including dew point, humidity, barometric 

pressure, precipitation, precipitation amount, wind speed, 

wind direction, cloud cover, and visibility, are key 

indicators of changes in weather and atmospheric 

conditions. The temperature of water affects the growth 

and survival of aquatic life, and changes in temperature 

can indicate changes in water quality. Precipitation 

affects water levels, influencing the movement and 

distribution of water and pollutants. Variations in water 

levels also reflect changes in water storage and usage 

during different seasons.  

The data collected from eleven sampling stations and 

visual crossing sites from January 1st 2016 to December 

31st 2020 and are converted into a time series dataset with 

parameters physicochemical, seasonal parameters, station 

ID and location data with 10,560 instances.  

Computation of WQI 

WQI  is a measure for reporting the overall water quality 

of a specific location and can be used to identify areas that 

need improvement or to compare the water quality of 

different locations. It is based on the concentration of 

various chemical, physical, and biological parameters 

used to assess water’s suitability for a specific use. The 

WQI can be computed using different methods, such as 

the Canadian Council of Ministers of the Environment 

(CCME) method, the National Sanitation Foundation 

(NSF) method, and the BIS Indian Standard. Here the 

WQI is determined based on Indian Standard for Drinking 

Water Specification (BIS 2004).  

 

The following steps are followed to calculate WQI. First, 

weights are assigned to each water quality parameter 

based on their relative importance. The relative weight is 

calculated by dividing the weight of each parameter by its 

permissible limit (Si). Next, a quality of water rating (Qi) 

is assigned for each parameter based on its mean 

concentration value compared to the desirable limit as per 

the Indian drinking water standard (BIS 2004). The sub-

index (SI) for each water quality parameter is then 

calculated by multiplying the relative weight by the 

quality of water rating. Finally, the WQI is calculated by 

summing the sub-index of each water quality parameter. 

The method of WQI calculation is presented in detail in 

Table 2. 
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Table 2.  Computation of Water Quality Index 

Parameters  
BIS 

Standard (Si) 
1/Si 

K= 

⅟∑⅟Si 

Wi= 

K/Si 

Ideal 

Value  

Mean 

Value 

(Vi) 

Qi= 

Vi/Si 

*100 

SI= 

Wi*Qi 

Temp 28 0.03 0.118 0.004 0 28 40 0.169 

pH 8.5 0.11 0.118 0.013 7 7.3 85.88 1.202 

Conductivit

y  
150 0.006 0.118 0.0007 0 65 43.33 0.034 

Hardness 100 0.01 0.118 0.0011 0 9 9 0.01 

Sodium 200 0.005 0.118 0.0005 0 7 3.5 0.002 

TSS 300 0.0034 0.118 0.0003 0 300 100 0.03 

BOD 3 0.334 0.118 0.0396 0 2.3 76.67 3.04 

Nitrate-N 0.503 1.988 0.118 0.236 0 0.902 179.3 42.41 

TC 100 0.01 0.118 0.0011 0 60 60 0.071 

 

  

 

Fig.3. Distribution of Water Quality Parameters 

The table 3a provides descriptive statistics of various 

water quality parameters measured in 10560 samples. The 

least value of conductivity is 6.4, the highest is 1207, the 

mean is 188.23, the median is 160.4, and the standard 

deviation is 127.09. The conductivity values are 

distributed widely, with a relatively high standard 

deviation. The mean value of 188.23 is higher than the 

median value of 160.4, indicating that the data are 

positively skewed. The least TSS value is 1, the highest is 

300, and the mean value is 169.14, which means 

relatively high variation. The median value, is 300 and the 

standard deviation is 134.56, this indicates that there is a 

wide range of TSS values with a large variation from the 

mean. The lowest TDS value is 10 and the highest is 1175, 

which means a large variation in observation. The mean 

TDS value is 128.63 mg/L and the median is 115 mg/L. 

The standard deviation of the TDS values is 92.78 mg/L, 

indicating the TDS values with large variation and are 

positively skewed. 

The results show that the lowest value of FDS is 0.02, the 

highest value is 772, the mean is 149.74, the median is 

125, and the standard deviation is 100.72, with a 

relatively high standard deviation. The median value of 

125 suggests that half of the samples had FDS 

concentration below 125 and a half had a concentration 

above 125. The standard deviation of 100.72 specifies 

that the FDS values in the samples varied widely from the 

mean value of 149.74.  

The total coliform results show that the least value found 

is 8 and the supreme is 2691, which indicates high 

variability. The average TC value is 257.79 and the 

median value is 158. The standard deviation is 319.59, 

which indicates the level of variability in the results. The 

high standard deviation shows that the TC values are 

spread out over a large range. The results of FC show that 

the values range from a least of 10 to a supreme of 2186, 

with a relatively high variation in values. The mean value 

of FC is 117.83, with a median of 70 and a standard 

deviation of 178.4. The values of FC in the samples are 

spread out, with some samples having much higher values 

than others. The median value of 70 is lower than the 

mean value, which suggests that there was a higher 
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concentration of low values compared to high values in 

the data set. Overall, the results indicate that there is some 

variability in the levels of FC. A low standard deviation 

denotes that the data points are clustered closely around 

the mean value for the given water quality parameters. 

The large standard deviation indicates that the data points 

are widely spread out from the mean, it is found for water 

quality parameters such as conductivity, TSS, TDS, FDS, 

TC and FC, as the values have large outliers these 

parameters need to be normalized.

Table 3a: Descriptive Statistics of Physiochemical Parameters 

  Count Min Max Mean Median SD 

pH 10560 5.9 8.76 7.45 7.49 0.49 

Conductivity  10560 6.4 1207 188.23 160.4 127.09 

Turbidity 10560 1 332 7.39 2 20.98 

PA 10560 0 26 0.7 0 2.31 

TA 10560 1 804 67.87 63 43.76 

Chloride 10560 0 215 19.27 14 17.86 

COD 10560 0.12 24 7.78 4 5.53 

TKN 10560 0 39 0.9 0.1 1.47 

Ammonia 10560 0.21 5.39 0.54 0.25 0.49 

Hardness 10560 4 298 75.2 67 48.87 

Ca. hardness 10560 1 430.1 34.04 25 30.17 

Mg. hardness 10560 0.62 110 20.59 15 18.09 

Sulphate 10560 0 55 7.39 6 7.69 

Sodium 10560 0 182 13.25 9 15.31 

TSS 10560 1 300 169.14 300 134.56 

TDS 10560 10 1175 128.63 115 92.78 

FDS 10560 0.02 772 149.74 125 100.72 

Phosphate 10560 0 1.5 0.2 0.11 0.19 

Boron 10560 0 0.1 0.07 0.1 0.05 

Potassium 10560 0.01 29 2.31 2 1.55 

BOD 10560 0 6.5 1.35 1.13 0.9 

Fluoride 10560 0 9.4 0.47 0.39 0.68 

Nitrate-N 10560 0 11.42 0.71 0.54 0.88 

TC 10560 8 2691 257.79 158 319.59 

FC 10560 10 2186 117.83 70 178.4 

 

The summary statistics of 10,560 observations of various 

seasonal variables are shown in Table 3b. The statistics 

show that precipitation, with the lowest value recorded as 

0 and the highest value is 251 units. The mean value of 

precipitation is 9.2 units with a median of 1 unit and a 

standard deviation of 18.16 units, which indicates a large 

variation in values. It is concluded that the value of 

precipitation recorded is relatively low with a wide 

variation in the observations recorded. The mean and 

median being different suggests that the data is not evenly 

distributed, but rather has a skewed distribution. 

The cloud cover data in the given statistics show that the 

smallest recorded cloud cover is 1.2, the highest is 99.9, 

and the average is 48.98, with a relatively high deviation 

among observations. The median is 48.7, and the standard 
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deviation is 18.92. The cloud cover is a relatively wide 

range of values as compared to its mean value.  The wind 

direction has a wide spread of values, as indicated by the 

relatively large standard deviation of 69.26. The median 

of 170.85 suggests that half of the wind direction 

observations are between 170.85. The mean of 154.7 

indicates that the wind direction tends to be in the 154.7-

degree direction, on average. 

A large widespread of values are found for seasonal 

parameters such as precipitation, wind direction and 

cloud cover, and all other parameters are found to have 

small variability in observations. 

Table 3b: Descriptive Statistics of Seasonal Parameters 

  Count Min Max Mean Median SD 

Temp 10560 20 33 26.16 26 2.41 

Dew 10560 3.3 24.7 20.09 21 2.78 

Humidity 10560 28.44 97.27 70.46 72.18 10.32 

Sea level pressure 10560 987.4 1020.4 1009.45 1009.2 2.61 

Precipitation  10560 0 251 9.2 1 18.16 

Precip cover 10560 0 100 7.04 4.17 13.42 

Windspeed 10560 0.1 268.6 17.65 18.4 9.82 

Wind dir 10560 1.2 337 154.7 170.85 69.26 

Cloud cover 10560 1.2 99.9 48.98 48.7 18.92 

Visibility 10560 2.2 10 5.52 5.4 0.98 

 

The examination of the descriptive statistics of 

physiochemical and seasonal parameters is crucial in 

gaining a deeper understanding of their distribution and 

variability. This analysis enables the identification of 

patterns and relationships that is leveraged to improve 

WQI prediction. The results of exploratory data analysis 

prompt that, (i) it is essential to normalize the data and (ii) 

to clean the noise data by handling missing values and 

outlier analysis, enables to construct an efficient dataset 

for WQI prediction. 

Preprocessing and Feature Selection  

Preprocessing and feature selection plays a vital role in 

the analysis of WQI data and to produce meaningful 

results. The preprocessing phase involves cleaning and 

transforming the data, eliminating any missing values, 

outliers, and inconsistencies.  In this research, the 

preprocessing tasks such as handling missing values, 

removal of outliers, and data normalization has been 

carried out. To normalize the attributes with high 

variation in their observations, the WQI-SA dataset is 

subjected to min-max normalization. 

In prediction modelling, feature selection is a critical 

stage that involves the selection of parameters that have a 

significant impact on the prediction of the target variable. 

The Select K Best algorithm is employed here to identify 

the most important features in the prediction of the Water 

Quality Index.  The Select K Best algorithm is a feature 

selection technique that aims to select a subset of the most 

informative features from a larger set of features. Once 

the features have been scored, the top K features with the 

highest scores are selected and used in further analysis or 

modelling. This helps to reduce the dimensionality of the 

data and increase the accuracy and efficiency of the 

analysis or modelling. The process revealed that 

conductivity is the most important feature, followed by 

ammonia and phosphate in computing WQI. On the other 

hand, boron and phenolphthalein alkalinity were ranked 

negatively, have limited impact and hence these 

parameters are removed from the dataset. The selected 

parameters are used to develop an efficient dataset to train 

TFT based WQI prediction model.  

4.3 Building the WQI Prediction Model 

The task of predicting the water quality index is 

approached as a regression problem and is tackled using 

temporal fusion transformer architectures. WQI 

prediction models are developed using temporal fusion 

transformer architecture by training the time series 

dataset.  

TFT architecture designed for time series prediction 

tasks. TFT works by combining multiple layers of 

transformer blocks to capture long-term dependencies in 

the time series data. The input layer takes in the input 

WQI-SA time series data and converts it into a numerical 

representation. The encoder layers use self-attention 
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mechanisms to process the input data and generate feature 

representations for each instance in the series and allow 

information from past and future time steps to be fused 

into the representation for each step. The decoder layers 

use self-attention and cross-attention mechanisms to 

generate predictions for future time steps based on the 

encoder's feature representations. Finally, the output layer 

generates the final WQI predictions for future time steps 

by applying a linear transformation to the output of the 

decoder. The number of layers, the size of each layer, and 

the hyperparameters of the model are tuned to achieve the 

best performance on a specific time series prediction task. 

The TFT model uses a combination of two popular 

architectures for sequential data processing such as 

transformers and LSTM. The Transformer architecture 

allows for parallel computation and captures long-term 

dependencies in the data through self-attention 

mechanisms. The LSTM architecture is designed to 

handle sequential data and is capable of capturing short-

term dependencies in the data. By combining these two 

architectures, TFT is able to effectively capture both 

long-term and short-term dependencies in time series 

data. 

The model is trained using the specified number of 

epochs, and the learning rate is set to the specified value. 

The model uses the Quantile Regression likelihood 

function and is set to log information in the tensor board. 

The model is set to be randomly initialized and is forced 

to reset, which means any information about the previous 

model. The model is set to save checkpoints during 

training, which allows for quick and convenient recovery 

when training is interrupted. 

Various hyperparameters such as the number of hidden 

layers, the number of neurons in each layer, and the 

learning rate are set before training. An optimizer is an 

algorithm used to minimize the loss function in a deep 

learning model and update the model's parameters. Here 

adam optimizer is used. A dense layer is a fully connected 

layer in a neural network, where each neuron is connected 

to every neuron in the previous layer. An epoch is one 

complete iteration over all the training data and the 

number of epochs to run during training is a 

hyperparameter. The batch size is the number of samples 

used in one iteration to update the model’s parameters, 

with a larger batch size leading to faster convergence and 

a smaller batch size providing a more accurate solution. 

Dropout is a regularization technique commonly used in 

deep learning that randomly drops out a percentage of 

neurons in a neural network during training to prevent 

overfitting. Momentum is a technique used in 

optimization algorithms to speed up convergence by 

adding a fraction of the update vector from the previous 

time step to the current update vector. The learning rate is 

the step size at which the optimizer updates the model's 

parameters, with a larger learning rate leading to quicker 

convergence and a smaller learning rate leading to a more 

accurate solution. 

A temporal fusion transformer is a variant of the 

transformer architecture designed for processing 

sequences of variable length. Some of the special 

hyperparameters used in TFT that differ from other deep 

learning architecture include attention windows, filter 

heads, value dimensions, and temporal encoder 

dimensions. Attention windows use a sliding window 

mechanism for attention computation, where the size of 

the window determines the range of context considered 

for each position in the sequence and helps to control the 

amount of context used for each prediction. The number 

of filter heads used for attention computation and their 

value is often in the range of [1, 16]. A larger number of 

filter heads help the model capture different types of 

dependencies between elements in the sequence. TFT 

uses a query, key, and value mechanism to compute 

attention scores and the dimension of the query, key, and 

value vectors are determined, which controls the model's 

capacity to capture dependencies in the data. The 

temporal encoder is used to project the input sequences 

into a higher-dimensional space and the dimension of the 

encoder's output helps to control the model's ability to 

capture complex relationships in the data. These special 

hyperparameters are important for TFT to perform well 

on sequence data and significantly impact the 

performance of the model. 

Here, a particular TFT model is instantiated using the 

TFT Model class and is initialized with various 

hyperparameters such as input_length, output_length, 

hidden_layers, lstm_layers, num_attention_heads, 

dropout, batch_size, n_epochs, nr_epochs_val_period, 

likelihood, optimizers, random_state, reset, and 

checkpoints. The number of training iterations 

(EPOCHS), input size (INLEN), and expected features 

(FEAT) in the inputs are defined to optimize the model's 

performance. The model also features a self-attention 

mechanism with a specified number of heads, and defined 

encoder and decoder layers. The dimensions of the 

feedforward network, batch size during training, 

activation function, and learning rate are also defined to 

fine-tune the model's efficiency. The random seed used 

during training and the lower and upper bounds of the 

predictions, qL1, qL2, qL3, and qU1, qU2, qU3, 

respectively, further enhance the model's performance. 

The WQI prediction model is built by training the 

temporal fusion transformer with WQI- SA dataset by 

setting the hyperparameters. The performance of the 

model is evaluated using various evaluation metrics of 

regression. 
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4.4 Validation and Model Evaluation 

 In this research, the Quantile regression technique is used 

for validating the temporal fusion transformer-based WQI 

prediction model. Quantile Regression is used to make 

probabilistic predictions at specific quantiles of the output 

distribution, instead of just a point estimate. Evaluation 

and validation of the model’s performance are conducted 

utilizing a test set. The metrics such as mean absolute 

error, mean square error, root mean squared error and R2 

score are used for evaluating the prediction model. Mean 

Absolute Error (MAE) is the average value of the 

absolute error, which reflects the true condition of the 

estimated value error more accurately. Mean Square Error 

(MSE) is the total and average of the square of the 

difference between the observed value and the forecasted 

value. Root Mean Square Error (RMSE) quantifies the 

difference between measured and real values. The R2 

score value defines the accuracy of the prediction model, 

if the value is above 0.5 the model predicts efficiently  

In this study, the effectiveness of the TFT-based WQI 

prediction models is determined by analyzing their error 

rate and R2 score value. The evaluation is conducted 

using a set of evaluation metrics, with 20% of the data 

being used as a test set. 

5. Experiment and Results  

In our prior study, the time series-based WQI-SA dataset 

composed of both physicochemical and seasonal 

parameters was utilized to train the WQI prediction 

models with deep neural architectures such as RNN, 

LSTM, and GRU. The performance of the WQI 

prediction models had been evaluated and observed good 

results for epoch size 200 as in Table 4. It was found that 

the LSTM-WQI prediction model had achieved a high R2 

score value of 0.9 and less RMSE value of 0.3 when 

compared with RNN-WQI and GRU-WQI prediction 

models for epoch size 200.

Table 4. Prediction Results of Deep Learning Architecture 

Model Epoch MAE MSE RMSE R2 Score 

RNN-WQI 

200 

0.25 0.25 0.5 0.84 

LSTM-WQI 0.02 0.09 0.3 0.9 

GRU-WQI 0.1 0.1936 0.44 0.88 

 

In this research, the WQI prediction model is trained and 

tested with the same WQI-SA dataset. Various Python 

libraries are employed to conduct experiments and 

implement using temporal fusion transformer 

architecture. The dataset comprises 8124 tagged samples 

and represents 80% of the total instances of the WQI-SA 

dataset. The evaluation metrics such as mean absolute 

error, root mean squared error, and R2 score value are 

used to evaluate the prediction models. The test dataset 

containing 2009 instances is employed for testing. The 

performance of the WQI prediction model based on 

temporal fusion transformers is dependent on various 

factors such as the quality and quantity of the training 

data, the choice of model hyperparameters, and the ability 

of the model is to generalize to unseen data. Table 5 

illustrates the general hyperparameter setting used in TFT 

training. 

        

Table 5: Hyperparameters for fine-tuning 

Hyperparamet

er 

Values 

Optimizer Adam 

Dense Layer 5 to 10 

Epoch  20, 50, 100, 150, 

200 

Batch size  32/64 
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Hyperparamet

er 

Values 

Optimizer Adam 

Dense Layer 5 to 10 

Dropout  0.2 or 0.3 

Momentum 0.5 or 0.9 

Learning Rate 0.1 

 

The enhanced model employs the Adam optimization 

technique and divides the dataset into distinct sets for 

training, validation, and testing. This division allows for 

learning, hyperparameter tuning, and performance 

evaluation, respectively. The optimal model selection 

during training is facilitated through the utilization of 

early stopping. The exploration for improved TFT 

parameters encompasses a prediction time step of 30 

steps, the encoder layer is set as 4, batch sizes are fixed to 

64, state sizes from 32 to 256 and it is set to 64, learning 

rates from 0.0001 to 0.1, number of attention heads from 

1 to 8, dropout rates from 0 to 0.4, Loss Function values 

from 0.1 to 0.9, Loss Function b values from 0.0001 to 

0.5, and Loss Function g values from 0.1 to 0.5. The 

hyperparameters that boosted TFT of the two units are 

presented in Table 6. 

Table 6:  Special Hypermeter for TFT 

Time 

steps 

Encoders 

layers 

Batch 

sizes 

Stat

e 

size 

Learnin

g rates 

Attention 

heads 

Dropout 

rates 

Loss 

Function 

a 

Loss 

Function 

b 

Loss 

Function 

g 

30 4 64 64 0.01 4 
0.20, 

0.30 
0.80 0.01 0.10 

 

The results of the TFT architecture predictions have been 

analyzed for different dropout rates, including 0.2 and 

0.3. It is observed that the dropout rate of 0.3 produced 

better prediction results. The mean absolute error for the 

TFT algorithm, with an epoch size of 200 and an 

optimizer of Adam, is 0.037 and the mean squared error 

is 0.01. Furthermore, the root mean squared error for the 

TFT-based WQI prediction model, with an epoch size of 

200, was found to be 0.1 and the R2 score is determined 

to be 0.92. 

The performance of the TFT architecture predictions is 

evaluated for various epoch sizes, including 20, 50, 100, 

150, and 200. It is determined that an epoch size of 200 

produced the best results. The mean absolute error for the 

TFT-based WQI prediction model, with an epoch size of 

200 and an optimizer of Adam, is recorded as 0.037 and 

the mean squared error was 0.01. Additionally, the root 

mean squared error for the TFT-based WQI prediction 

model, with an epoch size of 200, is found to be 0.1, and 

the R2 score is determined to be 0.92. 

Multiple experiments have been conducted using the 

WQI-SA dataset to develop WQI prediction models by 

varying the dropout rates (0.2 and 0.3) and the epoch sizes 

(20, 50, 100, 150, and 200). The results of these 

experiments, evaluated using standard metrics, are 

presented in Table 7a for the dropout rates and Table 7b 

for the epoch sizes. 
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Table 7a. Results of TFT-WQI Forecasts for Various Dropout Levels 

Dataset Dropout MAE MSE RMSE R2 Score 

WQI-SA 0.3 0.037 0.01 0.1 0.92 

 0.2 0.12 0.15 0.387 0.89 

 

Table 7b. Outcomes of TFT-WQI Predictions Across Different Epochs 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

200 0.037 0.01 0.1 0.92 

150 0.083 0.136 0.368 0.9 

100 0.12 0.15 0.387 0.89 

50 0.27 0.2 0.44 0.88 

20 0.34 0.23 0.479 0.86 

 

Fig.4 visualizes the actual time series data and the 

predicted time series through the use of quantile bands. 

The bands are determined by the values qL1, qU1, qL2, 

qU2, qL3, and qU3, which define the lower and upper 

bounds of each quantile. The actual time series is 

represented by a line labelled actual, while the predicted 

time series is represented by three distinct quantile bands, 

each defined by qL and qU values and labelled with the 

corresponding string. The expected value of the predicted 

time series, computed as the median as central quantile = 

mean, is plotted and labelled as expected. 

 

 

Fig.4. Visualizing Actual and Predicted Time Series Data with Quantile Bands 

 

Comparative Analysis 

This study conducts a comparative analysis of various 

water quality index (WQI) prediction models. The 

performance of the WQI prediction model based on 

temporal fusion transformer (TFT) architectures is 

compared with the LSTM, GRU, and RNN architectures 

using metrics such as MAE, MSE, RMSE, and R2 score. 

The TFT model is implemented for 20, 50, 100, 150, and 

200 epochs with hyperparameters set into the model. The 

LSTM-WQI, GRU-WQI, and RNN-WQI models are also 

executed for the same number of epochs using relevant 

hyperparameters. The comparative results of the TFT-

WQI prediction model are compared with deep learning 

architectures and depicted in Table 8 and the performance 

analysis is illustrated in Fig.5. 
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Table 8. Comparative Performance Result of WQI Prediction Models 

Model  Dropout Epoch MAE MSE RMSE R2 Score 

TFT-WQI 

0.3 200 

0.037 0.01 0.1 0.92 

RNN -WQI 0.23 0.25 0.5 0.84 

LSTM-

WQI 
0.02 0.09 0.3 0.9 

GRU-WQI 0.1 0.2 0.44 0.88 

 

 

Fig.5. Performance Analysis of WQI Prediction Models 

The mean absolute error is observed as 0.037 for TFT 

based WQI prediction model, whereas 0.25 for RNN, 

0.02 for LSTM and 0.1 for GRU-based prediction 

models. High MAE is observed for GRU based prediction 

model and less MAE is obtained for the TFT-WQI 

prediction model and the results are illustrated in Fig.6a. 

 

Fig. 6a. MAE of WQI Prediction Models 

The RMSE for the WQI prediction model based on TFT 

architectures is observed to be 0.1, the other deep learning 

architectures such as RNN-WQI obtained 0.5, LSTM-

WQI is 0.3 and GRU-WQI is 0.44 and is depicted in 

Fig.6b. The high RMSE is observed for the RNN-based 

WQI prediction model and less error is obtained when 

employing TFT-WQI prediction model for the given 

dataset.  

 

Fig 6b. RMSE of WQI Prediction Models 
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The R2 score value for TFT based WQI prediction model 

is observed as 0.92 and the outperforming model in river 

water quality forecasting. The deep learning algorithms 

are compared with the TFT WQI prediction model to find 

the best efficient model. The LSTM-WQI approach is 

found 0.9, RNN-WQI got 0.84 and the GRU-WQI model 

is observed at 0.88 while training with the WQI-SA 

dataset and the results are illustrated in Fig.6c. 

 

Fig 6c. R2 Score of WQI Prediction Models 

Findings 

The results of the present study conclusively demonstrate 

the efficacy of the Temporal Fusion Transformer 

architecture in the development of prediction models for 

time series data, such as the prediction of water quality 

index. The WQI-prediction model built with TFT is found 

that the TFT-WQI prediction model handled time series-

based water quality data efficiently with a high R2 score 

value and less error rate. The investigations carried out in 

this research provide strong evidence of the usefulness of 

the TFT architecture in addressing the challenges inherent 

in the prediction of WQI. The Temporal Fusion 

Transformer-based WQI prediction model has been found 

to have several key advantages over traditional models, 

including improved accuracy, better handling of temporal 

dependencies, better representation of complex 

relationships, and improved generalization performance. 

The incorporation of specific hyperparameters has led to 

improvements in the TFT architecture, making it stand 

apart from other models. The temporal fusion approach 

effectively captures the temporal relationships between 

different water quality parameters, while the Transformer 

architecture is well-suited for the handling of river water 

quality data. The resulting model provides a clear and 

concise understanding of the relationships between 

different water quality parameters and is better equipped 

to handle complex and diverse data sets. The model 

demonstrates strong generalization performance and 

allows to effectively predict the water quality index in 

real-world scenarios.  

6. Conclusion 

This research highlights the effectiveness of the Temporal 

Fusion Transformer approach in predicting the water 

quality index. The study utilized seasonal data obtained 

from a visual crossing site between the years 2016 and 

2020, integrated it with the physiochemical parameters of 

the Bhavani River water and resulted in the construction 

of a novel time series dataset. The Temporal Fusion 

Transformer (TFT) approach was utilized to design and 

develop a river water quality forecasting model. The 

performance of the TFT model was evaluated and 

compared with LSTM-WQI, RNN-WQI and GRU-WQI 

prediction models and it was found that the TFT-WQI 

prediction model handled time series-based water quality 

data efficiently. The research determined that the 

utilization of Temporal Fusion Transformer architecture 

represents a meaningful advancement in water quality 

prediction by demonstrating the efficacy in forecasting 

the Water Quality Index. Furthermore, the research 

developed a generalized TFT model that can be applied 

to predict the water quality of any river and can also serve 

as a pre-trained model for transfer learning, which is a 

significant step forward in the field of water quality 

prediction. 

Reference  

[1] Chang, H., Zhang, Y., & Chen, L. (2003). Gray 

forecast of Diesel engine performance based on 

wear. Applied Thermal Engineering, 23(17), 2285–

2292.  

[2] Ait Maatallah, O., Achuthan, A., Janoyan, K., & 

Marzocca, P. (2015). Recursive wind speed 

forecasting based on Hammerstein Auto-Regressive 

model. Applied Energy, 145, 191–197. 

[3] Chiang, C.J.; Yang, J.L.; Cheng, W.C. (2013) 

Temperature and state-of-charge estimation in 

ultracapacitors based on extended Kalman filter. J. 

Power Sour. 234, 234–243.  

[4] Lee, S.; Kim, C.K.; Kim, D.(2020) Monitoring 

Volatility Change for Time Series Based on Support 

Vector Regression. Entropy, 22, 1312.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 277–293 |  292 

[5] Gumus, M.; Kiran, M.S. Crude oil price forecasting 

using XGBoost. In Proceedings of the 2017 

International Conference on Computer Science and 

Engineering (UBMK), Antalya, Turkey, pp. 1100–

1103. 

[6] Hotait, H.; Chiementin, X.; Rasolofondraibe, 

L.(2021) Intelligent Online Monitoring of Rolling 

Bearing: Diagnosis and Prognosis. Entropy, 23, 791.  

[7] Dudek, G. Short-term load forecasting using 

random forests. (2014) In Proceedings of the 7th 

IEEE International Conference Intelligent Systems 

IS’2014 (Advances in Intelligent Systems and 

Computing), Warsaw, Poland 

[8] Muzaffar, S.; Afshari, (2019), A. Short-term load 

forecasts using LSTM networks. Energy Procedia, 

158, 2922–2927.  

[9]  Jiang, Q.; Tang, C.; Chen, C.; Wang, X.; Huang, Q. 

Stock price forecast based on LSTM neural 

network.(2018) In Proceedings of the Twelfth 

International Conference on Management Science 

and Engineering Management, Melbourne, 

Australia; pp. 393–408. 

[10] Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; 

Ghahremani, M.; Palmieri, F.; Liu, Y. (2020) 

Temporal convolutional neural (TCN) network for 

an effective weather forecasting using time-series 

data from the local weather station. Soft Comput, 

16453–16482. 

[11] Lim, B., Arik, S. O., Loe , N. & Pster, T.(2021) 

Temporal fusion transformers for interpretable 

multi-horizon time series forecasting. International 

Journal of Forecasting. 

[12] Li, Z. et al. (2018) Water Quality Prediction Model 

Combining Sparse Auto-encoder and LSTM 

Network. 51 (17), 831. 

[13] Srivastava, A., & Cano, A. (2022). Analysis and 

forecasting of rivers pH level using deep learning. 

Progress in Artificial Intelligence, 11(2), 181–191.  

[14] Yang, Y. et al. (2021), A study on water quality 

prediction by a hybrid CNN-LSTM model with 

attention mechanism. Environmental Science and 

Pollution Research. 

[15] J. P. Nair and M. S. Vijaya, "Predictive Models for 

River Water Quality using Machine Learning and 

Big Data Techniques - A Survey,"International 

Conference on Artificial Intelligence and Smart 

Systems (ICAIS), 2021, pp. 1747-1753. 

[16] Aldhyani THH, Al-Yaari M, Alkahtani H, Maashi 

M. Water Quality Prediction Using Artificial 

Intelligence Algorithms. Appl Bionics Biomech. 

2020 

[17] Nair, Jitha P., and M. S. Vijaya. (2022) River Water 

Quality Prediction and Index Classification Using 

Machine Learning’. Journal of Physics: Conference 

Series, vol. 2325, no, p. 012011.  

[18] Nair, J.P., Vijaya, M.S. (2022). Exploratory Data 

Analysis of Bhavani River Water Quality Index 

Data. In: Kumar, S., Hiranwal, S., Purohit, S.D., 

Prasad, M. (eds) Proceedings of International 

Conference on Communication and Computational 

Technologies. Algorithms for Intelligent Systems. 

Springer, Singapore.  

[19] Heddam, S., 2014. Generalized regression neural 

network-based approach for modelling hourly 

dissolved oxygen concentration in the Upper 

Klamath River, Oregon, USA. Environmental 

Technology (United Kingdom) 35, 1650–1657. 

10.1080/ 09593330.2013.878396. 

[20] Basant, N., Gupta, S., Malik, A., Singh, K.P., 2010. 

Linear and nonlinear modelling for simultaneous 

prediction of dissolved oxygen and biochemical 

oxygen demand of the surface water case study 

Chemometr.Intellig.Lab.Syst.104,172–180. 

[21] Wang, Y., Zhou, J., Chen, K., Wang, Y., & Liu, L. 

(2017). Water quality prediction method based on 

LSTM neural network. In 2017 12th International 

Conference on Intelligent Systems and Knowledge 

Engineering (ISKE) (pp. 1-5). IEEE.  

[22] Santhana Lakshmi, V., Vijaya, M.S. (2022). A 

Study on Machine Learning-Based Approaches for 

PM2.5 Prediction. In: Karrupusamy, P., Balas, V.E., 

Shi, Y. (eds) Sustainable Communication Networks 

and Application. Lecture Notes on Data Engineering 

and Communications Technologies, vol 93. 

Springer, Singapore.  

[23] Heddam, S., Kisi, O., 2018. Modelling daily 

dissolved oxygen concentration using least square 

support vector machine, multivariate adaptive 

regression splines and M5 model tree. J. Hydrol. 

559, 499–509. 

[24] Nair, Jitha P., and M S Vijaya. (2022) ‘Analysing 

And Modelling Dissolved Oxygen Concentration 

Using Deep Learning Architectures’. International 

Journal of Mechanical Engineering, vol. 7, pp. 12–

22. 

[25] Li L, Jiang P, Xu H, Lin G, Guo D, Wu H (2019) 

Water quality prediction based on recurrent neural 

network and improved evidence theory: a case study 

of Qiantang River, China. Environ Sci Pollut Res 

26(19): 19879–19896  

[26] Fatima Abbas, Deep Learning Approaches for 

Medical Image Analysis and Diagnosis , Machine 

Learning Applications Conference Proceedings, 

Vol 3 2023. 

[27] Paul Garcia, Ian Martin, Laura López, Sigurðsson 

Ólafur, Matti Virtanen. Enhancing Student 

Engagement through Machine Learning: A Review. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(10s), 277–293 |  293 

Kuwait Journal of Machine Learning, 2(1). 

Retrieved from 

http://kuwaitjournals.com/index.php/kjml/article/vi

ew/163 

[28] Sai Pandraju, T. K., Samal, S., Saravanakumar, R., 

Yaseen, S. M., Nandal, R., & Dhabliya, D. (2022). 

Advanced metering infrastructure for low voltage 

distribution system in smart grid based monitoring 

applications. Sustainable Computing: Informatics 

and Systems, 35 doi:10.1016/j.suscom.2022.100691 

 

http://kuwaitjournals.com/index.php/kjml/article/view/163
http://kuwaitjournals.com/index.php/kjml/article/view/163

