

| Chapter<br>No. | Title                                                                            | Page<br>No. |
|----------------|----------------------------------------------------------------------------------|-------------|
| 1              | Introduction                                                                     |             |
|                | 1.1 Energy storage and Batteries                                                 | 1           |
|                | 1.2 Solid Electrolytes                                                           | 1           |
|                | 1.3 Biopolymer electrolytes: An Insight                                          | 3           |
|                | 1.4 Choice of the host biomass for the bio-electrolyte                           | 4           |
|                | 1.4.1 Corn-based biomass                                                         | 4           |
|                | 1.4.2 Seaweed-based biomass                                                      | 6           |
|                | 1.4.3 Plant biomass – Salmalia Malabarica Gum                                    | 7           |
|                | 1.5 Essential Attributes of Solid Bio-Electrolyte for<br>Electrochemical Devices | 8           |
|                | 1.6 Choice of salts for the bio-electrolytes                                     | 9           |
|                | 1.6.1 Criteria of salt for solid bio-electrolyte                                 | 9           |
|                | 1.6.2 Magnesium salt as conducting species for the bio-<br>electrolytes          | 10          |
|                | 1.6.3 Lithium salt as conducting species for the bio-<br>electrolytes            | 10          |
|                | 1.6.4 Ammonium salt as conducting species for the bio-<br>electrolytes           | 10          |
|                | 1.7 Ionic Transport Mechanism in Bio-Electrolyte                                 | 11          |
| 2              | Review of literature                                                             |             |
|                | 2.1 Ionic Transport Mechanism in Bio-Electrolyte                                 | 18          |
|                | 2.2 Polymer electrolytes                                                         | 19          |
|                | 2.2.1 Gel polymer electrolytes                                                   | 20          |
|                | 2.2.2 Composite polymer electrolyte                                              | 21          |
|                | 2.2.3 Biopolymers                                                                | 21          |
|                | 2.2.4 Synthetic biopolymer as electrolyte                                        | 22          |

## CONTENTS

| Chapter<br>No. | Title                                                                                                                                            | Page<br>No. |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                | 2.2.5 Natural biopolymer as electrolyte                                                                                                          | 22          |
|                | 2.3 Present developments in host materials                                                                                                       | 24          |
| 3              | Synthesis and Characterization                                                                                                                   |             |
|                | 3.1 Selection of the biomass                                                                                                                     | 40          |
|                | 3.1.1 Materials used for the work                                                                                                                | 40          |
|                | 3.1.2 Blending of biomaterials for biopolymer membrane                                                                                           | 41          |
|                | 3.2 Preparation of corn silk extract (CSE) and corn silk biopolymer membrane (CSBP) from corn silk biomass                                       | 42          |
|                | 3.3 Preparation of <i>Sargassum Muticum</i> Extract (SME) and <i>Sargassum</i><br><i>Muticum</i> biopolymer membrane (SMBP) from seaweed biomass | 44          |
|                | 3.4 Preparation of Salmalia Malabarica gum (SG) and Salmalia<br>gum biopolymer membrane (SGBP) from plant exudate as<br>biomass                  | 48          |
|                | 3.5 Characterization Techniques                                                                                                                  | 50          |
|                | 3.5.1 Gas chromatography-mass spectrometry analysis                                                                                              | 50          |
|                | 3.5.1.1 Instrumentation                                                                                                                          | 50          |
|                | 3.5.1.2 Identification of compounds                                                                                                              | 50          |
|                | 3.5.2 X-ray diffraction (XRD) studies                                                                                                            | 50          |
|                | 3.5.3 Fourier Transform Infrared Spectroscopy (FTIR)                                                                                             | 51          |
|                | 3.5.4 Differential scanning Calorimetry (DSC)                                                                                                    | 52          |
|                | 3.5.5 Linear Sweep Voltammetry (LSV)                                                                                                             | 52          |
|                | 3.5.6 Transference number measurement (TNM)                                                                                                      | 52          |
|                | 3.5.7 Electrochemical Impedance Spectroscopy (EIS)                                                                                               | 53          |
| 4              | Corn silk extract-based solid- state biopolymer electrolyte and its application to electrochemical storage devices                               |             |
|                | 4.1 Investigation of CSE as solid bio-electrolyte for Mg-ion Battery                                                                             | 58          |
|                | <ul><li>4.1.1 Gas Chromatography – Mass Spectra analysis (GC-<br/>MS) of Corn Silk Extract</li></ul>                                             | 58          |

| Chapter<br>No. | Title                                                                   | Page<br>No. |
|----------------|-------------------------------------------------------------------------|-------------|
|                | 4.1.2 Preparation of the biopolymer film and biopolymer electrolyte     | 61          |
|                | 4.1.3 X-ray Diffraction (XRD) Analysis                                  | 62          |
|                | 4.1.4 Fourier Transform Infrared (FT-IR) Spectroscopy                   | 65          |
|                | 4.1.5 Differential Scanning Calorimetry (DSC)                           | 68          |
|                | 4.1.6 Linear Sweep Voltammetry (LSV)                                    | 72          |
|                | 4.1.7 Transference number measurement (TNM)                             | 73          |
|                | 4.1.8 AC Impedance Spectroscopy                                         | 74          |
|                | 4.2 Investigation of CSE as solid bio-electrolyte for Li-ion Battery    | 78          |
|                | 4.2.1 Preparation of the bio-electrolyte for Li-ion Battery             | 78          |
|                | 4.2.2 X-ray Diffraction (XRD) Analysis                                  | 78          |
|                | 4.2.3 Fourier Transform Infrared (FT-IR) Spectroscopy                   | 81          |
|                | 4.2.4 Differential Scanning Calorimetry (DSC)                           | 83          |
|                | 4.2.5 Linear Sweep Voltammetry (LSV)                                    | 85          |
|                | 4.2.6 Transference number measurement (TNM)                             | 86          |
|                | 4.2.7 AC Impedance Spectroscopy                                         | 87          |
|                | 4.3 Investigation of CSE as solid bio-electrolyte for Proton Battery    | 90          |
|                | 4.3.1 Preparation of the bio-electrolyte membrane                       | 93          |
|                | 4.3.2 X-ray Diffraction (XRD) Analysis                                  | 94          |
|                | 4.3.3 Fourier Transform Infrared (FT-IR) Spectroscopy                   | 96          |
|                | 4.3.4 Differential Scanning Calorimetry (DSC)                           | 98          |
|                | 4.3.5 Linear Sweep Voltammetry (LSV)                                    | 100         |
|                | 4.3.6 Transference number measurement (TNM)                             | 101         |
|                | 4.3.7 AC Impedance Spectroscopy                                         | 102         |
|                | 4.3.8 Construction of a single Proton Exchange Membrane (PEM) fuel cell | 106         |

| Chapter<br>No. | Title                                                                                                            | Page<br>No. |
|----------------|------------------------------------------------------------------------------------------------------------------|-------------|
| 5              | Seaweed extract-based solid- state biopolymer electrolyte and its application to electrochemical storage devices |             |
|                | 5.1 Investigation of SME as solid bio-electrolyte for Mg-ion Battery                                             | 117         |
|                | 5.1.1 Preparation of the bio-membrane and bio-electrolyte                                                        | 117         |
|                | 5.1.2 X-ray Diffraction (XRD) Analysis                                                                           | 119         |
|                | 5.1.3 Fourier Transform Infrared (FT-IR) Spectroscopy                                                            | 122         |
|                | 5.1.4 Differential Scanning Calorimetry (DSC)                                                                    | 126         |
|                | 5.1.5 Linear Sweep Voltammetry (LSV)                                                                             | 129         |
|                | 5.1.6 Transference number measurement (TNM)                                                                      | 130         |
|                | 5.1.7 AC Impedance Spectroscopy                                                                                  | 131         |
|                | 5.2 Investigation of SME as solid bio-electrolyte for Li-Ion Battery                                             | 134         |
|                | 5.2.1 Preparation of the Sargassum bio-electrolyte for Li-ion<br>Battery                                         | 134         |
|                | 5.2.2 X-ray Diffraction (XRD) Analysis                                                                           | 135         |
|                | 5.2.3 Fourier Transform Infrared (FT-IR) Spectroscopy                                                            | 137         |
|                | 5.2.4 Differential Scanning Calorimetry (DSC)                                                                    | 139         |
|                | 5.2.5 Linear Sweep Voltammetry (LSV)                                                                             | 141         |
|                | 5.2.6 Transference number measurement (TNM)                                                                      | 142         |
|                | 5.2.7 AC Impedance Spectroscopy                                                                                  | 143         |
|                | 5.3 Investigation of SME as solid bio-electrolyte for a Proton Battery                                           | 146         |
|                | 5.3.1 Preparation of the Sargassum bio-electrolyte for<br>Proton Conducting Battery                              | 146         |
|                | 5.3.2 X-ray Diffraction (XRD) Analysis                                                                           | 147         |
|                | 5.3.3 Fourier Transform Infrared (FT-IR) Spectroscopy                                                            | 149         |
|                | 5.3.4 Differential Scanning Calorimetry (DSC)                                                                    | 151         |
|                | 5.3.5 Linear Sweep Voltammetry (LSV)                                                                             | 153         |

| Chapter<br>No. | Title                                                                                                      | Page<br>No. |
|----------------|------------------------------------------------------------------------------------------------------------|-------------|
|                | 5.3.6 Transference number measurement (TNM)                                                                | 154         |
|                | 5.3.7 AC Impedance Analysis                                                                                | 155         |
|                | 5.3.8 Construction of a single Proton Exchange Membrane (PEM) fuel cell                                    | 158         |
| 6              | Gum - based on solid- state biopolymer electrolytes and its application to electrochemical storage devices |             |
|                | 6.1 Investigation of SG as solid bio-electrolyte for ion-conducting Battery                                | 167         |
|                | 6.1.1 Preparation of the SGBP bio-membrane and its dopped bio-electrolyte                                  | 167         |
|                | 6.1.2 X-ray Diffraction (XRD) Analysis                                                                     | 169         |
|                | 6.1.2.1 XRD for magnesium chloride doped SG bio-electrolyte- SGMC 0.7                                      | 169         |
|                | 6.1.2.2 XRD for lithium chloride doped SG bio-<br>electrolyte-SGLC 0.5                                     | 172         |
|                | 6.1.2.3 XRD for ammonium formate doped SG bio-electrolyte- SGAF 0.7                                        | 174         |
|                | 6.1.3 Fourier Transform InfraRed Spectroscopy (FTIR)                                                       | 175         |
|                | 6.1.3.1 FTIR for magnesium chloride doped SG bio-electrolyte SGMC 0.7                                      | 175         |
|                | 6.1.3.2 FTIR for lithium chloride doped SG bio-<br>electrolyte SGLC 0.5                                    | 179         |
|                | 6.1.3.3 FTIR for ammonium formate doped SG bio-electrolyte SGAF 0.7                                        | 181         |
|                | 6.1.4 Differential Scanning Calorimetry (DSC)                                                              | 183         |
|                | 6.1.4.1 DSC for magnesium chloride doped SG bio-electrolyte SGMC 0.7                                       | 183         |
|                | 6.1.4.2 DSC for lithium chloride doped SG bio-<br>electrolyte SGLC 0.5                                     | 186         |
|                | 6.1.4.3 DSC for ammonium formate doped SG bio-<br>electrolyte SGLC 0.5                                     | 188         |

| Chapter<br>No. | Title                                                                                                          | Page<br>No. |
|----------------|----------------------------------------------------------------------------------------------------------------|-------------|
|                | 6.1.5 Linear Sweep Voltammetry (LSV)                                                                           | 189         |
|                | 6.1.5.1 LSV for magnesium chloride doped SG bio-electrolyte SGMC 0.7                                           | 189         |
|                | 6.1.5.2 LSV for lithium chloride doped SG bio-<br>electrolyte SGLC 0.5                                         | 190         |
|                | 6.1.5.3 LSV for ammonium formate doped SG bio-<br>electrolyte SGLC 0.5                                         | 191         |
|                | 6.1.6 Transference Number Measurement (TNM)                                                                    | 192         |
|                | 6.1.6.1 TNM for magnesium chloride doped SG bio-electrolyte SGMC 0.7                                           | 192         |
|                | 6.1.6.2 TNM for lithium chloride doped SG bio-<br>electrolyte SGLC 0.5                                         | 193         |
|                | 6.1.6.3 TNM for ammonium formate doped SG bio-electrolyte SGAF 0.7                                             | 194         |
|                | 6.1.7 Electrochemical Impedance Spectroscopy (EIS)                                                             | 195         |
|                | 6.1.7.1 EIS for magnesium chloride doped SG bio-<br>electrolyte SGMC 0.7                                       | 195         |
|                | 6.1.7.2 EIS for lithium chloride doped SG bio-<br>electrolyte SGLC 0.5                                         | 198         |
|                | 6.1.7.3 EIS for ammonium formate doped SG bio-<br>electrolyte SGAF 0.7                                         | 200         |
| 7              | Melezitose - based solid – state biopolymer electrolyte and its application to electrochemical storage devices |             |
|                | 7.1 Investigation of Melezitose as solid bio-electrolyte for Mg-Ion Battery                                    | 208         |
|                | 7.1.1 Preparation of the blend solid biopolymer electrolyte MZP                                                | 210         |
|                | 7.1.2 X-ray Diffraction (XRD) Analysis                                                                         | 210         |
|                | 7.1.3 FTIR Spectra                                                                                             | 216         |
|                | 7.1.4 Differential Scanning Calorimetry (DSC)                                                                  | 219         |

| Chapter<br>No. | Title                                                                                                                    | Page<br>No. |
|----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|
|                | 7.1.5 AC Impedance Spectroscopy                                                                                          | 220         |
| 8              | Fabrication of ion-conducting battery using prepared bio-<br>electrolytes and comparison                                 |             |
|                | 8.1 Fabrication of ion-conducting battery                                                                                | 227         |
|                | 8.1.1 Fabrication of a Magnesium-Ion Conducting battery                                                                  | 227         |
|                | 8.1.2 Fabrication of a Lithium-Ion Conducting Battery                                                                    | 228         |
|                | 8.2 Comparison of batteries developed from Corn Silk Biomass/PVA                                                         | 230         |
|                | 8.2.1 Fabrication of Mg-Ion Conducting Battery from<br>Corn Silk Biomass/PVA dopped with Magnesium<br>Chloride           | 233         |
|                | 8.2.2 Fabrication of Li-Ion Conducting Battery from Corn<br>Silk Biomass/PVA dopped with Lithium Chloride                | 234         |
|                | 8.2.3 Fabrication of Proton Conducting Battery from Corn<br>Silk Biomass/PVA dopped with Ammonium<br>Formate             | 234         |
|                | 8.3 Comparison of batteries from seaweed Sargassum Muticum<br>Biomass                                                    | 231         |
|                | 8.3.1 Fabrication of Mg-Ion Conducting Battery from<br>Sargassum Muticum Biomass/PVA dopped with<br>Magnesium Chloride   | 236         |
|                | 8.3.2 Fabrication of Li-Ion Conducting Battery from<br>Sargassum Muticum Biomass/PVA dopped with<br>Lithium Chloride     | 236         |
|                | 8.3.3 Fabrication of Proton Conducting Battery from<br>Sargassum Muticum Biomass/PVA dopped with<br>Ammonium formate     | 235         |
|                | 8.4 Comparison of batteries from plant gum <i>Salmalia Malabarica</i> -<br>Biomass                                       | 235         |
|                | 8.4.1 Fabrication of Mg-Ion Conducting Battery from<br>Salmalia Malabarica Biomass/PVA dopped with<br>Magnesium Chloride | 237         |

| Chapter<br>No. | Title                                                                                                                  | Page<br>No. |
|----------------|------------------------------------------------------------------------------------------------------------------------|-------------|
|                | 8.4.2 Fabrication of Li-Ion Conducting Battery from<br>Salmalia Malabarica Biomass/PVA dopped with<br>Lithium Chloride | 237         |
|                | 8.4.3 Fabrication of Proton Conducting Battery from<br>Salmalia Malabarica Biomass/PVA dopped with<br>Ammonium formate | 238         |
|                | 8.5 Comparison of Mg-ion conducting Battery of Corn Silk,<br>Sargassum Muticum, and Salmalia Malabarica – Biomasses    | 238         |
|                | 8.6 Comparison of Li-ion conducting Battery of Corn Silk,<br>Sargassum Muticum, and Salmalia Malabarica – Biomasses    | 240         |
|                | 8.7 Comparison of Proton conducting Battery of Corn Silk,<br>Sargassum Muticum, and Salmalia Malabarica - Biomasses    | 242         |
| 9              | Summary, Conclusions and Future Work                                                                                   |             |
|                | Future prospects                                                                                                       | 254         |
|                | List of Publications                                                                                                   |             |