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ABSTRACT With the aid of disturbance observer strategy, this article aims to investigate the disturbance
rejection and stabilization problems for periodic piecewise time-varying systems that are subject to time-
varying delays, parameter uncertainties, nonlinear perturbations and exogenous disturbances. To be more
specific, the periodic piecewise time-varying systems are built by segmenting the fundamental period of
periodic systems into a limited number of subintervals. Further, the disturbances engendered from an
exogenous system are estimated by deploying the disturbance observer and subsequently, on the premise of
disturbance that is esimated, a robust controller protocol is constructed for the considered system. Moreover,
by bridging the time-varying periodic piecewise Lyapunov-Krasovskii functional with a matrix polynomial
lemma, a set of adequate criteria is framed, which confirms the asymptotic stability of the system that
is being addressed. Subsequently, on the premise of established criteria, the design of periodic piecewise
gain matrices of devised controller and configured observer are presented. Eventually, the importance and
potential of the presented theoretical concepts are evidenced through offering a numerical illustration with
the simulation results.

INDEX TERMS Periodic piecewise time-varying systems, disturbance observer, uncertainity, nonlinear
perturbations, time-varying delay.

I. INTRODUCTION
In recent years, the study on periodic systems have been a
hot research topic and stimulating significant trends due to its
utility in many distinct sectors namely, rotor-bearing systems,
spacecraft attitude control, vehicle suspension, vibration sys-
tem, wind turbine system and so on [1], [2], [3], [4], [5].
Further, the floquet theory is applied to the analysis and
synthesis of periodic systems which acts as a catalyst for
periodicity-related research on a variety of topics in both
discrete and continuous time domains. However, solving
continuous-time periodic systems are more difficult than the
discrete-time periodic systems owing to their closed form
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solutions [6], [7], [8]. In order to confront this difficulty,
the periodic piecewise systems (PPSs) has been introduced,
which aids in simplifying the analysis of the system and
making dynamical results more accurate [9], [10]. To be
more specific, PPSs are defined by partitioning the speci-
fied fundamental period of continuous-time periodic systems
into several subintervals, where performance within each
subinterval is governed by a related subsystem. Additionally,
it is worth mentioning that the subsystems either can be
time-invariant or time-varying. Recently, many results have
been reported in time-invariant subsystems [11], [12], how-
ever, under certain circumstances, PPSs with time-invariant
subsystems may lack the required dynamic behavior of
approximated continuous-time periodic systems. Bearing this
in mind and also from a practical standpoint, it is more
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pertinent to characterize the periodic piecewise subsystems in
a time-varying form. As a consequence of this, the investiga-
tion on dynamical behavior of PPSs that contain time-varying
subsystems become an important research topic over the past
few years [13], [14], [15]. For instance, the researchers in
[13] probed the stabilization issue for PPSs through resilient
control. Even if it has a considerable number of applications
in the real world, there are still many qualitative studies need
to be investigated, which is one of the prompting factor of the
presented study.

On another research front, it is difficult to precisely sim-
ulate a plant in engineering applications since it is often
exposed to unpredictable factors. Moreover, the causes for
the emergence of modeling flaws, also known as parametric
uncertainties, include a high input, versatile modes, time
fluctuations and so on. Specifically, the presence of these
sorts of unpredictable factors in the environment has the
potential to undermine the system’s performance and it may
result in instability. In this light, taking into account the
parametric uncertainties in the system model is fundamental
one in both theoretical and practical aspects. Over the last
several years, scholars have focused a significant amount
of emphasis on the robustness analysis of a wide variety of
uncertain dynamical systems (see [16], [17], [18], [19], [20],
[21] and references therein). On the other hand, due to the
widespread application, the modern control systems comes
up with the inescapable generation of nonlinearities. As a
direct result, the presence of nonlinearities will bring about
certain unfavorable changes to the dynamics of the system.
Therefore, the high interest has been paid by the research
communities on investigation of systems with nonlinear per-
turbations and has resulted in the reporting of a large number
of works to maintain the stability of a variety of dynamical
systems despite the existence of nonlinearities [22], [23],
[24]. For instance, in [24], the tracking control issue has been
investigated for periodic piecewise time-varying systems in
the face of nonlinear perturbations and external disturbances.
Nevertheless, in regard to PPSs with time-varying subsys-
tems, the conjunction of time-varying periodic features with
the factors such as parameter uncertainty and nonlinearity
will lead to dilemma. Thereby, bearing in mind the afore-
mentioned facts, in this study, the parameter uncertainties and
nonlinear perturbations have been simultaneously taken into
account in the undertaken system.

The effect of time delays are a major characteristic in
many practical systems, namely, network systems, aircraft
systems, nuclear reactors, chemical engineering systems and
so on. Moreover, ignoring delays may cause design faults
and inaccurate analysis results, which will affect the stability
of a system. As a result, in recent years, the stabilization
problem for time-delayed systems has been received more
attention [25], [26], [27], [28], [29]. For instance, the authors
in [26] studied the adaptive fuzzy control for switched nonlin-
ear time-varying delay systems with prescribed performance
and unmodeled dynamics. Liu et al. [27] devised the PD
control for continuous-time systems with the presence of

time-varying delay. The authors in [29] investigated discrete
nonlinear systems subject to mixed delays through sliding
mode control. Moreover, while considering the PPSs, only
a few amount of research has been published that takes into
account time delays in the system [30]. From the standpoint of
broad practical application and looking at the results of these
groundbreaking studies, it is vital to continue the analysis and
synthesis of periodic piecewise time-varying systems with
time-varying delays.

Besides the foregoing, it is vital to acknowledge that
disturbances often prevail in real situations, which might
lead to insufficient system performance and, in worst cases,
could cause instability. To tackle this issue, various distur-
bance attenuation and rejection techniques has been devel-
oped by the researchers [31], [32], [33], [34], [35], [36].
In particular, the disturbance observer approach is one of the
most often used disturbance rejection techniques for dealing
with disturbances because of its ease of use, adaptability
and effectiveness in doing so. To be precise, the distur-
bance observer framework first builds an observer to esti-
mate the disturbance, wherein the construction of disturbance
observers is analogous to the state observers, and it has
significant implications in both theoretical and real-world
applications. Thereby, as a result of the intrinsic potential,
it has been applied to a broad range of dynamical systems
and a substantial body of literature has been generated in
this respect [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [47]. In particular, an interesting disturbance rejection
and adaptive command filtered control approach for uncertain
nonlinear systems with parametric uncertainties, mismatched
and matched disturbances has been investigated in [44] by
utilizing disturbance observer strategy. When it comes to
periodic piecewise time-varying systems, however, the idea
of a disturbance observer needs to be looked into to enhance
its practicability. Consequently, it is worth noting that the
stabilization problem for periodic piecewise time-varying
systems in the event of disturbances in the control channel
is much more difficult and intricate. This is owing to the
assertion that there is indeed a trade-off between the desired
stabilization and the disturbance rejection. In view of this,
in this work, we focus extensively on the construction of
the disturbance observer-based robust controller to achieve
significant stabilization performance of the system despite
the existence of disturbances. Further, this work’smost salient
features can be summed up in the following specific ways:

� The issues of disturbance rejection and stabilization
for uncertain periodic piecewise time-varying sys-
tems (UPPTVSs) with time-varying delays, nonlinear
perturbations and disturbances are scrutinised through
the disturbance observer-based robust control.

� In detail, the disturbance occurring in the control path is
assumed to be engendered from the exogenous system
with unknown frequency and phase.

� In order to get rid of the negative impacts that distur-
bances have on the control route, a disturbance rejec-
tion solution has been devised by taking use of the
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advantages proffered by the disturbance observer. To be
more specific, a periodic piecewise disturbance observer
setup is designed in order to estimate the disturbances
which aroused from the exogenous system.

� After which, the disturbance observer-based robust con-
troller is erected by putting together the output informa-
tion from the configured disturbance observer and the
state feedback control.

� In the context of linear matrix inequalities (LMIs),
a new set of sufficient criteria for validating the
expected outcomes is then developed utilizing the
Lyapunov-Krasovskii functional and a matrix polyno-
mial lemma. Furthermore, the planned controller and
framed observer gain values are determined using the
developed relations.

� Final analysis includes a numerical example to demon-
strate the applicability of theoretical outcomes and the
usefulness of controller as configured.

This paper is organised as follows: The model description of
UPPTVSs and some preliminaries are given in Section II; The
stability requirements are specified in Section III; Simulation
verification is provided in Section IV; In end, the conclusion
is given Section V.
Notations: Rn denotes the n-dimensional Euclidean space.

I represents the identity matrix. ||.|| signifies the Euclidean
vector norm of a matrix. The representation J > 0 delin-
eates that the matrix J is positive-definite. The {J }T
indicates the transpose of matrix J . sym(J ) signifies the
sym(J ) = J + J T .

II. PROBLEM FORMULATION AND PRELIMINARIES
A. SYSTEM DESCRIPTION
In this work, we focus on a class of uncertain periodic
systems in the face of time-varying delays and exogenous
disturbances, whose system characteristics can be expressed
in the following format:

µ̇(t) = (G(t)+1G(t))µ(t)+ (G%(t)+1G%(t))
µ(t − %(t))+ g(t, µ(t))+H(t)(u(t)+ δ(t)),

z(t) = I(t)µ(t),
µ(t0) = ς (t0), ∀t0 ∈ [−%, 0],

(1)

where µ(t) ∈ Rn stands for the system state; z(t) ∈ Rm

denotes the output vector; u(t) ∈ Rp portrays the control input
vector; δ(t) ∈ Rp describes the disturbance that occurs in
the input channel; %(t) indicates the time-varying delay that
met the set-up 0 ≤ %(t) ≤ %, %̇(t) ≤ η < 1 with known
constants % > 0 and η > 0; g(t, µ(t)) ∈ Rn denotes the
state-dependent nonlinear perturbations; µ(t0) designates the
state vector’s initial condition; G(t), G%(t), H(t) and I(t)
are the periodic matrices having the fundamental period Tn
with the configuration G(t) = G(t +Tn), G%(t) = G%(t +Tn),
H(t) = H(t + Tn) and I(t) = I(t + Tn), ∀t > 0.
Following this, the each fundamental period is parti-

tioned into S subintervals, that is, [`Tn + ti−1, `Tn + ti)
` = 0, 1, . . . , i ∈ N 1

= {1, 2, . . . , S} with Ti = ti − ti−1,

t0 = 0, tS = Tn and
S∑
i=1

Ti = Tn. By using preceding segmen-

tation as a starting point, the uncertain periodic systems (1)
can be reformed as UPPTVSs, having the ensuing format:

µ̇(t) = (Gi(t)+1Gi(t))µ(t)+ (G%i(t)+1G%i(t))
µ(t − %(t))+ gi(t, µ(t))+Hi(t)(u(t)+ δ(t)),

z(t) = Ii(t)µ(t),
µ(t0) = ς (t0), ∀t0 ∈ [−%, 0],

(2)

where Gi(t) = Gi + ξi(t)Ḡi, G%i(t) = G%i + ξi(t)Ḡ%i, Hi(t) =
Hi + ξi(t)H̄i and Ii(t) = Ii + ξi(t)Īi with Ḡi = Gi+1 − Gi,
Ḡ%i = G%(i+1) − G%i, H̄i = Hi+1 − Hi and Īi = Ii+1 − Ii,
ξi(t) =

t−`Tn−ti−1
Ti

∈ [0, 1), ∀t ∈ [`Tn + ti−1, `Tn +
ti), i ∈ N; Gi, G%i, Hi and Ii are the known matrices of the
ith subsystem with adequate dimensions; 1Gi(t) and 1G%i(t)
represent the parameter uncertainty matrices having the lay-
out [1Gi(t) 1G%i(t)] = Ui2i(t)[EAi EBi], here Ui,EAi, EBi
represents the real matrices and 2i(t) defines the unknown
function which met the requirement 2T

i (t)2i(t) ≤ I . For
all t ≥ 0, nonlinear perturbations gi(t, µ(t)) are assumed to
satisfy gi(t, 0) = 0 and consist of S portions across every
period, satisfying the following relation:

||gi(t, µ(t))|| ≤ ρi||Oiµ(t)||, (3)

where ρi > 0 and Oi ∈ Rn×n are scalar and constant matrix,
respectively.

B. DISTURBANCE OBSERVER DESIGN
In this study, it is considered that the disturbance δ(t) is
generated by a family of exogenous system, whose dynamics
are represented in the following periodic piecewise format:{

ς̇ (t) = Ai(t)ς (t),
δ(t) = Bi(t)ς (t),

(4)

where ς (t) ∈ Rv represents the state vector of the exogenous
system; Ai(t) = Ai + ξi(t)Āi, Āi = Ai+1 − Ai and Bi(t) =
Bi + ξi(t)B̄i, B̄i = Bi+1 − Bi are the known periodic
piecewise time-varying matrices.

Following that, in order to estimate the exogenous dis-
turbances that occurs inside the control signal path, it is
necessary to design a disturbance observer. In this context, the
following disturbance observer system is built in the periodic
piecewise format:

λ̇(t) =
[
Ai(t)+ ViHi(t)Bi(t)

]
(λ(t)− Viµ(t))

+Vi[Gi(t)µ(t)+ G%i(t)µ(t − %(t)+Hi(t)u(t)
+gi(t, µ(t))],

ς̂ (t) = λ(t)− Viµ(t),
δ̂(t) = Bi(t)ς̂ (t),

(5)

where Vi is the observer gain matrix, which will be deter-
mined later; λ(t) is the disturbance observer’s state; ς̂ (t) and
δ̂(t) mean the estimation of ς (t) and δ(t), respectively.
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C. DESIGN OF DISTURBANCE OBSERVER-BASED ROBUST
CONTROL
Moreover, in order to achieve the requisite system’s stabil-
ity (2), it is vital to design a robust control protocol that
tackles the disturbances occurring in the system. As a result,
the control framework for this study is constructed in the
following manner by combining the output of the disturbance
observer with the state feedback robust control:

u(t) = Ki(t)µ(t)− δ̂(t), (6)

whereKi(t) symbolizes the controller gain matrix, which will
be calculated in the latter segment. In a further, by defining
the error of disturbance estimation as $ (t) = ς (t) − ς̂ (t)
and substituting the framed controller (6) in (2), we have the
underlying closed-loop UPPTVSs and error system:

µ̇(t) = (Gi(t)+1Gi(t))µ(t)+ (G%i(t)+1G%i(t))
×µ(t − %(t))+Hi(t)Ki(t)µ(t)+Hi(t)Bi(t)$ (t)

+gi(t, µ(t)), (7)

$̇ (t) = [Ai(t)+ ViHi(t)Bi(t)]$ (t)+ Vi1Gi(t)µ(t)
+Vi1G%i(t)µ(t − %(t)). (8)

Remark 1: In [21], the exponential stabilization issue
for uncertain PPSs is investigated by designing robust
time-weighted guaranteed cost control. Further, the authors
in [24] studied the output tracking control issue for periodic
piecewise time-varying system subject to nonlinear pertur-
bations and external disturbances, wherein the external dis-
turbances are attenuated by employing the H∞ performance.
Moreover, the disturbance rejection problem is investigated
in [40] for the Markovian jump systems, wherein to effec-
tively estimate and reject the footprints of matched distur-
bances, a disturbance observer-based control is framed. It is
noted that the dynamical character of PPSs have been con-
ducted with disturbance attenuation approaches, wherein the
results show that the impacts of disturbances are mitigated
up to certain level. These studies served as inspiration for
implementing a disturbance rejection strategy in UPPTVSs.
In more detail, the footprints of disturbances are completely
eliminated with the aid of disturbance observer. Further, dif-
ferent from the disturbance observer that is implemented in
existing literature, in this study the disturbance observer is
constructed with a periodic piecewise character in order to
reject disturbances. This is one of the major improvements
that have been made to the system that is being considered.
Apart from this, the nonlinear perturbation and parameter
uncertainty are simultaneously considered for the addressed
system while achieving the foremost intention of this study,
since both factors have significant amount of effect on the
considered system. Considering these facts, in this study, the
disturbance rejection and stabilization issues are investigated
for the periodic piecewise time-varying systems with param-
eter uncertainty, nonlinear perturbations and time-varying
delay.

D. PRELIMINARIES
Ahead of proceeding to the next section, it is necessary to
consider the accompanying lemmas that are required for the
upcoming examinations.
Lemma 1 [25]: For known matrix L > 0, the inequality

β∫
α

ϕT (s)Lϕ(s)ds ≥ 1
β−α

ςTEς obeys for all continuously

differentiable functions ϕ : [α, β] → Rm, where E =[
4L −

6L
β−α

−( 6L
β−α

)T 12L
(β−α)2

]
and ςT =

[
β∫
α

ϕT (s)ds
β∫
α

β∫
s
ϕT (u)duds

]
.

Lemma 2 [43]: For appropriate dimensioned matricesM
andN, the inequalityMTN+NTM ≤ δMTM+ δ−1NTN
holds for any constant δ > 0.
Lemma 3 [9]:Let f (ω1, ω2, . . . , ωm) be a boundedmatrix

polynomial function described as f (ω1, ω2, . . . , ωm) = σ0 +

ω1σ1 + ω1ω2σ2 + . . . +

(
m∏
k=1

ωk

)
σm, where m ∈ Z+, σj

(j = 0, 1, . . .m) are real symmetric matrices and ωk (k =
0, 1, 2, . . .m) are variables with ωk ∈ [0, 1]. If

∑r
k=0 σk <

0 (r = 0, 1, . . .m), then the matrix polynomial function
f (ω1, ω2, . . . ωm) < 0.
Remark 2: In [45], to handle the implication of distur-

bances in the flexible air-breathing hypersonic vehicles,
a nonlinear disturbance observer (NDO) is constructed,
wherein the designed NDO estimates the disturbance and
considered system states. Moreover, for the purpose of reject-
ing disturbance, a class of new NDO for uncertain dynamical
systems is configured in [46]. In detail, the framed NDO is
based on the tracking differentiators and it also estimates the
uncertain type of disturbances. In a similar vein, the authors in
[47] constructed the tracking differentiators-based NDO for
the robust back stepping control of a flexible air-breathing
hypersonic vehicle, wherein the tracking differentiator is
planned based on hyperbolic sine function to handle the
difficulties in back stepping control. In distinction to these
observers, the disturbance observer in this work is structured
in a manner that has a periodic piecewise feature. Further,
we have incorporated the observer gain matrix into the dis-
turbance observer configuration, which aids in effective dis-
turbance estimation. Added to this, constructed disturbance
observer in this work makes use of the knowledge regarding
the states of theUPPTVSs (2).Moreover, themodelled distur-
bance observer estimates the disturbance in order to get rid of
the imprints left behind by disturbances. Besides, the design
of disturbance observer is more difficult by the fact that the
exogenous system is built in a periodic piecewise pattern.

III. MAIN RESULTS
The primary objective of this segment is to derive the ade-
quate stability conditions in terms of linear matrix inequali-
ties for the closed-loop system (7) and the error system (8)
by making use of the Lyapunov stability theory and the
matrix polynomial lemma. Moreover, this part is comprised
of two primary theorems. The first of which is presented
by assuming the gain values of observer and controller are
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known. After that, the acquired results in the first theorem are
expanded to the circumstance with unknown gains matrices.
Also, the relation for determining the planned gain matrices
of controller and observer will be provided in context of a
result to acquired linear matrix inequalities.
Theorem 1: Assume that positive scalars η, %, ρi, υi, ζb,

(b = 1, 2, 3, 4), Ti and gainmatricesKi(t),Vi are known. The
closed-loopUPPTVSs (7) and the configured error system (8)
are asymptotically stable, if the matrices Ji(t) > 0, Qi > 0,
R1 > 0, R2 > 0 and R3 > 0 (i ∈ N) exist, such that the below
relation holds:

[9]16×16 < 0, (9)

where 91,1 = sym{Ji(t)Gi(t)+Ji(t)Hi(t)Ki(t)}+
J̄i
Ti
+R1+

R2 + %
2R3, 91,2 = Ji(t)G%i(t), 91,6 = Ji(t)Hi(t)Bi(t),

91,7 = Ji(t), 91,8 = υiJi(t)OT
i , 91,9 = Ji(t)Ui,

91,10 = Ji(t)Ui, 91,11 = ETAi, 91,12 = ETAi, 92,2 =

−(1 − η)R1, 92,15 = ETBi, 92,16 = ETBi, 93,3 = −R2,
94,4 = −4R3, 94,5 =

6
%
R3, 95,5 = −

12
%2
R3, 96,6 =

sym {QiAi(t)+ QiViHi(t)Bi(t)}, 96,13 = 96,14 = QiViUi,
97,7 = −υiI , 98,8 =

−υi
ρ2i
I , 99,9 =

−1
ζ1
I , 910,10 =

−1
ζ2
I ,

911,11 = −ζ1I , 912,12 = −ζ3I , 913,13 =
−1
ζ3
I , 914,14 =

−1
ζ4
I , 915,15 = −ζ2I and 916,16 = −ζ4I .
Proof: The Lyapunov-Krasovskii functional of the ensu-

ing format is constructed with the aim of demonstrating this
theorem:

V(t) = µT (t)Ji(t)µ(t)+$ T (t)Qi$ (t)

+

t∫
t−%(t)

µT (v)R1µ(v)dv+

t∫
t−%

µT (v)R2µ(v)dv

+%

t∫
t−%

t∫
s

µT (v)R3µ(v)dvds, (10)

where Ji(t) = Ji+ ξi(t)J̄i with J̄i = Ji+1−Ji, JS+1 = J1
and Ji > 0 is suitable dimensioned real matrix.

Subsequently, by computing the derivative of (V )(t) along
the trajectories of the closed-loop UPPTVSs (7) and the error
systems (8), we obtain,

V̇(t) ≤ sym{µT (t)Ji(t)[(Gi(t)+1Gi(t))µ(t)+ (G%i(t)
+1G%i(t))µ(t − %(t))+Hi(t)Ki(t)µ(t)

×Hi(t)Bi(t)$ (t)]} + µT (t)

(
J̄i
Ti

)
µ(t)

+sym{$ T (t)Qi[Ai(t)+ ViHi(t)Bi(t)]$ (t)

+Vi1Gi(t)µ(t)+ Vi1G%i(t)µ(t − %(t))}
+µT (t)[R1 + R2]µ(t)-(1− η)µT (t − %(t))R1

× µ(t − %(t))− µT (t − %)R2µ(t − %)

+%µT (t)R3µ(t)− %2
t∫

t−%

µT (s)R3µ(s)ds. (11)

Following that, by using Lemma 1, the integral term in the
preceding connection is reformulated as stated below:

−%

t∫
t−%

µT (s)R3µ(s)ds≤ π̂T (t)

−4R3
6R3

%

( 6R3
%
)T −

12R3

%2

 π̂ (t),
(12)

where π̂T (t) = [
t∫

t−%
µT (s)ds

t∫
t−%

t∫
s
µT (v)dvds].

Further, by using the Lemma 2, for some positive scalars
ζ1, ζ2, ζ3 and ζ4, the terms involving uncertainty matrices
in (11) can be rephrased as follows:

µT (t)(Ji(t)Ui2i(t)EAi + ETAi2
T
i (t)U

T
i Ji(t))µ(t)

≤ ζ1µ
T (t)Ji(t)UiUT

i Ji(t)µ(t)+ ζ
−1
1 µT (t)ETAiEAiµ(t),

(13)

µT (t)Ji(t)Ui2i(t)EBiµ(t − %(t))+ µT (t − %(t))ETBi
×2T

i (t)U
T
i Ji(t)µ(t) ≤ ζ2µ

T (t)Ji(t)UiUT
i Ji(t)µ(t)

+ζ−12 µT (t − %(t))ETBiEBiµ(t − %(t)), (14)

$ T (t)QiViUi2i(t)EAiµ(t)+ µT (t)ETAi2
T
i (t)U

T
i V

T
i Qi

µ(t) ≤ ζ3$ T (t)QiViUiUT
i V

T
i Qi$ (t)+ ζ−13 µT (t)ETAiEAiµ(t)

(15)

$ T (t)QiViUi2i(t)EAiµ(t − %(t))+ µT (t − %(t))ETAi
×2T

i (t)U
T
i V

T
i Qi$ (t)

≤ ζ4$
T (t)QiViUiUT

i V
T
i Qi$ (t)

+ζ−14 µT (t − %(t))ETBiEBiµ(t − %(t)). (16)

Consequently, on the basis of relation (3), for some scalar
υi > 0, we obtain

υiρ
2
i µ

T (t)OT
i Oiµ(t)− υigTi (t, µ(t))gi(t, µ(t)) ≤ 0. (17)

Moreover, by combining the relations (11)-(17), we acquire
the subsequent expression:

˙(V )(t) ≤ χT (t)[ϒ]7×7χ (t), (18)

where χT (t) = [µT (t) µT (t − %(t)) µT (t − %)
t∫

t−%
µT (s)ds

t∫
t−%

t∫
s
µT (v)dvds $ T (t) gTi (t, µ(t))],

ϒ1,1 = sym{Ji(t)Gi(t) + Ji(t)Hi(t)Ki(t)} +
J̄i
Ti
+ R1 +

R2 + %2R3 + ζ1Ji(t)UiUT
i Ji(t) + ζ2Ji(t)UiUT

i Ji(t) +
ζ−11 ETAiEAi + ζ−13 ETAiEAi + υiρ

2
i Ji(t)O

T
i OiJi(t), ϒ1,2 =

Ji(t)G%i(t), ϒ1,6 = Ji(t)Hi(t)Bi(t), ϒ1,7 = −υJi(t),
ϒ2,2 = −(1−η)R1+ ζ

−1
2 ETBiEBi+ ζ

−1
4 ETBiEBi, ϒ3,3 = −R2,

ϒ4,4 = −4R3, ϒ4,5 =
6
%
R3, ϒ5,5 = −

12
%2
R3, ϒ6,6 =

sym {QiAi(t)}+sym {QiViHi(t)Bi(t)}+ζ3QiViUiUT
i V

T
i Qi+

ζ4QiViUiUT
i V

T
i Qi and ϒ7,7 = −υiI .

Following that, by using Lemma 2 to the matrix [ϒ]7×7,
we get the matrix [9]16×16, which is defined in the theorem
statement. As a result, if the relation (9) holds then it is evident
that V̇(t) < 0. Then, on the basis of Lyapunov stability
theory, the closed-loop UPPTVSs (7) and error system (8)
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are asymptotically stable, which completes the proof of the
theorem.

In what follows, the findings gained in Theorem 1 will
be stretched to the setting of unknown gain matrices for the
controller and observer in the following theorem. Also, the
convex optimization approach is employed to derive the gain
matrix relations.
Theorem 2: The systems (7) and (8) are asymptotically

stable for prescribed positive scalars η, %, ρi, υi, ζb, (b =
1, 2, 3, 4), γ and Ti, if there exist positive definite matrices
Ji > 0,Qi > 0 and appropriate dimensioned matrices
Xi,Yi,Zi, Ra, (i ∈ N; a = 1, 2, 3) satisfying the following
conditions:

�ia < 0, �ia +�ib < 0, �ia +�ib +�ic < 0,

�ia +�ib +�ic +�id < 0, (19)

Sia < 0, Sia +Sib < 0, Sia +Sib +Sic < 0,

JS+1 = J1, YS+1 = Y1, (20)

where �1,1
ia = sym {JiGi +HiYi} +

J̄i
Ti
+ R1 + R2 + %

2R3,

�
1,2
ia = JiG%i, �1,6

ia = HiXiBi, �
1,7
ia = Ji, �1,8

ia = υiO
T
i ,

�
1,9
ia = JiUi, �

1,10
ia = JiUi, �

1,11
ia = ETAi, �

1,12
ia =

ETAi, �
2,2
ia = −(1 − η)R1, �

2,15
ia = ETBi, �

2,16
ia = ETBi,

�
3,3
ia = −R2, �

4,4
ia = −4R3, �

4,5
ia =

6
%
R3, �

5,5
ia =

−
12
%2
R3, �

6,6
ia = sym {QiAi + ZiHiBi}, �

6,13
ia = ZiUi,

�
6,14
ia = ZiUi, �

7,7
ia = −υiI , �

8,8
ia =

−υi
ρ2i
I , �9,9

ia =
−1
ζ1
I ,

�
10,10
ia =

−1
ζ2
I , �11,11

ia = −ζ1I , �
12,12
ia = −ζ3I , �

13,13
ia =

−1
ζ3
I , �14,14

ia =
−1
ζ4
I , �15,15

ia = −ζ2I , �
16,16
ia = −ζ4I ,

S1,1
ia = −γ I , S

1,2
ia = JiHi − HiXi, S

2,2
ia = −γ I , �

1,1
ib =

sym
{
J̄iGi + GiJ̄i + H̄iYi +HiȲi

}
, �1,2

ib = J̄iG%i + G%iJ̄i,
�

1,6
ib = HiX̄iBi + H̄iXiBi + HiXiB̄i, �

1,12
ib = υiρ

2OT
i ,

�
1,7
ib = J̄i,�1,9

ib = J̄iUi, �
1,10
ib = J̄iUi,�

6,6
ib = sym{QiĀi+

ZiH̄iBi + ZiHiB̄i}, S1,2
ib = JiH̄i + J̄iHi − H̄iXi −

HiX̄i, �
1,1
ic = sym

{
J̄iḠi + H̄iȲi

}
, �1,2

ic = J̄iḠ%i, �1,6
ic =

H̄iX̄iBi + HiX̄iB̄i + H̄iXiB̄i, �
6,6
ic = sym

{
ZiH̄iB̄i

}
,

S1,2
ic = J̄iH̄i − H̄iX̄i and �1,6

id = {H̄iX̄iB̄i}.
Furthermore, the requisite gain matrices can be con-

structed using the connections as follows Ki(t) =

X−1i (t)Yi(t) and Vi = Q−1i Zi,where Xi(t) = Xi +

ξi(t)X̄i, X̄i = (Xi+1 − Xi) and Yi(t) = Yi + ξi(t)Ȳi, Ȳi =

(Yi+1 − Yi).
Proof: By using the aforementioned Lyapunov-

Krasovskii functional candidate V(t) (10), the outcomes of
this theorem can be obtained by adopting the same approach
as in the prior theorem. Further, by assuming Ji(t)Hi(t) =
Hi(t)Xi(t), Xi(t)Ki(t) = Yi(t), QiVi = Zi and substituting
them on the matrix 9, we get a matrix [4]16×16 and its ele-
ments are41,1 = sym{Ji(t)Gi(t)+HiYi(t)}+

J̄i
Ti
+R1+R2+

%2R3, 41,2 = Ji(t)G%i(t), 41,6 = Hi(t)Ji(t)Bi(t), 41,7 =

Ji(t), 41,8 = υiO
T
i , 41,9 = Ji(t)Ui, 41,10 = Ji(t)Ui,

41,11 = ETAi, 41,12 = ETAi, 42,2 = −(1− η)R1, 42,15 = ETBi,

42,16 = ETBi, 43,3 = −R2, 44,4 = −4R3, 44,5 =
6
%
R3,

45,5 = −
12
%2
R3, 46,6 = sym {QiAi(t)+ ZiHi(t)Bi(t)},

46,13 = ZiUi, 46,14 = ZiUi, 47,7 = −υiI , 48,8 =
−υi
ρ2i
I ,

49,9 =
−1
ζ1
I , 410,10 =

−1
ζ2
I , 411,11 = −ζ1I , 412,12 =

−ζ3I , 413,13 =
−1
ζ3
I , 414,14 =

−1
ζ4
I , 415,15 = −ζ2I and

416,16 = −ζ4I .
Thereafter, the terms containing time-varying matrices in

[4] can be equitably restructured in the following manner:
41,1 = sym {JiGi +HiYi}+

J̄i
Ti
+ξi(t)[J̄iGi+JiḠi+H̄iYi+

HiȲi]+ ξ2i (t)[J̄iḠi + H̄iȲi]+ R1 + R2 + %
2R3,

41,2 = JiG%i + ξi(t)[J̄iG%i + JiḠ%i]+ ξ2i (t)[J̄iḠ%i],
41,6 = HiXiBi + ξi(t)[HiX̄iBi + H̄iXiBi + HiXiB̄i] +
ξ2i (t)[H̄iX̄iBi +HiX̄iB̄i + H̄iXiB̄i]+ ξ3i (t)[H̄iX̄iB̄i],
41,7 = Ji + ξi(t)J̄i, 41,9 = (Ji + ξi(t)J̄i)Ui, 41,10 = (Ji +
ξi(t)J̄i)Ui and 46,6 = sym{(QiAi + ZiHiBi)+ ξi(t)[QiĀi +

ZiH̄iBi + ZiHiB̄i]+ ξ2i (t)[ZiH̄iB̄i]}.
Thereby, under the above considerations, the matrix4 can

be illustrated as follows:

4 = �ia + ξi(t)�ib + [ξi(t)]2�ic + [ξi(t)]3�id ,

where �ia, �ib, �ic and �id are same as defined in the
theorem statement.Moreover, if the relations specified in (19)
holds, then in line with Lemma 3 we acquire 4 < 0, from
which it is straightforward that V̇(t) < 0. Thereby, it is
guaranteed that the systems (7) and (8) are asymptotically
stable.

Besides the above demonstration, the constraint
Ji(t)Hi(t) = Hi(t)Xi(t) is not a strict inequality
and so it could not be directly solved via MATLAB
LMI toolbox. To solve this problem, we reconstruct the
equation Ji(t)Hi(t) = Hi(t)Xi(t) as [(Ji(t)Hi(t) −
Hi(t)Xi(t))T (Ji(t)Hi(t)−Hi(t)Xi(t))] < γ I , for some scalar
γ > 0. Now by applying Schur complement lemma, we get

5

=

[
−γ I (Ji(t)Hi(t)−Hi(t)Xi(t))T

(Ji(t)Hi(t)−Hi(t)Xi(t)) − γ I

]
< 0.

Subsequently, the afore-mentioned matrix5 can be stated
in the following equivalent form:

5 = Sia + ξi(t)Sib + [ξi(t)]2Sic,

where Sia, Sib and Sic are same as stated in the theorem
statement. Furthermore, if the constraint (20) is met, we pro-
cure the relation5 < 0 in accordance with Lemma 3, which
completes the proof of this theorem.
Remark 3: It is significant to pinpoint that matched dis-

turbances, which are a sort of external disturbance that enter
into the system via the same channel as the control input
path. Unlike other disturbances, the matched disturbances are
tough or downright unattainable to be measured by sensors.
To mitigate this problem, disturbance observers are built
which can quantify matched disturbances utilising data from
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the controlled plants and their outputs could perhaps be incor-
porated into the design of the control protocol. Therewithal,
it is essential to stress that the disturbance-observer approach
used in this work, in contrast to the conventional disturbance-
observer technique, is designed in a periodic piecewise lay-
out so as to make it more adaptable to the system that is
being examined. Thereby, due to the incorporation of a peri-
odic piecewise disturbance observer, the disturbance can be
rejected in an effective manner for enhancing the outcomes
and robustness of the considered PPTVSs (2).

IV. SIMULATION VERIFICATION
Here, the simulation experiments are shown to reinforce the
prominence and usefulness of the theoretical findings pre-
sented in the previous part. In order to make things simple,
we look the UPPTVSs in the frame of (2) with three subsys-
tems and their corresponding dwell time are taken as T1 = 1,
T2 = 0.5, T3 = 0.5 and the fundamental period as Tn = 2.
Furthermore, the following are the system matrices related
to the system under consideration and designed observer
system.

Subsystem 1:

G1 =
[
2.1 −1.7
−1.5 −1.2

]
, G%1 =

[
0.9 0.7
−0.5 −1

]
,

H1 =

[
−1.2
0.6

]
,

I1 =
[
1
0

]
, U1 =

[
0.7
1.2

]
, EA1 =

[
0.02− 0.01

]
, EB1

=
[
0.02 −0.01

]
,

O1 =

[
0.52 −0.01
0.52 −0.01

]
, A1 =

[
0 0.5
−0.5 0

]
andB1 =

[
1 0

]
.

Subsystem 2:

G2 =
[
2.0 −1.3
−1.4 −1.5

]
, G%2 =

[
0.8 0.6
−0.5 −1

]
,

H2 =

[
−1.00
0.36

]
,

I2 =
[
0.8
0

]
, U2 =

[
1.4
0.7

]
,EA2 =

[
0.03− 0.04

]
,EB2

=
[
0.05 −0.03

]
,O2 =

[
0.23 −0.14
0.23 −0.14

]
,

A2 =

[
0 0.48
−0.48 0

]
andB2 =

[
0.99 0

]
.

Subsystem 3:

G3 =
[
2.0 −1.5
−1.6 −1.3

]
, G%3 =

[
0.6 0.5
−0.4 −2

]
,

H3 =

[
−1.1
0.38

]
,

I3 =
[
0.6
0

]
,U3 =

[
1.5
0.6

]
,EA3 =

[
0.02− 0.03

]
,EB3

=
[
0.04 −0.06

]
, O3 =

[
0.02 −0.13
0.23 −0.14

]
,

A3 =

[
0 0.46
−0.46 0

]
andB3 =

[
0.97 0

]
.

Added to this, the diagrammatic representations of the
aforementioned matrices are doodled in Fig. 1. Now,
we choose the values of υ1 = 1.6, υ2 = 2.5, υ3 = 3.4,
ρ1 = 1.4, ρ2 = 1.3 and ρ3 = 1.5. The time-varying
delay is considered as %(t) = 0.6 + sin(0.2t) and also the
derivative bound of the delay function is η = 0.2. Based
on this, the feasible solution can be found by solving the
established LMIs (19)-(20) in Theorem 2. From thereon, the
gain matrices for controller and observer are reckoned by
utilizing the specified connection in Theorem 2. Specifically,
the observer gain matrices are shown below:

V1 =

[
0.8748 −0.1994
−0.1994 0.1598

]
,

V2 =

[
0.6672 −0.2610
−0.2610 0.5442

]
and

V3 =

[
0.4872 −0.1903
−0.1903 0.5093

]
.

Further, a visual portrayal of the developed controller and its
accompanying matrices are shown in Fig. 2.
In order to perform the simulation, nonlinear pertur-

bation and initial condition are opted as gi(t, µ(t)) =
[0.08 cos(0.3µ1(t))+0.02 sin((0.3/2)µ1(t)); 0.03 cosµ1(t)],
µ(t0) = [2 − 3]T .
Moreover, through the use of scalars and matrices

described above, the graphs are obtained and presented in
Figs. 3-11

FIGURE 1. Norm Variation of the parameters G(t), G%(t) and H(t).

In detail, the addressed system’s state response under the
case of existence and non-existence of disturbance observer-
based robust controller is pictured in Fig. 3. Therein, it indi-
cates very clearly that the developed controller is capable of
successfully accomplishing the desired goals.

Moreover, the trajectories of disturbance and its estima-
tion are depicted in Fig. 4. Precisely, it is apparent that the
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FIGURE 2. Time-history of matrices K(t), X(t) and Y(t).

FIGURE 3. Evolution of state trajectories.

estimated disturbance quickly estimates the actual distur-
bance. Alongside in Fig. 5, the states of assayed system is
presented in the absence of disturbance estimation via the
developed controller. From this, it is guaranteed that the
periodic piecewise disturbance observer provided in this work
has more advantageous for the system under consideration.

FIGURE 4. Disturbance and its estimation.

FIGURE 5. State trajectories in the absence of disturbance estimation.

FIGURE 6. Disturbance estimation error responses.

Subsequently, the responses of disturbance estimation error
trajectories are plotted in Fig. 6 wherein it converges to zero
and it indicates that the disturbance in addressed system
is estimated with high precision. Besides, the responses of
devised controller is pictured in Fig. 7.
Further, with an intent to perform a comparative analysis

between the criterion that are developed and extended passiv-
ity control scheme, the curves of the system and its output are,
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FIGURE 7. Control responses.

FIGURE 8. Evolution of state trajectories.

FIGURE 9. Response of output trajectories.

respectively, pictured in Figs. 8 and 9. These presented figures
implies that the undertaken approach is much more efficient
and superior to the existing extended passivity technique.
After that in Fig. 10, the variation of controller gain matrices
in the presence and exclusion of nonlinear perturbations is
given. By looking at this illustration, it is clear that when
compared to the case with nonlinear perturbations, the effort

FIGURE 10. Norm Variation of gain matrix K(t).

FIGURE 11. Time profile of the state trajectories for different delay
bounds.

needed in the nonlinear perturbations-free scenario is sub-
stantially less. Moreover, the Fig. 11 provides the response
of state trajectories for distinct delay bounds which makes
the impact of time delay readily apparent.

Altogether, it is plainly obvious that the designed
disturbance observer-based controller provides satisfactory
stabilization and disturbance estimation performance simul-
taneously for the probed system regardless of the presence
of time-varying delays, nonlinear perturbations and external
disturbances.

V. CONCLUSION
In this article, the stabilization and disturbance rejection
issues for UPPTVSs that are subject to time-varying delays,
nonlinear perturbations and disturbances are investigated
through the disturbance observer-based robust control. To put
it more precisely, in order for the system model to mir-
ror reality, uncertainty is taken into account. Further, the
periodic piecewise disturbance observer is developed with
the intention of estimating the disturbance that is ensued
from the exogenous system. Following that, the distur-
bance observer-based robust controller is developed by mak-
ing use of the output provided by the specified observer.
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Subsequently, with the assistance of a periodic piece-
wise time-varying Lyapunov-Krasovskii functional, suffi-
cient requirements in the form of LMIs are constructed, which
ensures the foremost intention of this study. After that, the
periodic piecewise gain matrices for controller and observer
are established by solving the criteria that are stated. Con-
clusively, the presented simulation results reveals the useful-
ness of devised control scheme. Moreover, the stabilization
problem of periodic piecewise time-varying systems in the
presence of actuator faults and multiple disturbances is not
yet investigated based on an observer-based control which
simultaneously deals with the disturbances and faults, which
is our future investigation in this direction.
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