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Abstract. In this paper, we present a sufficient condition for the unique existence of so-

lutions for a coupled system of nonlinear fractional Langevin equations with a new class of

multipoint and nonlocal integral boundary conditions. We define a Z
∗
λ-contraction map-

ping and present the sufficient condition by identifying the problem with an equivalent

fixed point problem in the context of b-metric spaces. Finally, some numerical examples

are given to validate our main results.

1. Introduction

Langevin[8] developed a mathematical equation, naturally termed as Langevin
equation, of Brownian motion in 1908; later, Kubo[7] conceived a generalized
Langevin differential equation, with a fractional memory kernel, in order to
depict the fractal processes. The existence and uniqueness of solutions for a
Langevin initial value problem with two fractional orders, is investigated by Yu et
al.[13] in 2014; the existence of solutions of nonlinear fractional initial and boundary
value problems in this context are discussed in [1, 4, 5, 9, 10, 13, 15].
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In this paper, we consider the following coupled system of nonlinear fractional
Langevin equations:

cDβ (cDα + γ)x(t) = f(t, x(t), y(t))
cDβ (cDα + γ) y(t) = f(t, y(t), x(t)), t ∈ [0, 1](1.1)

supplemented with the boundary conditions:

(1.2) x(0) = y(0) = 1;

(1.3) cDαx(1) + γx(1) =c Dαy(1) + γy(1) = 0;

(1.4) x(1) + y(1) =

n∑
i=1

ai

δi∫
0

(x(s) + y(s))ds+ bi(x(δi) + y(δi));

(1.5)

∫ 1

0

(x(t)− y(t))dt = 0.

where, α ∈ (0, 1], β ∈ (1, 2], γ ∈ R∗, ai, bi ∈ R for i = 1, 2, · · · , n, 0 < δ1 < δ2 <
· · · < δn < 1 and f : [0, 1]× R× R → R is a continuous function.

This paper is organised as follows. In Section 2, some necessary antecedents are
provided. In Section 3, we define a Z

∗

λ-contraction mapping and prove a coupled
fixed point theorem. We apply the obtained coupled fixed point theorem to establish
the sufficient conditions for the existence and uniqueness of solutions to the system
(1.1) in Section 4. Finally, numerical examples are provided to show the applicability
of our results.

2. Preliminaries

Definition 2.1.([2]) Let X be a nonempty set and b ≥ 1 be a given real number.
A function d : X2 → [0,∞) is said to be b-metric if for all x, y, z ∈ X,

(B1) d(x, y) = 0 ⇔ x = y;

(B2) d(x, y) = d(y, x);

(B3) d(x, z) ≤ b[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Definition 2.2.([3]) A point (x, y) ∈ X2 is said to be a coupled fixed point of
F : X2 → X if F (x, y) = x and F (y, x) = y.

Definition 2.3.([6]) Let ζ : [0,∞)2 → R, then ζ is said to be a simulation function
if it satisfies the following conditions:
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(ζ1) ζ(t, s) < s− t, for all t, s > 0;

(ζ2) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn = l > 0,

then lim sup
n→∞

ζ(tn, sn) < 0.

We denote the collection of all simulation functions by Z.

Definition 2.4.([13]) The Riemann-Liouville fractional integral of order q for a
continuous function f is defined as

Iqf(t) =
1

Γ(q)

∫ t

0

f(s)

(t− s)1−q
ds, q > 0,

provided the integral exists, where Γ is the Gamma function defined by
Γ(x) =

∫∞
0
tx−1e−tdt.

Definition 2.5.([13]) Let f : [0,∞) → R be an atleast n-times continuously
differentiable function. Then the Caputo derivative of fractional order q of f is
given by

cDqf(t) =
1

Γ(n− q)

∫ t

0

fn(s)

(t− s)q+1−n ds,

n− 1 < q < n, n = [q] + 1, where [q] denotes the integer part of the real number q.

Lemma 2.6.([13]) For q > 0, the general solution of the fractional differential
equation cDqx(t) = 0 is given by

x(t) = c0 + c1t+ · · ·+ cn−1t
n−1,

where ci ∈ R, i = 0, 1, · · · , n− 1, (n = [q] + 1).

Lemma 2.7.([13]) If β > α > 0, n = [β] + 1 and x ∈ Cn[a, b], then

i. cDαIβx(t) = Iβ−αx(t), holds almost everywhere on [0, 1] and it is valid at
any point t ∈ [0, 1], whenever x ∈ C[0, 1]; cDαIαx(t) = x(t), for all t ∈ [0, 1];

ii. cDαtλ−1 = Γ(λ)tλ−α−1

Γ(λ−α) , λ > [α] and cDαtλ−1 = 0, λ ≤ [α],

where Cn[a, b] denotes set of all n times continuously differentiable function on [a, b]
and C[0, 1] denotes the set of all real valued continuous functions on [0, 1].

3. A New Coupled Fixed Point Theorem

In this section we define a particular class of simulation functions Z∗ which we
use to formulate a new contraction.

Definition 3.1. Let ζ be a simulation function. If we say ζ belongs to the class Z∗

then ζ(t, s1) ≤ ζ(t, s2) whenever s1 ≤ s2.

Here we note that the class Z∗ is a proper subset of the class Z, since the
function ζ(t, s) = −t− s is in Z, but not in Z∗.
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Definition 3.2. A 2-variable mapping F : X2 → X is said to be a Z
∗

λ-contraction
with respect to ζ ∈ Z∗ if there exists λ ∈ [0, 1] such that

(3.1) ζ

(
bd (F (x, y), F (u, v)) , (1− λ)M1(x, y, u, v) +

λ

4
M2(x, y, u, v)

)
≥ 0,

whenever

(3.2)
λ

2
S(x, y) ≤ M1(x, y, u, v) +

λ

4
S(u, v)

for all x, y, u, v ∈ X, where

S(x, y) = d(x, F (x, y)) + d(y, F (y, x));

M1(x, y, u, v) = max{d(x, u), d(y, v)};
M2(x, y, u, v) = max{d(x, F (u, v)), d(y, F (v, u)), d(u, F (x, y)), d(v, F (y, x))}.

Theorem 3.3. Let (X, d) be a complete b-metric space and F : X2 → X be a
Z

∗

λ-contraction with respect to ζ ∈ Z∗, then F has a unique coupled fixed point in
X.

Proof. Let (x0, y0) ∈ X2, then we can construct two sequences {xn} and {yn} such
that

xn+1 = F (xn, yn) and yn+1 = F (yn, xn).

Suppose M1(xm, ym, xm+1, ym+1) = 0, for some m ≥ 0, then xm = xm+1 and
ym = ym+1, which implies (xm, ym) is a coupled fixed point of F as desired.

On the other hand, suppose M1(xn, yn, xn+1, yn+1) ̸= 0 for all n ≥ 0, then the
following statements are hold:

1. The sequences {xn} and {yn} are asymptotically regular.

2. The sequences {xn} and {yn} must be Cauchy and has to converge to some
x and y in X respectively, as X is complete.

From here the proof of the theorem proceeds in two natural steps: proving that (x, y)
is the required coupled fixed point and then establishing its uniqueness. Indeed,
suppose

(3.3)
λ

2
S(xn, yn) >M1(xn, yn, x, y) +

λ

4
S(x, y)

for infinitely many n, then by letting limit n→ ∞, we have

λ

4
(d(x, F (x, y)) + d(y, F (y, x))) ≤ 0
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which is possible only when F (x, y) = x and F (y, x) = y; otherwise there must
exists N ∈ N such that

λ

2
S(xn, yn) ≤ M1(xn, yn, x, y) +

λ

4
S(x, y)

for all n ≥ N , but then by using contractive condition (3.1), we get

0 ≤ ζ

(
bd(xn+1, F (x, y)), (1− λ)M1(xn, yn, x, y) +

λ

4
M2(xn, yn, x, y)

)
,

for all n ≥ N . Subsequently, by using (ζ1), we get

bd(xn+1, F (x, y)) ≤ (1− λ)M1(xn, yn, x, y) +
λ

4
M2(xn, yn, x, y),

for all n ≥ N . Thus by letting limit n → ∞ on both sides of the above inequality,
we get

bd(x, F (x, y)) ≤ λ

4
max{d(x, F (x, y)), d(y, F (y, x))}.(3.4)

Now by repeating the same arguments used to obtain Equation (3.4), just by
interchanging xn and yn in Equation (3.3), we get

bd(y, F (y, x)) ≤ λ

4
max{d(y, F (y, x)), d(x, F (x, y))}.(3.5)

Consequently, by adding (3.4) and (3.5), we have

b(d(x, F (x, y)) + d(y, F (x, y))) ≤ λ

2
max{d(x, F (x, y)), d(y, F (y, x))}

≤ λ

2
(d(x, F (x, y)) + d(y, F (y, x)));

but as λ ∈ [0, 1] and b ≥ 1, it is easy to see that d(x, F (x, y)) + d(y, F (x, y)) = 0
which implies that (x, y) is a coupled fixed point of F as desired. Next, we claim
that x = y. Suppose x ̸= y,then

λ

2
S(x, y) =

λ

2
(d(x, F (x, y)) + d(y, F (y, x)))

= 0

≤ M1(x, y, y, x) +
λ

4
S(y, x)

by using contractive condition (3.1), we get

0 ≤ ζ

(
bd(x, y), (1− λ)d(x, y) +

λ

4
d(x, y)

)
≤ ζ

(
bd(x, y),

(
1− 3λ

4

)
d(x, y)

)
.
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By using (ζ1), we get

d(x, y) ≤
(
4− 3λ

4b

)
d(x, y).

It is not possible, since
4− 3λ

4b
≤ 1.

Hence it results that x = y as required.
To the end, suppose (u, u) is an another coupled fixed point of F , then we have

λ

2
S(x, x) = 0

≤ M1(x, x, u, u) +
λ

4
S(u, u)

and therefore by using contractive condition (3.1), we get

0 ≤ ζ

(
bd(x, u), (1− λ)d(x, u) +

(
1− 3λ

4

)
d(x, y)

)
;

consecutively, by using (ζ1), we get

d(x, u) ≤
(
4− 3λ

4b

)
d(x, u),

which implies x = u, as 4−3λ
4b ≤ 1, which proves the uniqueness of (x, x). 2

Example 3.4. Let X = [0, 1.4] and d : X2 → [0,∞) be the mapping defined by
d(x, y) = |x − y|2, then clearly (X, d) is a complete b-metric space with coefficient
2. Let F : X2 → X be the mapping defined by

F (x, y) =

{
sin(x+y)

2 if (x, y) ∈ [1, 1.4]
x
3 otherwise

If we let λ = 0.5 and ζ(t, s) = 0.9s − t, then the contractive condition (3.1) in
Theorem 3.3 is satisfied and it is visible that, (0, 0) is a unique coupled fixed point
of F .

Corollary 3.5. Let (X, d) be a complete b-metric space and F : X2 → X be a
2-variable mapping. If there exists ζ ∈ Z∗ such that

0 ≤ ζ (bd (F (x, y), F (u, v)) ,max{d(x, u), d(y, v)}) ,(3.6)

for all x, y, u, v ∈ X, then F has a unique coupled fixed point in X.

Proof. By letting λ = 0 in Theorem 3.3, we get the proof. 2
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Remarks 3.6. In corollary 3.5,

(i) If we take b = 1, then we get the result of Santhi et al.[11].

(ii) If we let ζ(t, s) = ks − t, where k ∈ (0, 1) then we get the result posted by
Bhaskar and Lakshmikantham[3].

(iii) If we let ζ(t, s) = ϕ(s)− t where ϕ : [0,∞) → [0,∞) is an increasing function
with 0 = ϕ(0) < ϕ(t) < t and lim

r→t+
ϕ(r) < t for each t > 0, then we get the

results of Sintunavarat et al.[12] and Zlatanov et al.[14].

4. Existence Results

Let us define some notations for our convenience.

Iθ0 =

t∫
0

(t− s)α−1

Γ(α)
θ(s)ds; Iθ1 =

t∫
0

(t− s)α+β−1

Γ(α+ β)
θ(s)ds;

Iθ2 =

1∫
0

(1− s)β−1

Γ(β)
θ(s)ds; Iθ3 =

1∫
0

(1− s)α−1

Γ(α)
θ(s)ds;

Iθ4 =

1∫
0

(1− s)α

Γ(α+ 1)
θ(s)ds; Iθ5 =

1∫
0

(1− s)α+β−1

Γ(α+ β)
θ(s)ds;

Iθ6 =

1∫
0

(1− s)α+β

Γ(α+ β + 1)
θ(s)ds; Iθ7 =

δi∫
0

(δi − s)α−1

Γ(α)
θ(s)ds;

Iθ8 =

δi∫
0

(δi − s)α

Γ(α+ 1)
θ(s)ds; Iθ9 =

δi∫
0

(δi − s)α+β−1

Γ(α+ β)
θ(s)ds;

Iθ10 =

δi∫
0

(δi − s)α+β

Γ(α+ β + 1)
θ(s)ds.

In addition, let

∆1 =
1

Γ(α+ 1)
−

n∑
i=1

aiδ
α+1
i

Γ(α+ 2)
−

n∑
i=1

biδ
α
i

Γ(α+ 1)
; ∆2 =

1

Γ(α+ 2)
−

n∑
i=1

aiδ
α+2
i

Γ(α+ 3)
−

n∑
i=1

biδ
α+1
i

Γ(α+ 2)
;

G =
1

Γ(α+ 3)
− 1

Γ(α+ 2)
; G∗ =

1

Γ(α+ 2)
+

1

Γ(α+ 1)
;

A =

n∑
i=1

ai

∆2 −∆1
; B =

n∑
i=1

bi

∆2 −∆1
.
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Here note that, none of the constants G, ∆1, ∆2 are zero and ∆1 ̸= ∆2.

Lemma 4.1. Let h, k : [0, 1] → R be continuous functions. Then the solution of
the system of fractional differential equations

cDβ (cDα + γ)x(t) = h(t)
cDβ (cDα + γ) y(t) = k(t), t ∈ [0, 1](4.1)

supplemented with the boundary conditions (1.2-1.5) is equivalent to the solution of
the following system of integral equations

x(t) =


−γIx0 + Ih1 − Ih2

tα

Γ(α+1) +
1
2

(
tα+1

Γ(α+2) −
tα

Γ(α+1)

)
(

Ih−k
2

GΓ(α+2) +
∆1I

h+k
2

∆2−∆1
+

γIx+y
3

∆2−∆1
+

γIx−y
4

G − Ih+k
5

∆2−∆1

− Ih−k
6

G − γBIx+y7 − γAIx+y8 +BIh+k9 +AIh+k10

)
;

(4.2)

y(t) =


−γIy0 + Ik1 − Ik2

tα

Γ(α+1) +
1
2

(
tα+1

Γ(α+2) −
tα

Γ(α+1)

)
(
− Ih−k

2

GΓ(α+2) +
∆1I

h+k
2

∆2−∆1
+

γIx+y
3

∆2−∆1
− γIx−y

4

G − Ih+k
5

∆2−∆1

+
Ih−k
6

G − γBIx+y7 − γAIx+y8 +BIh+k9 +AIh+k10

)
.

(4.3)

Proof. Using Lemmas 2.6 and 2.7, we can reduce the fractional differential equation
(4.1) to the following system of integral equations

x(t) = Ih1 + c0
tα

Γ(α+ 1)
+ c1

tα+1

Γ(α+ 2)
− γIx0 + c2;

y(t) = Ik1 + d0
tα

Γ(α+ 1)
+ d1

tα+1

Γ(α+ 2)
− γIy0 + d2,

where c0, c1, c2, d0, d1, d2 ∈ R are arbitrary constants. Thus to substantiate our
claim, it is enough to find the constants c0, c1, c2, d0, d1 and d2, which can be done
by simple computations as follows: using the boundary condition (1.2), we get

c2 = d2 = 0.

Subsequently, it is easy to derive the following expressions:

(4.4) c0 + c1 = −Ih2

and

(4.5) d0 + d1 = −Ik2
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by using the boundary condition (1.3).
Adding the above two equations, we get

(4.6) c0 + d0 = −Ih+k2 − (c1 + d1).

Subtracting the above two equations, we get

(4.7) c0 − d0 = −Ih−k2 − (c1 − d1).

Further, we have

δi∫
0

(x(s) + y(s))ds = Ih+k10 +
δα+1
i

Γ(α+ 2)
(c0 + d0) +

δα+2
i

Γ(α+ 3)
(c1 + d1)− γIx+y8

and

x(δi) + y(δi) = Ih+k9 +
δαi

Γ(α+ 1)
(c0 + d0) +

δα+1
i

Γ(α+ 2)
(c1 + d1)− γIx+y7

for all 1 ≤ i ≤ n and therefore from the boundary conditions (1.4), it is easy to
derive

(c0 + d0)∆1 + (c1 + c2)∆2 = −Ih+k5 + γIx+y3 +

n∑
i=1

aiI
h+k
10

−γ
n∑
i=1

aiI
x+y
8 +

n∑
i=1

biI
h+k
9 − γ

n∑
i=1

biI
x+y
7 .(4.8)

On the other side, by computing the value of

1∫
0

(x(t)− y(t))dt = Ih−k6 +
c0 − d0
Γ(α+ 2)

+
c1 − d1
Γ(α+ 3)

− γIx−y4 ;

and substituting it in boundary condition (1.5), we have

(4.9)
c0 − d0
Γ(α+ 2)

+
c1 − d1
Γ(α+ 3)

= −Ih−k6 + γIx−y4 .

Consecutively, by substituting (4.6) in (4.8) and (4.7) in (4.9), we get

(4.10) c1 + d1 =
Ih−k2

GΓ(α+ 2)
− Ih−k6

G
+ γ

Ix−y4

G

and

c1 − d1 =
Ih+k2 ∆1

∆2 −∆1
− Ih+k5

∆2 −∆1
+ γ

Ix+y3

∆2 −∆1

+AIh+k10 − γAIx+y8 +BIh+k9 − γBIx+y7(4.11)
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respectively. Further, by adding (4.10) and (4.11), it results that

c1 =
1

2

(
Ih−k2

GΓ(α+ 2)
+

Ih+k2 ∆1

∆2 −∆1
+ γ

Ix+y3

∆2 −∆1
+ γ

Ix−y4

G

− Ih+k5

∆2 −∆1
− Ih−k6

G
− γBIx+y7 − γAIx+y8 +BIh+k9 +AIh+k10

)
.(4.12)

Subsequently, by subtracting (4.10) from (4.11), we get

d1 =
1

2

(
− Ih−k2

GΓ(α+ 2)
+

Ih+k2 ∆1

∆2 −∆1
+ γ

Ix+y3

∆2 −∆1
− γ

Ix−y4

G

− Ih+k5

∆2 −∆1
+
Ih−k6

G
− γBIx+y7 − γAIx+y8 +BIh+k9 +AIh+k10

)
.(4.13)

Finally, by using (4.12) and (4.13), we get

x(t) = −γIx0 + Ih1 − Ih2
tα

Γ(α+ 1)
+ c1

(
tα+1

Γ(α+ 2)
− tα

Γ(α+ 1)

)
and

y(t) = −γIy0 + Ik1 − Ik2
tα

Γ(α+ 1)
+ d1

(
tα+1

Γ(α+ 2)
− tα

Γ(α+ 1)

)
as desired. 2

The following theorem gives a sufficient condition for the unique existence of a
solution for a system of non-linear fractional differential equations.

Theorem 4.2. Suppose there exists a constant L > 0 such that

|f(t, x(t), y(t))− f(t, u(t), v(t))| ≤ Lmax{|x(t)− u(t)|, |y(t)− v(t)|},

for each t ∈ [0, 1] and x(t), y(t), u(t), v(t) ∈ C[0, 1] and if

2L2R2 < 1,

where

R =
γ

Γ(α+ 1)
+

1

Γ(α+ β + 1)
+

1

Γ(α+ 1)Γ(β + 1)

+
G∗

2

(
ρ1

Γ(α+ 2)
+

∆1

(∆2 −∆1)(Γ(β + 1))
+

2ρ2
Γ(α+ 1)

+
ρ3

Γ(α+ β + 1)
+

ρ4
Γ(α+ β + 2)

)
;



Solution to a Coupled System of Nonlinear Fractional Langevin Equations 447

with

ρ1 =
1

GΓ(β + 1)
+

2γ

G
+ 2Aγ

n∑
i=1

δα+1
i ;

ρ2 =
γ

∆2 −∆1
+ γB

n∑
i=1

δαi ;

ρ3 =
1

∆2 −∆1
+B

n∑
i=1

δα+βi ;

ρ4 =
1

G
+A

n∑
i=1

δα+β+1
i .

Then the system of fractional boundary value problem (1.1) has a unique solution
on [0, 1].

Proof. Indeed, in order to establish the inference of the theorem, we exhibit the
existence of solution for the coupled system of integral equations obtained from
previous lemma through our theory.

Let C be the complete b-metric space of all continuous functions from [0, 1] to
R with the metric

d(x(t), y(t)) = sup
t∈[0,1]

|x(t)− y(t)|2.

Then it is clear to see that, the solutions of the derived coupled system of integral
equations are elements of C. Let

fxy = f(t, x(t), y(t));

ψ1 = |f(t, x(t), y(t))− f(t, u(t), v(t))|;
ψ2 = |f(t, x(t), y(t)) + f(t, y(t), x(t))− f(t, u(t), v(t))− f(t, v(t), u(t))|;
ψ3 = |x(t)− u(t)|;
ψ4 = |x(t) + y(t)− u(t)− v(t)|.

Let F : C2 → C be the function defined by

F (x(t), y(t)) =



−γIx0 + I
fxy

1 − I
fxy

2
tα

Γ(α+1)

+ 1
2

(
tα+1

Γ(α+2) −
tα

Γ(α+1)

)(
I
fxy−fyx
2

GΓ(α+2) +
∆1I

fxy+fyx
2

∆2−∆1

+
γIx+y

3

∆2−∆1
+

γIx−y
4

G − I
fxy+fyx
5

∆2−∆1
− I

fxy−fyx
6

G

−γBIx+y7 − γAIx+y8 +BI
fxy+fyx

9 +AI
fxy+fyx

10

)
.

Then
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|F (x(t), y(t))− F (u(t), v(t))|

≤ γIψ3

0 + Iψ1

1 + Iψ1

2

|t|α

Γ(α+ 1)
+

1

2

(
|t|α+1

Γ(α+ 2)
+

|t|α

Γ(α+ 1)

)
(

Iψ2

2

GΓ(α+ 2)
+

∆1I
ψ2

2

∆2 −∆1
+

γIψ4

3

∆2 −∆1
+
γIψ4

4

G
+

Iψ2

5

∆2 −∆1

+
Iψ2

6

G
+ γBIψ4

7 + γAIψ4

8 +BIψ2

9 +AIψ2

10

)

≤ Lmax{|x(t)− u(t)|, |y(t)− v(t)|}(
γ|tα|

Γ(α+ 1)
+

|tα+β |
Γ(α+ β + 1)

+
|tα|

Γ(α+ 1)Γ(β + 1)

+
1

2

(
|tα+1|

Γ(α+ 2)
+

|tα|
Γ(α+ 1)

)(
1

GΓ(α+ 2)Γ(β + 1)
+

∆1

(∆2 −∆1)(Γ(β + 1))

+
2γ

(∆2 −∆1)(Γ(α+ 1))
+

2γ

GΓ(α+ 2)
+

1

(∆2 −∆1)Γ(α+ β + 1)

+
1

GΓ(α+ β + 2)
+

n∑
i=1

δαi
2γB

Γ(α+ 1)
+

n∑
i=1

δα+1
i

2γA

Γ(α+ 2)

+

n∑
i=1

δα+βi

B

Γ(α+ β + 1)
+

n∑
i=1

δα+β+1
i

A

Γ(α+ β + 2)

))
≤ LRmax{|x(t)− u(t)|, |y(t)− v(t)|},

where

R =
γ

Γ(α+ 1)
+

1

Γ(α+ β + 1)
+

1

Γ(α+ 1)Γ(β + 1)

+
G∗

2

(
ρ1

Γ(α+ 2)
+

∆1

(∆2 −∆1)(Γ(β + 1))
+

2ρ2
Γ(α+ 1)

+
ρ3

Γ(α+ β + 1)
+

ρ4
Γ(α+ β + 2)

)
.

Therefore

bd(F (x(t), y(t)), F (u(t), v(t))) ≤ 2L2R2 max(d(x(t), u(t)), d(u(t), v(t))),

which implies

0 ≤ 2L2R2 max(d(x(t), u(t)), d(u(t), v(t)))− bd(F (x(t), y(t)), F (u(t), v(t))).

Since 2L2R2 < 1, by letting ζ(t, s) = 2L2R2s− t in Corollary 3.5, it is clear to see
that the 2-variable mapping F satisfies the hypothesis of 3.5 and therefore F has
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a unique coupled fixed point in C. Thus the coupled system of Langevin fractional
differential equation has a unique solution. 2

Example 4.3. Consider the coupled system of fractional Langevin
boundary value problem given by

cD1.75(cD0.5 + 5)x(t) = t+ t3x+ sin y;
cD1.75(cD0.5 + 5)y(t) = t+ t3y + sinx;

x(0) = y(0) = 0;

cD0.5(x(1)) + 5x(1) =c D0.5(y(1)) + 5y(1) = 0;

x(1) + y(1) = 8

0.1∫
0

(x(s) + y(s))ds− 1.75

0.4∫
0

(x(s) + y(s))ds

+x(0.1) + y(0.1)− 7.25(x(0.4) + y(0.4));

and ∫ 1

0

(x(t) + y(t))dt = 0,

where α = 0.5, β = 1.75, γ = 0.5, n = 2, a1 = 8, a2 = −1.75, b1 = 1, b2 = −7.25,
δ1 = 0.1, δ2 = 0.4, f(t, x(t), y(t)) = t+ t3x+ sin y. Then
|f(t, x(t), y(t))− f(t, u(t), v(t))|

= |t+ t3x(t) + sin y(t)− t− t3u(t)− sin v(t)|
≤ |t3||x(t)− u(t)|+ |y(t)− v(t)|
≤ 2max{|x(t)− u(t)|, |y(t)− v(t)|}.

Calculating ∆1, ∆2, G and R, we get ∆1 = 6.0882, ∆2 = 2.1539,
G = −0.4513 and R = −0.2278. Consequently, by letting L = 2 and
computing 2L2R2, we get

2L2R2 = 0.4153 < 1

as desired. Thus the system satisfies all the conditions of Theorem 4.2 and hence
possess a unique solution.
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