CHAPTER IV DATA ANALYSIS AND RESULTS

CHAPTER 4 DATA ANALYSIS AND RESULTS

This chapter provides a detailed examination of the patterns found in the collected data, as well as the results of the analyses performed on them. The analysis is performed to define and summarise the data, identify relationships between variables, compare variables, differentiate between variables, and predict relationships. The demographic profiles of the respondents are discussed in the first stage, followed by descriptive statistical analyses of the variables investigated. Descriptive statistics use mean, standard deviation, skewness, and kurtosis to describe the original data set. To apply correct statistical tests, an additional normality test was performed to ensure the normality of the quantitative outcomes of the variables under study. The data are presented using a 5-point Likert scale.

The responses were coded and entered into the computer with the help of Microsoft Excel software. The required analysis was carried out using the Statistical Package for Social Sciences (SPSS) version 16 and AMOS. To obtain the results, the variables were coded using SPSS to perform descriptive and validation statistics on the data. First, case summaries for each construct are presented to describe the distribution, mean, standard deviation, and normality. Second, the instrument's reliability was assessed using Cronbach's alpha. The Kaiser- Meyer-Olkin Measure of Adequacy (KMO) test was used for determines the sampling adequacy and factor analysis is used to test whether the factors are loaded in the relevant variables and their relationship with each other. The constructs' correlation is also investigated. Third, using AMOS, the model and significance of the relationship among constructs are analysed systematically and methodically. Fourth, using the t-test and ANOVA, the constructs are compared across demographic factors. The findings of the study are explained in detail in this chapter.

4.1. Descriptive Statistics – Demographics Profile of the Respondents

To begin with, the personal profiles of the respondents have been summarized. The results are presented in Table 4.1. The sample represents a wide spectrum of respondents from different age groups, gender, education level, occupation, family size, monthly incomes, marital statuses, and areas of residence. The respondents for the present study are international tour travellers who are people who have travelled internationally from Coimbatore during the last 5 years. The sample comprising 833 complete responses is analyzed and presented to arrive at appropriate conclusions.

The personal profiles of the respondents were computed. Table 4.1 displays the results. The respondents in the sample are diverse in terms of age, gender, marital status, and family size, area of residence, family income, occupation, and education. The majority of the respondents (38.4 %) belong to Gen Y (26-39 years), followed by Gen X (31.1 %) and Gen Z (18-25 years) (30.5 %).

In terms of gender, the majority of responses received (55.1 %) are from men. Only 44.9 % of the respondents are women. The majority of the respondents (51.7 %) have completed their graduation, 30.9 % have completed their post-graduation, and 15.5 % have completed their schooling.

Majority of the respondents (30.0 %) are self-employed/entrepreneurs. 24.1 % of respondents are government employees, 21.4 % are private sector employees and 16.9 % are students. The majority of respondents (51.3 %) have 3-4 members in their families, 31.6 % of the respondents have 5-6 members in their families, 12.0 % have 2 or less members, and the remaining 5.2 % have more than 6 members in their families, Majority of respondents (37.6 %) earn between Rs60001 and Rs90000. A monthly family income of up to Rs 30000 was earned by 24.6 % of the respondents. The monthly family income range of Rs30001-Rs60000 is earned by 24.2 % of the respondents. Majority of respondents (56.4%) are married, while 43.6 % are single. The majority of respondents (46.9%) live in semi- urban areas, while 46.8% live in urban areas and the rest live in rural areas (6.2 %).

Variable	Classification	Frequency	Percentage	
		(N)	(%)	
	18-25 years	254	30.5	
Age	26-39 years	320	38.4	
	40-60 years	259	31.1	
Gender	Male	459	55.1	
	Female	374	44.9	
Highest Education	Schooling	129	15.5	

 Table 4.1: Demographic Profiles of Respondents (N=833)

Graduation		431	51.7
	Post – Graduation	257	30.9
	Others	16	1.9
	Employed in a private job	201	24.1
	Employed in a Government	178	21.4
Current Occupation	job		
Current Occupation	Self-employed/ entrepreneur	250	30.0
	Not employed	63	7.6
	Student	141	16.9
	2 or less members	100	12.0
Family Size	3-4 members	427	51.3
T anning Size	5-6 members	263	31.6
	Above 6 members	43	5.2
	Up to Rs 30000	205	24.6
Monthly Family	Rs 30001-Rs 60000	202	24.2
Income	Rs 60001- Rs 90000	313	37.6
	Above Rs 90000	113	13.6
Marital Status	Married	470	56.4
Wanta Status	Unmarried	363	43.6
	Urban	390	46.8
Area of Residence	Semi-Urban	391	46.9
	Rural	52	6.2

Table 4.2 depicts the international travel history of respondents. In the last five years, the majority of the respondents (35.4%) travelled internationally for 4-6 times, 31.5 % of the respondents travelled 1-3 times and 22.6 % of the respondents did not travel at all. The majority of the respondents (44.2 %) said that they will definitely go on an international tour in the future. 37.6 % will most likely travel internationally in the future. On summarising the responses, it was found that 51.3% of the respondents always use social media for tour planning, 29.1 % often use social media while planning a tour, 17.0 % rarely use social media, and 0.4 % never use social media for tour planning.

Variable	Classification	Frequency	Percentage
		(N)	(%)
	Nil	188	22.6
	1-3	262	31.5
International Tour in Last 5 Yrs	4-6	295	35.4
	7-9	81	9.7
	Above 9	7	8
	Definitely	368	44.2
	Yes		
International Tour Plans for the	Probably Yes	313	37.6
Future	Not Sure	134	16.1
	Probably No	10	1.2
	Definitely No	8	1.0
	Always	427	51.3
Usage of Social Media for Tour	Often	242	29.1
Planning	Sometimes	142	17.0
	Rarely	19	2.3
	Never	3	0.4

 Table 4.2: International Travel History of Respondents (N=833)

4.1.2 Travel Purpose

Table 4.3 depicts the purpose of travel of the respondents. For 15.08 % of respondents, the purpose of international travel is pleasure/vacation, followed by adventure (12.3%), recreation and relaxation (12.9%), culture and architecture (11.5%), events and entertainment (11.3%), scenic/natural beauty and landscape (10.3%), visiting relatives and friends (9.6%), health and wellness (9.04%), religious reasons (4.2%), and others (3.2 %).

Variable	Classification	Frequency (Number of responses = 4435)	Percentage (%)
	Pleasure/Vacation	669	15.08
	Scenic/ Natural Beauty and Landscape	461	10.3
	Events and Entertainment	506	11.3
	Recreation and Relaxation	575	12.9
Purpose of	Adventure	547	12.3
Travel	Visiting relatives and Friends	430	9.6
	Culture and Architecture	513	11.5
	Health and Wellness	401	9.04
	Religious Reasons	189	4.2
	Others	144	3.2

 Table 4.3: Purpose of Travel (N=833)

4.1.3. Travel-Related Online Activities

Table 4.4 depicts the format and medium of online reviews used for travel purposes, as well as travel-related online activities during travel planning. While planning a trip, 19.05 % of the respondents read travel-related blogs, and 16.3 % consult with travel experts and previous travellers. 15.7 % watch videos online and 15.5 % use interactive trip planners to plan international tours. 15.3 % look at comments/materials, and posts of other travellers on social media for tour planning, and 12.6 % and 53 % listen to travel-related audio files/Podcasts for travel planning and other ways, respectively.

The majority of respondents (12.7%) refer to state tourism websites related to online reviews for travel purposes. 12.06% of respondents use search engines or portals, 12.5% of respondents use virtual communities e.g.- TripAdvisor,12.4% of respondents use online travel agency sites (e.g. – Expedia), 9.8% use travel review/guide sites and 9.75% uses local destination websites related online reviews for travel purposes, 9.2% uses social media as the medium of online reviews for travel purposes, 8.7% and 0.46%

of the respondents use meta-travel search engines (e.g.- MakeMyTrip) and other formats, medium of online reviews for travel purposes, respectively.

Variable	Classification	Frequency	Percentage
		(Number of	(%)
		responses = 3501)	
	Read Travel-Related Blogs	667	19.05
	Watch Videos Online	550	15.7
	Look at Comments/ Materials,	539	15.3
	Posts of Other Travellers in		
Online Activities	Social Media		
during Tour	Use Interactive Trip Planners	545	15.5
Planning	Listen to Travel-related Audio	442	12.6
	Files/ Podcasts		
	Chat with Travel Experts/	572	16.3
	Previous Travellers		
	Others	186	5.3
Variable	Classification	Frequency	Percentage
		(Number of	(%)
		responses =4551)	
	Virtual communities(for the	responses =4551) 571	12.5
	Virtual communities(for the eg-trip advisor)	responses =4551) 571	12.5
	Virtual communities(for the eg-trip advisor) Social media	responses =4551) 571 419	9.2
	Virtual communities(for the eg-trip advisor) Social media Travel review/guide sites	responses =4551) 571 419 450	9.2 9.8
Medium of online	Virtual communities(for the eg-trip advisor) Social media Travel review/guide sites Online travel agency sites (for	responses =4551) 571 419 450 565	12.5 9.2 9.8 12.4
Medium of online reviews used for	Virtual communities(for the eg-trip advisor) Social media Travel review/guide sites Online travel agency sites (for eg- Expedia)	responses =4551) 571 419 450 565	12.5 9.2 9.8 12.4
Medium of online reviews used for travel purposes	Virtual communities(for the eg-trip advisor) Social media Travel review/guide sites Online travel agency sites (for eg- Expedia) Search engines or portals	responses =4551) 571 419 450 565 549	12.5 9.2 9.8 12.4 12.06
Medium of online reviews used for travel purposes	Virtual communities(for the eg-trip advisor) Social media Travel review/guide sites Online travel agency sites (for eg- Expedia) Search engines or portals Local destination websites	responses =4551) 571 419 450 565 549 444	12.5 9.2 9.8 12.4 12.06 9.75
Medium of online reviews used for travel purposes	Virtual communities(for the eg-trip advisor) Social media Travel review/guide sites Online travel agency sites (for eg- Expedia) Search engines or portals Local destination websites State tourism websites	responses =4551) 571 419 450 565 549 444 582	12.5 9.2 9.8 12.4 12.06 9.75 12.7
Medium of online reviews used for travel purposes	Virtual communities(for the eg-trip advisor) Social media Travel review/guide sites Online travel agency sites (for eg- Expedia) Search engines or portals Local destination websites State tourism websites Company sites (for	responses =4551) 571 419 450 565 549 444 582 554	12.5 9.2 9.8 12.4 12.06 9.75 12.7 12.1

 Table 4.4: Usage of eWOM for Travel Planning (N=833)

etc)		
Meta- travel search	396	8.7
engines(for eg- MakeMyTrip)		
Others	21	0.46

4.1.4 Usage of Social Media by the Respondents

Table 4.5 depicts the usage of social media during various stages of tour planning. Majority of the respondents (76.7 %) always read online reviews at the beginning phase of the tour to get ideas. 49.8 % of the respondents frequently use online reviews during the middle of the tour planning phase to narrow down choices. 39.1 % of the respondents always use online reviews at the end of the tour planning phase to confirm decisions. 32.3 % of respondents use online reviews during the tour to decide what to do at the destination. 38.7 % use online reviews after the tour to compare and share their experiences.

The mean values of responses are also compared. It may be observed that the usage of social media is more during the "beginning of their tour, to get ideas" (M=4.66), followed by the "middle of their tour, to narrow down choices" (M=4.06). The next stage is "after the tour, to compare and share experiences" (M=3.95), "later, to confirm decisions" (M=3.88), and "during the tour, to decide what to do at the destination" (M=3.84).

Table 4.5 also depicts the use of online reviews in travel decision-making. The majority of the respondents (73.6%) always use online reviews to decide "where to stay," while 56.4% frequently use online reviews to decide "where to eat? (Restaurants)". Respondents always use online reviews to make decisions about "what to do? (Shopping, other activities)", "where to go? (Spots, attractions, destinations)" and "When to go?" (Appropriate time)", "How do we proceed? (Travel route, airlines, and local transportation)", the response summaries being38.1%, 40.3%, 42.0%, and 40.8% respectively.

Based on a mean analysis, Table 4.5 depicts the respondents' use of online reviews in decision-making. It is clear that the highest usage(M=4.65) is to decide "where to stay?" followed by "where to eat?" (M=4.22), "how to go?" (M=4.15), "when to go?"

(M=4.12), "where to go?" (M=4.04), and "what to do?" (M=3.99) respectively. The respondents use more online reviews to decide on "where to stay" when they travel.

Variable	Classification	Mean	Always	Often	Sometimes	Rarely	Never
	Beginning Of The	4.66	76.7%	14.3%	7.6%	1.0%	.5%
	Tour, To Get						
	Ideas						
	Middle Of The	4.06	31.9%	49.8%	12.7%	3.0%	2.5%
	Tour, Narrow						
	Down Choices						
Tour	At A Later Stage,	3.88	39.1%	24.4%	25.9%	6.5%	4.1%
Planning	Decisions						
Phases	During The Tour,	3.84	32.3%	32.3%	24.6%	8.3%	2.5%
1 Hases	To Decide What						
	To Do At the						
	Destination						
	After The Tour,	3.95	38.7%	31.5%	19.4%	6.8%	3.6%
	To Compare And						
	Share						
	Experiences						
	Where To Stay?	4.65	73.6%	19.8%	4.9%	1.2%	0.5%
	(Accommodation/						
	Hotels)						
	Where To Eat?	4.22	34.9%	56.4%	6.0%	1.3%	1.3%
Travel	(Restaurants)						
Related	What To Do?	3.99	38.1%	30.0%	26.4%	3.8%	1.7%
Decisions	(Shopping, Other						
Decisions	Activities)						
	Where To Go?	4.04	40.3%	32.7%	19.4%	6.0%	1.6%
	(Spots,						
	Attractions,						
	Destinations)						

 Table 4.5: Usage of Online Reviews in Tour Planning Phases (N=833)

When To Go?	4.12	42.0%	35.9%	15.8%	5.0%	1.2%
(Suitable Time)						
How To Go?	4.15	40.8%	39.0%	15.6%	3.7%	.8%
(Travel Route,						
Airlines, Local						
Transport)						

Table 4.6 shows how online reviews are considered helpful while tour planning. The majority of the respondents (70.8%) opined that the "travel date" of the online reviews is extremely important. 56.9% mentioned that "types of websites/platforms where the review is posted" are extremely important. 38.2% opined "purpose of the trip (of the reviewer)" is extremely important. "Availability of detailed descriptions" is extremely important for 35.5% of the respondents. 46.7% consider "photos provided along with the review" to be very important. 47.9% of the respondents consider the "videos provided along with reviews" to be very important, and 49.7% of people say it's very important to see "other travellers" ratings" before planning.

Using the mean analysis, Table 4.6 shows how online reviews aid respondents' tour planning. It is evident that the respondents consider "travel date of reviews" to be very important (M= 4.62), followed by "type of website/platform in which the review is posted" (M=4.20), the "purpose of trip" (M=3.96), "videos provided with the review" (M=3.95), "O ther travellers' rating of usefulness of the review" (M=3.94), "availability of detailed description" (M=3.93), and "photos provided along with review" (M=3.92).

Variable	Classificat ion	Mea n	Extremel y Importa nt	Very Importa nt	Somewh at Importa nt	Not Very Importa nt	Not at all Importa nt
Importance of	Travel date (of the reviewer)	4.62	70.8%	21.8%	6.2%	1.0%	.1%
Information	Type of website/	4.20	33.0%	56.9%	8.4%	.5%	1.2%

 Table 4.6: Usage of Online Reviews for tour planning (N=833)

platform in						
which the						
review is						
posted						
Purpose of						
the trip	3.96	38.7%	26.5%	29.9%	3.8%	1.6%
(for the	5.70	30.270	20.370	29.970	5.070	1.070
reviewer)						
Availabilit						
y of						
detailed	3.93	35.5%	33.5%	21.2%	7.9%	1.8%
description						
S						
Photos						
provided	3 02	27.0%	16 7%	10 1%	6 1%	1 10%
along with	3.92	27.0%	40.7%	19.170	0.170	1.170
a review						
Videos						
provided	3 95	5 27 10/	47.9%	19.3%	4.3%	1 3%
along with	5.95	27.170				1.3%
a review						
Other						
travellers"						
rating of						
the	3.94	25.5%	49.7%	19.9%	3.4%	1.6%
usefulness						
of the						
review						
The date						
on which	3.86	26 704	38 104	30.0%	1 104	804
the review	5.00	20.1%	30.4%	30.0%	4.1%	.0%
was posted						

The role of online travel reviews in tour planning is depicted in Table 4.7. The majority of respondents (59.3%) always seek other people's opinions/experiences/posts on various Internet platforms, and 48.1% of the respondents often post their opinions/experiences on various Internet platforms. 39.5% of the respondents often share other people's opinions/experiences/posts on various internet platforms. The mean value of responses indicates that opinion seeking is more prominent among the respondents (M=4.47), followed by opinion giving (M=3.76) and opinion sharing (M=3.72).

Variables	Classification	Mean	Always	Often	Sometimes	Rarely	Never
	Opinion Seeking	4.47	59.3%	31.3%	7.4%	1.3%	.6%
Travel online review roles	Opinion Giving	3.76	18.4%	48.1%	27.5%	3.4%	2.6%
	Opinion Sharing	3.72	22.3%	39.5%	28.9%	6.0%	3.2%

 Table 4.7: Travel online review roles (N=833)

Source: Primary Data

4.2. Case Summaries

In the following sections, the descriptive statistics of the eleven constructs chosen for this study are presented. Descriptive statistics are employed to explain the characteristics of the sample; assess each variable against central tendency measures such as mean, variability (dispersion) measures of the data such as standard deviation, and obtain some information concerning the distribution of scores (frequency distribution, Skewness, and Kurtosis). The case summaries of the study variables are presented construct-wise.

 Table 4.8: Mean values of the Constructs

Variables	Mean Values
eWOM Quality	3.8625
eWOM Quantity	3.9354
Source Credibility	3.7375
Homophily	3.7215

Searchers' Intent	3.7797
Level of Involvement	3.7902
Perceived Usefulness	3.8217
Attitude	3.7989
Trust	3.7891
Internet usage	3.8315
Intention to Travel	3.7516
Message Characteristics	3.8942
Source Characteristics	3.7282
Searchers' Characteristics	3.7802

Table 4.8 presents the mean values of the constructs examined in the study. Amongst these variables, the highest mean value is attributed to eWOM Quantity (M=3.9354), closely followed by eWOM Quality (M=3.8625). Mean values indicate that the message characteristics of eWOM (M=3.8942) play a significant role in influencing eWOM adoption.

4.3 Validity and Reliability

Reliability and validity are the two most fundamental characteristics of highquality research. Cronbach's alpha is used as the test for reliability, and confirmatory factor analysis is used as the test for validity in this study.

4.3.1 Factor Analysis

Factor analysis is a set of techniques that reduce the number of variables by analyzing correlations between them into fewer factors that more economically explain much of the original data. Even though the outcome of factor analysis can be subjective, the procedure frequently provides insight into relevant psychographic variables and results in efficient use of data collection efforts. By randomly dividing the sample into two parts and extracting factors from each separately, the subjective component of factor analysis is reduced. If similar factors produce similar results, the analysis is considered reliable or stable. Furthermore, the Kaiser- Meyer-Olkin (KMO) Measure of Sampling Adequacy is a statistic that indicates the proportion of variance in variables that could be explained by underlying factors. Similarly, Bartlett's sphericity test investigates the hypothesis that the correlation matrix is an identity matrix, indicating that the variables are unrelated and thus divergent.

The KMO is determined to be 0.740 for the factor analysis of message characteristics. Bartlett's test of Sphericity is also significant (P < 0.000), indicating that the factors are loaded in the relevant variables. This also confirms that the variability of the component is caused by their respective items. Bartlett's test of Sphericity is also found to be significant (P < 0.000) meaning that the factors are distinct.

KMO and Bartlett's Test						
Kaiser-Meyer-Olkin I	Measure of Sa	ampling Adequacy.			0.740	
Bartlett's Test of Sphe	ericity	Approx. Chi-Squar	e		2564.229	
		Df			36	
		Sig.	Sig.			
Rotated Component Matrix						
Initial Co					mponent	
			Loading	1	2	
	EQL1 I think the online					
	reviews of other travellers are		0.748	0.864		
	informative	2				
eWOM quality	EQL3 I thin	nk they are useful	0.673	0.817		
Eigen Value =4.454,	EQL4 I thin	nk they are timely	0 684	0 780		
Var = 49.489	and up to date		0.001	0.700		
	EQL2 I thin	nk they are	0.720	0.760		
accurate			0.720	0.700		
	EQL5 I thin	nk they are relevant	0.675	0.595		
eWOM quantity	EQT1 If the	e ranking and				
Eigen Value =1.988,	recommend	lations for a travel-	0.836		0.898	
Var = 22.089	related onli	ne review is high, I				

 Table 4.9: Factor Analysis of Construct 'Message Characteristics'

	infer that there is a good reputation regarding it		
	EQT4 The more a travel- related review is discussed, the more it influences my travel-related decision.	0.586	0.745
	EQT2 If the number of online reviews is large, I infer that it is popular	0.648	0.662
Total Var = 71.578	EQT3 The more a travel- related review is mentioned, the more I am aware of it.	0.405	0.546

Table 4.8 shows that the 9 items are loaded into two components and explained a total variance of 71.578 of the message characteristics. The first component eWOM quality explained 49.489 per cent of the total variance explaining the message characteristics. The second component eWOM quantity explained 22.089 per cent of the total variance explaining the message characteristics.

KMO and Bartlett's Test						
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.						
Bartlett's Test of Sphericity Approx. Chi-S			quare		3963.746	
Df		Df		45		
		Sig.			0.000	
	Rotate	d Component Mat	rix			
			Initial	Component		
			Loading	1	2	
Homophily	HMP3 I prefer	reviews by				
Eigen Value =4.932,	people who ha	ve the same	0.771	0.855		
Var = 49.322	interests as that	t of mine.				

 Table 4.10: Factor Analysis of Construct 'Source Characteristics'

	HMP4 I prefer reviews by			
	people who travel in the same	0.613	0.651	
	way that I travel.			
	HMP2 I prefer reviews by			
	people who is in my same age	0.668	0.629	
	group			
	HMP1 I prefer travel reviews by			
	people who have my same	0.748	0.837	
	gender			
	SCR3 I believe that they are	0 568		0.527
	experts	0.500		0.527
	SCR1 I believe that the			
Source Credibility	travellers" testimonials about	0.502		0.712
Eigen Value =1.991,	their travel experiences are	0.392		0.715
Var = 19.913	unbiased			
	SCR2 I believe that the people			
	who post online travel reviews	0.622	0.516	0.589
	are knowledgeable			
	SCR5 I trust travel reviews by			
	specific reviewers who submit	0.761		0.845
Total Var = 69.235	reviews frequently			
	SCR4 I believe that they are	0.760		0.754
	reliable	0.760		0.754
	SCR6 I tend to believe the			
	reviews if many people have	0.808		0.708
	liked or agreed on it			

The KMO for the factor analysis of source characteristics is found to be 0.762, indicating that the sample size is sufficient to explain the factors. This also confirms that the variability of the component is caused by their respective items. The sphericity test by Bartlett is also significant (P<0.000), indicating that the factors are distinct.

According to Table 4.9, 8 items are loaded into two components and explained a total variance of 69.235 of the source characteristics. The first component homophily explained 49.322 per cent of the total variance explaining the source characteristics. Though the component SCR2 is loaded in both components 1and2 the highest percentage of the variance is loaded in the second component. Thus, the second component Source credibility explained 19.913 per cent of the total variance explaining the source characteristics.

KMO and Bartlett's Test							
Kaiser-Meyer-Olkin M	0.735						
Bartlett's Test of Spher	ricity	Approx. Chi-Square	2815.68	2815.680			
Df		Df	28				
		Sig.	0.000				
		Rotated Component Matri	x				
			Initial	Co	mponent		
				1	2		
	LOI4 I related	LOI4 I tend to leave travel- related planning to others		0.791			
Level of involvement Eigen Value =2.504 Var =31.307	LOI2 I devote a lot of effort for planning a trip		0.601	0.668			
	LOI3 Travel planning process takes up much of my time for a trip		0.621	0.725			
LO inv		LOI1 I typically become very involved when I plan to travel		0.872			
Searcher ^s Intent Eigen Value = 2.479 Var =30.992	SIT1 I often read travel-related reviews and testimonials when I see them available on the internet		0.593		0.736		
	SIT2 I related	prefer to gather travel- information from various	0.603		0.713		

 Table 4.11 Factor Analysis of Construct 'Searcher's Characteristics'

Total Var = 62.299	online platforms		
	SIT4 I visit more than five		
	websites to read about travel-	0 677	0.821
	related information before	0.077	0.821
	making a choice		
	SIT3 I often search for travel-		
	related reviews before I make a	0.490	0.596
	decision to travel		

Source: Primary Data

The KMO for the factor analysis of searcher characteristics is found to be 0.735, indicating that the sample size is enough to explain the factors. This also confirms that the component's variability is caused by their respective items. Bartlett's test of sphericity is also significant (P<0.000), indicating that the factors are distinct.

Table 4.10 shows that the 8 items were loaded into two components and explained a total variance of 62.299 of the searcher's characteristics. The first component Level of Involvement explained 31.307 per cent of the total variance explaining the searchers' characteristics. The second component searchers' Intent explained 30.992 percent of the total variance explaining the searchers' characteristics.

4.3.2 Reliability Test

Cronbach's alpha has an acceptable alpha level of above 0.7. The greater the internal consistency of the scale items, the closer the alpha coefficient is to 1.0. According to George and Mallery (2003), the alpha values indicate reliability in the following manner: " $\alpha \ge .9$ – Excellent; $.9 > \alpha \ge .8$ – Good; $.8 > \alpha \ge .7$ – Acceptable; $.7 > \alpha \ge .6$ – Questionable; $.6 > \alpha \ge .5$ – Poor, and $\alpha < .5$ – Unacceptable". The reliability statistics for the constructs' multi- item measures are shown in Table 4.9. Multiple measures of reliability are tested and compared. After calculating the Cronbach alpha and Average Variance Extracted (AVE) values, the Composite Reliability (CR) was calculated. The CR and AVE thresholds that are recommended are 0.6 and 0.5, respectively. When the calculated values exceed the threshold, the construct's internal consistency is demonstrated.

The table below shows the reliability statistics for the construct's multi- item measures. Multiple measures of reliability are tested and compared. The results show that the construct measures are internally consistent and reliable.

Construct	Cronbach Alpha	Items
Intention to travel	0.866	10
Internet usage	0.789	3
Trust	0.736	3
Attitude	0.754	4
Perceived usefulness	0.765	4
Level of involvement	0.730	4
Searchers" intent	0.738	4
Homophily	0.758	4
Source Credibility	0.804	6
eWOM Quantity	0.695	4
eWOM Quality	0.734	5

 Table 4.12 Reliability Statistics

Source: Primary Data

All internal consistency reliabilities based on Cronbach''s alphas for measurement items (all interval scales) are tested and are presented in Table 4.11. Almost all of them are considered to be good (greater than 0.70 and nearing 0.80), where the lowest is 0.695 for eWOM Quantity, however since it is close to 0.70, it is accepted. The highest is 0.866 for Intention to Travel. The reliability coefficients less than 0.6 are considered poor, 0.7 are acceptable, and those greater than 0.8 are considered good. The Cronbach alpha > 0.7 indicates satisfactory internal consistency and reliability. In other words, items in each set are independent measures of the same concept, and therefore, indicate accuracy in measurement in the main survey.

4.4 Inferential Statistics

The sections that follow will explain the inferential analyses based on the primary data. Correlation analyses, regression analyses, and Anova with Turkey's HSD analyses are used as inferential tools in this study. The proposed model is validated using

Structural Equation Modelling (SEM) in SPSS AMOS. The hypotheses proposed are either accepted or rejected based on the results of the aforementioned analyses.

4.4.1 Structural Equation Modelling (SEM)

The complete structural model is developed in the AMOS after the measurement model has been tested and its reliability has been verified. SEM (Structural Equation Modelling) is sometimes thought to be difficult to learn and apply. The model was designed using SEM because it has a sequential influence model in which one variable influence another, which in turn influences the third variable. The resulting model is expected to be both substantively meaningful and statistically well-fitting.

Fig 4.1 depicts the research's default SEM model, which demonstrates that eWOM Quality (QUAL) and eWOM Quantity (QUANT) are reflecting Message Characteristics (Message), Source Credibility (Credit) and Homophily (Homo) reflecting Source Characteristics (Source); and Searchers' Intent (Intent), and Level of Involvement (Invol) reflecting Searchers' Characteristics (Searcher). Perceived Usefulness is influenced by the message, source, and searchers' characteristics (PUF). The independent variables influence the Intention to Travel (INT) and are mediated by Perceived Usefulness (PUF), Attitude (ATT), and Trust (TRU).

The SEM model is a synthesis of factor analysis and path analysis. As a result, Figure 4.1 depicts the impact of independent variables (message characteristics, source characteristics, and searcher characteristics) on perceived usefulness. There is a mediation of perceived usefulness, attitude, and trust between independent variables and dependent variable (intention to travel).

Fig 4.1 Structural Model

Fig 4.2 Standardized Results of SEM Model

Fig 4.2 illustrates the regression coefficients representing the relationships between variables, indicating the unit of influence. Here the regression coefficients are just one part of the overall diagram, representing the specific relationships between predictor and outcome variables.

Message characteristics predict Perceived Usefulness by 48%, source characteristics predict it by 39%, and searcher characteristics predict it by 55%. Therefore, the message, source, and searcher characteristics all have a positive influence on Perceived Usefulness.

Perceived Usefulness positively influences and predicts Attitude by 66%, Trust by 78%, and Intention to Travel by 40% Therefore, Perceived Usefulness significantly and positively impacts Attitude, Trust, and Intention to Travel.

Attitude has a positive influence on the intention to travel, with each unit increase in Attitude leading to a 0.24 increase in the intention to travel. Similarly, Trust also has a

positive influence, with each unit increase resulting in a 0.31 increase in the intention to travel. Overall, both Attitude and Trust positively influence the intention to travel.

Fig 4.3 Unstandardised Results of SEM Model

Figure 4.3 depicts the results of unstandardised results of the SEM model. Unstandardised coefficients are model parameter estimates based on raw data analysis.

4.4.2. Multivariate Normality

Multivariate normality of all observed variables is a standard distribution assumption in many structural equation modelling and factor analysis applications. The normal distribution is commonly used in a wide range of applications. Many generations of statisticians have investigated the problem of determining whether a sample of observations follows a normal distribution (Thode, 2002). The data is considered normal if the skewness is between -1 and +1 and the kurtosis is between 7 and +7 (Byrne, 2016).

Table 4.12 displays the model's normality along with the skewness and kurtosis values. The entire model is considered normal and fit as the skewness and kurtosis values are between 2 and +2 and 7 and +7, respectively. Hence, we proceed to the next level of analysis as the current model is normal.

Variable	Skew	C.R.	Kurtosis	C.R.
PUF4	-0.663	-7.808	0.449	2.646
PUF3	-0.639	-7.529	0.434	2.554
PUF2	-0.665	-7.837	0.258	1.521
PUF1	-0.658	-7.752	0.405	2.384
LOI1	-0.77	-9.068	0.922	5.434
LOI2	-0.798	-9.4	1.039	6.121
LOI3	-0.737	-8.678	0.725	4.272
LOI4	-0.862	-10.162	0.926	5.457
SIT1	-0.223	-2.627	-0.173	-1.018
SIT2	-0.734	-8.648	0.7	4.121
SIT3	-0.803	-9.463	1.033	6.085
SIT4	-0.706	-8.323	0.634	3.735
HMP1	-0.364	-4.293	-0.094	-0.551
HMP2	-0.662	-7.795	0.389	2.294
НМР3	-0.646	-7.614	0.303	1.787
HMP4	-0.672	-7.921	0.607	3.577
SCR1	-0.401	-4.728	-0.102	-0.603
SCR2	-0.507	-5.975	0.002	0.012
SCR3	-0.216	-2.541	-0.368	-2.17
SCR4	-0.223	-2.624	-0.258	-1.518
SCR5	-0.73	-8.598	0.424	2.501
SCR6	-0.346	-4.076	-0.132	-0.776
EQT1	-0.827	-9.741	0.738	4.345
EQT2	-0.287	-3.377	-0.346	-2.04
EQT3	-0.57	-6.719	0.486	2.864

 Table 4.13 Normality of the Model

EQT4	-0.611	-7.196	0.346	2.039
EQL1	-1.483	-17.475	3.03	17.852
EQL2	-0.59	-6.958	0.808	4.76
EQL3	-0.591	-6.966	0.455	2.681
EQL4	-0.109	-1.284	-0.8	-4.714
EQL5	-0.847	-9.984	0.705	4.156
ATT4	-0.616	-7.261	0.351	2.068
ATT3	-0.498	-5.868	0.091	0.536
ATT2	-0.635	-7.486	0.456	2.689
ATT1	-0.678	-7.987	0.356	2.097
TRU1	-0.73	-8.601	0.814	4.795
TRU2	-0.542	-6.392	0.323	1.905
TRU3	-0.465	-5.476	0.075	0.441
INT10	-0.177	-2.082	-0.286	-1.684
INT9	-0.111	-1.31	-0.269	-1.586
INT8	-0.462	-5.44	0.142	0.836
INT7	-0.146	-1.721	-0.32	-1.886
INT6	-0.53	-6.25	0.329	1.941
INT5	-0.158	-1.863	-0.518	-3.053
INT4	-0.464	-5.462	0.017	0.101
INT3	-0.65	-7.661	0.56	3.297
INT2	-0.662	-7.801	0.305	1.798
INT1	-0.722	-8.502	0.61	3.591
Multivariate			1071.654	223.217

As the skewness values present in Table 4.12 is between -1 and +1, the model is accepted as normal. When it comes to kurtosis, the values present in Table 4.12 are within 3 and there is no peakedness thus the entire data is considered to be normal.

4.4.3. Regression Analyses

The regression weights of the measurement model are shown in Table 4.13. The path analysis weights of the research's default model are shown in table 4.13. P values for all variables are found to be significant at the level (P=.001).

4.4.3.1 Hypotheses Testing for Each Path in the Structural Model

The regression coefficients of each path in the hypothesised model are calculated and discussed in this section. The estimated relationship's statistical significance is also evaluated to determine the degree of certainty that the true relationship is similar to the estimated relationship. For each variable under consideration, the significance of the causal relationship is tested to accept or reject the null hypothesis.

4.4.3.2. Regression Results of Causal Paths between 'Independent Variables' and 'Perceived Usefulness

The regression weight of the paths, such as between eWOM Quality and Perceived usefulness (B=0.576), between eWOM Quantity and Perceived Usefulness (B=0.576), between Source Credibility and Perceived Usefulness (B=0.589), Homophily and Perceived Usefulness (B=0.539), between Searchers Intent and Perceived Usefulness (B=0.626), between Level of Involvement and Perceived Usefulness (B=0.547) are found to be positive and significant. Among the independent variables, it is observed that the Searchers'' Intent has a more significant influence on Perceived Usefulness (B=0.626).

The regression weight of some paths, such as between message characteristics on perceived usefulness (B=0.357), between source characteristics on perceived usefulness (B=0.456), and between searchers' characteristics on perceived usefulness (B=0.715) are statistically significant and positive. Among the relationships, it is observed that searchers' characteristics have a more significant influence on perceived usefulness (B=0.715).

Table 4.14 depicts the impacts of independent variables (eWOM Quality, eWOM Quantity, Source Credibility, Homophily, Searchers" Intent, and Level of Involvement) on Perceived usefulness.

Regression Weightage	Beta Coefficient	R ²	F	P value
eWOM Quality -> Perceived Usefulness	.576	.279	321.938	.000
eWOM Quantity-> Perceived Usefulness	.576	.299	354.210	.000
Source Credibility-> Perceived Usefulness	.589	.326	402.843	.000
Homophily-> Perceived Usefulness	.539	.321	393.127	.000
Searchers" Intent-> Perceived Usefulness	.626	.400	554.292	.000
Level of Involvement-> Perceived Usefulness	.547	.303	361.404	.000

Table 4.14: Regression Weights of Independent Variables

Source: Primary Data

Table 4.15: Regression weights of Characteristics of eWOM

Regression Weights: (Default							
model)			Estimate	S.E.	C.R.	Р	Beta
Perceived Usefulness	<	Message	0.254	0.033	7.616	***	0.357
Perceived Usefulness	<	Source	0.39	0.047	8.242	***	0.456
Perceived Usefulness	<	Searcher	0.554	0.059	9.415	***	0.715

Source: Primary Data

Table 4.15 depicts the impacts of Message, Source, and Searcher characteristics on perceived usefulness. Multiple regression analyses using SEM led to decisions about accepting hypotheses framed in this regard. The hypothesized model is statistically significant and proven empirically.

H1	The eWOM Quality will have a significant positive	Accepted
	impact on its Perceived Usefulness	
H2	The eWOM Quantity will have a significant positive	Accepted
	impact on its Perceived Usefulness	
H3	Message characteristics will have a significant	Accepted
	positive impact on Perceived Usefulness.	
H4	The Source Credibility will have a significant	Accepted
	positive impact on its Perceived Usefulness	

H5	The Homophily will have a significant positive	Accepted
	impact on its Perceived Usefulness	
H6	The Source characteristics will have a significant	Accepted
	positive impact on Perceived Usefulness.	
H7	The Searchers' Intent will have a significant positive	Accepted
	impact on the Perceived Usefulness.	
H8	The Level of Involvement will have a significant	Accepted
	positive impact on the Perceived Usefulness	
H9	The searchers' characteristics will have a significant	Accepted
	positive impact on its Perceived Usefulness.	

This leads to conclude that the message, source and searchers" characteristics significantly impact the perceived usefulness. Hence it is concluded that all independent variables have a significant positive influence on the perceived usefulness towards eWOM. Among the independent variables, searchers" characteristics have a highly positive impact on perceived usefulness towards eWOM (B=0.715).

4.4.3.3. Regression Results of Causal Paths between 'Perceived Usefulness', 'Attitude' and 'Trust'.

The regression weights of the paths between perceived usefulness and attitude (B=0.704), and between perceived usefulness and trust (B=0.776) are statistically significant and positive. Among the mediating variables (perceived usefulness, attitude and trust) the impact of perceived usefulness on trust is highly positive and statistically significant (B=0.776).

Regression Weights: (Default							
model)			Estimate	S.E.	C.R.	Р	Beta
Attitude	<	PU	0.857	0.094	9.075	***	0.704
Trust	<	PU	1.039	0.101	10.289	***	0.776

 Table 4.16: Regression Weights of Perceived Usefulness on Attitude and Trust

Source: Primary Data

Table 4.16 depicts the regression weights of Perceived Usefulness on Attitude and Trust. Multiple regression analyses using SEM led to decisions about accepting hypotheses framed in this regard. The hypothesized model is statistically significant and proven empirically.

H10	The Perceived Usefulness will have a significant positive impact on Attitude towards eWOM.	Accepted
H11	The perceived usefulness will have a significant positive impact on trust towards eWOM.	Accepted

This leads us to conclude that perceived usefulness significantly impacts the Attitude towards eWOM and Trust. Hence it is concluded that the perceived usefulness of eWOM has a significant and positive influence on attitude and trust towards eWOM.

4.4.3.4. Regression Results of Causal Paths between 'Mediating Variables' and the 'Dependent Variable'

The relationship between attitude and Intention to travel (B=0.239), between trust and intention to travel (B=0.312) and between perceived usefulness and intention to travel (B=0.4) is statistically significant and positive. Among the relationship s, it may be observed that perceived usefulness has a more significant impact on the intention to travel (B=0.4). Table 4.17 tells the regression paths between mediating variables and dependent variable.

Table 4.17:	Regression	Paths	between	Mediating	Variables and	l
	De	pende	nt Variał	ole		

Regression Weights: (Default model)			Estimate	S.E.	C.R.	Р	Beta
Intention to Travel	<	ATT	0.252	0.061	4.137	***	0.239
Intention to Travel	<	TRU	0.299	0.072	4.181	***	0.312

Source: Primary Data

Multiple regression analyses using SEM led to decisions about accepting hypotheses framed in this regard. The hypothesized model is statistically significant and proven empirically.

H12	The attitude will have a significant positive impact on the intention to travel.	Accepted
H13	Trust will have a significant positive impact on the intention to travel.	Accepted

This leads us to conclude that "attitude" and "trust" significantly mediate the relationships of the independent variables such as the message characteristics, source characteristics and searchers" characteristics with the dependent variable (intention to travel). Among the mediating variables, perceived usefulness has a more significant and positive influence on the intention to travel.

4.4.3.5. Regression Results of Causal Paths between 'Individual Variables'

Table 4.18 depicts the regression weights of the independent variable within their constructs of eWOM. The relationship between eWOM quality and message characteristics (B=0.799), and between eWOM quantity and message characteristics (B=0.971) are statistically significant and positive. Among the two variables, eWOM Quantity is the most significant predictor of the message characteristics.

The relationship between source credibility and source characteristics (B=0.876), and between homophily and source characteristics (B=0.925) are statistically significant and positive. Among the two variables, homophily is the most significant predictor of source characteristics.

The relationship between searchers" intent and searchers" characteristics (B=0.907), and between the level of involvement and searchers" characteristics (B=0.795) are both statistically significant and positive. Among the two variables, searchers" intent is the most significant predictor of searchers" characteristics.

Regression Weights: (Default model)			Estimate	S.E.	C.R.	Р	Beta
eWOM Quality	<	Message	1				0.799
eWOM Quantity	<	Message	1.064	0.123	8.662	***	0.971
Source Credibility	<	Source	1				0.876
Homophily	<	Source	1.278	0.128	9.96	***	0.925
Searchers" Intent	<	Searcher	1				0.907
Level of Involvement	<	Searcher	0.585	0.072	8.089	***	0.795

Table 4.18: Regression weights

4.4.3.6. Regression Path Analyses with 'Internet Usage' as the Control Variable

A group-wise analysis was performed using the mean of Internet Usage, and there were two groups: group 1 comprises respondents whose internet usage skills are found to be low; Group 2 comprises respondents whose internet usage skills are high. The number of cases in each cluster is "603" in Cluster 1 and "230" in Cluster 2 respectively.

Table 4.19 displays the regression value of 603 samples, which include high internet users. The regression weights of the relationships between perceived usefulness and message characteristics (B=0.218), perceived usefulness and source characteristics (B=0.275), perceived usefulness and searchers' characteristics (B=0.636), searchers' intent and involvement (B=0.394), perceived usefulness and trust (B=0.278) are statistically significant and positive.

The regression weights for the relationships between perceived usefulness and attitude (b=1.037), perceived usefulness and trust (b=1.126), quality and message characteristics (b=1), quantity and message characteristics (b=1.124), source credibility and source characteristics (b=1), homophily and source characteristics (b=1.263), and searchers' intent and searchers characteristics (b=1) are statistically significant and positive.

Regression Weights: (Default model)			Estimate	C.R.	Р
Perceived Usefulness	<	Message	0.218	6.049	***
Perceived Usefulness	<	Source	0.275	6.264	***
Perceived Usefulness	<	Searcher	0.636	7.847	***
Attitude	<	PU	1.037	7.647	***
Trust	<	PU	1.126	8.655	***
eWOM Quality	<	Message	1		
eWOM Quantity	<	Message	1.124	7.22	***
Source Credibility	<	Source	1		
Homophily	<	Source	1.263	7.463	***
Searchers" Intent	<	Searcher	1		
Level of Involvement	<	Searcher	0.394	5.082	***
Intention to Travel	<	ATT	0.811	6.65	***
Intention to Travel	<	TRU	0.278	3.611	***

 Table 4.19: Regressions with the Internet Usage Cluster

Table 4.20 shows the regression values of the 230 samples, which are the results of people whose internet usage skills are low. The relationship between message Characteristics and Perceived Usefulness (B=2.73), Source Characteristics and Perceived Usefulness (B=0.015), Searchers' Characteristics (B=0.002), Trust and Perceived Usefulness (B=1.036), Quantity and Message Characteristics (B=0.21), homophily and Source Characteristics (B=1.398), Level of Involvement and Searchers Characteristics (B=0.104), Intention to Travel and Attitude (B= -0.001), Intention to Travel and Trust (B= 0.77). The study found significant positive relationships between message characteristics, source characteristics, trust, and perceived usefulness, as well as a significant negative relationship between intention to travel and trust was not statistically significant.

The associations between Attitude and Perceived Usefulness (B=-0.152) and Intention to Travel and Attitude (B=-0.001) are both negative and statistically not significant.

Regression Weights: (Default model)			Estimate	C.R.	Р
Perceived Usefulness	<	Message	2.73	0.151	0.88
Perceived Usefulness	<	Source	0.015	0.422	0.673
Perceived Usefulness	<	Searcher	0.002	0.032	0.975
Attitude	<	PU	-0.152	-0.855	0.393
Trust	<	PU	1.036	1.532	0.125
eWOM Quality	<	Message	1		
eWOM Quantity	<	Message	0.21	0.869	0.385
Source Credibility	<	Source	1		
Homophily	<	Source	1.398	0.468	0.64
Searchers" Intent	<	Searcher	1		
Level of Involvement	<	Searcher	0.104	0.032	0.974
Intention to Travel	<	ATT	-0.001	-0.016	0.987
Intention to Travel	<	TRU	0.77	4.571	***

 Table 4.20: Regression with the No-Internet-Usage Cluster

Therefore, it can be concluded that internet usage skills influence the adoption of eWOM and its influence on travel intentions. The high usage of the internet impacts eWOM adoption leading to Intention to travel, whereas the lower usage of the internet impacts less on eWOM adoption and Intention to travel. Therefore, there is an influence of internet usage on eWOM adoption for travel-related decision-making.

4.4.4. Measurement Model: Model Fit Summary

The ability of a model to reproduce data is referred to as fit. A good-fitting model is reasonably consistent with the data and thus does not need to be respecified. The main reason for computing a fit index is to check that the chi-square is statistically significant, but the researcher wants to claim that the model is a "good fitting" model. It is important to note that if the model is saturated or just identified, most (but not all) fit indices cannot be computed because the model can reproduce the data. It should be noted that a model that fits well is not always valid, (A. Kenny, 2020).

Fit indexes are a popular method of evaluating model fit. A fit index quantifies the degree of fit along a continuum. Absolute and incremental fit indices are the two

types of fit indexes,(Bollen, 1989). An absolute fit index measures how well a priori models reproduce sample data. (Cohen, 1988).

4.4.4.1. Fit Measures

4.4.4.1.1. CMIN

The Likelihood Ratio Test, also known as the "Chi-square" or " x^{2} " (CMIN) statistic and its associated "probability" or p-value - which should not be statistically significant if there is a good model fit. However, the CMIN statistic is also very sensitive to sample size and is no longer used to make acceptance or rejection decisions. Multiple fit indexes have evolved to provide a more comprehensive view of Goodness of Fit, taking into account not only sample size but also model complexity,(Engel et al., 2003).

4.4.4.1.2. CMIN/DF

A calculation of the ratio of Chi-square to Degrees of Freedom (CMIN/DF) is a measure of fit since it has been developed, with a ratio of 2 or 3 to 1 indicating good or acceptable fit.

4.4.4.1.3. GFI

The goodness of Fit (GFI) and Adjusted Goodness of Fit (AGFI) indices are both also Absolute Fit Indices, with .85 considered to be acceptable in AGFI. Both indices decrease with increasing model complexity and for smaller sizes, attempting to be less sensitive to sample size (Anderson & Gerbing, 1984).

4.4.4.1.4. RMSR and RMSEA

Absolute fit can also be evaluated using Roots Mean Squared Residual (RMSR), Standardised Root Mean Residual (SRMR), and Roots Mean Square Error of Approximation (RMSEA). These are referred to as "badness-of- fit indices" and use lower values to indicate better fit. Values less than.05 are considered a good fit, while values between.05 and.08 are commonly described as acceptable, (Engel et al., 2003).Incremental Fit Indices (also known as Comparative Fit Indices) measure how well a theoretical model fits in comparison to an alternative baseline model known as a null model.

4.4.4.1.5. NFI

The Normed Fit Index (NFI) was originally used, but it did not deal well with small samples and has since been superseded by the Tucker-Lewis Index (TLI), Comparative Fit Index (CFI), and Relative Fit Index (RFI), with suggestions that a.95 cut-off (rather than the generic.90) is acceptable where large samples are used (HU & Bentler, 1999).

4.4.4.1.6. P Close

This is a one-sided test of the null hypothesis, which is that the RMSEA equals.05, indicating a close- fitting model. This model contains specification errors, but "not a lot" of specification errors. The RMSEA is greater than 0.05, according to the alternative, one-sided hypothesis. So, if the p is greater than.05 (i.e., not statistically significant), the model's fit is said to be "close." If the p- value is less than.05, the model's fit is deemed to be poorer than close fitting (i.e., the RMSEA is greater than 0.05), (A. Kenny, 2020).

According to some of the authors' experience, the CMIN statistic should only be used as an initial assessment of goodness of fit and should not be used in isolation to accept or reject a model. The CMIN/df ratio, the GFI, CFI, RMSEA, and PGFI indices, along with sample size and model complexity, provide a solid foundation for determining the goodness of fit for a model. It is important, however, not to become obsessed with the goodness of fit. After all, one could start with a model with the bare minimum of acceptable or adequate goodness of fit, then strive to improve it to perfection, only to end up with inadequate factor loadings as a result(Gallagher, et al., 2008).

Fit Measures	Calculated values	Remarks
CMIN	3395.329	
DF	1066	
Р	0	Values above 0.05 are good
CMIN/DF	3.185111632	Values less than 2 show a good fit
RMR	0.074	Values less than 0.05 shows a good fit
GFI	0.915	A value close to 1 shows a good fit
NFI	0.916	

 Table 4.21: Model Fit Summary of the SEM Model

RFI	0.917	
IFI	0.906	
TLI	0.904	A value close to 1 shows a good fit
CFI	0.906	A value close to 1 shows a good fit
RMSEA	0.018	A value less than 0.08 is a good fit
PCLOSE	0	Values less than 0.05 is good

Table 4.21 shows the model fit summary for the measurement model, with CMIN/DF = 3.185111632, which is greater than the standard value. This model exhibits a good model fit. As indicated by the GFI (0.915), TLI (0.904), and CFI (0.906) values, which are all, close to 1, indicating that the model fits well. The RMSEA analysis of error

measures (0.018) is less than the standard value of 0.08, with a P 0.05 (P Close) indicating the significance of the test. The measurement model is perfect.

4.4.5. Correlation

The inter-item correlation values are another internal consistency measure for the survey, as shown in Table 4.22. The associations are found between the retention factors like eWOM Quality, eWOM Quantity, Source Credibility, Homophily, Searchers^{**} Intent, Perceived Usefulness, Attitude, Trust, Internet Usage, and Travel Intention.

According to Cohen, correlation values indicate the following: r = 0.10 to 0.29 (weak correlation, both positive and negative), r = 0.30 to 0.79 (moderate correlation), and r = 0.80 and above (strong correlation) (Cohen, 1988).

Table 4.22 depicts that the correlation between eWOM quality and perceived usefulness (r=0.507) and between eWOM Quantity and Perceived Usefulness (r=0.527), are found to be positive and significant. The associations between source credibility and perceived usefulness (r=0.554), homophily and perceived usefulness (r=0.551) are found to be positive and significant. The correlation between Searchers" intent and perceived usefulness (r=0.618), level of involvement and Perceived Usefulness (r=0.533) are positive and significant. The correlation between Perceived usefulness and attitude (r=0.570), and perceived usefulness and Trust (r=0.640) are positive and significant. The correlation to travel (r=0.674), trust and intention to travel (r=0.676) are positive and significant.
	EQL	EQT	SCR	HMP	SIT	LOI	PUF	ATT	TRU	IUS	INT
FOI	1	.609*	.667*	.584*	.587*	.490*	.507*	.527*	.458*	.463*	.609*
EQL	1	*	*	*	*	*	*	*	*	*	*
БОТ	.609*	1	.703*	.614*	.574*	.547*	.527*	.575*	.546*	.475*	.623*
EQT	*	1	*	*	*	*	*	*	*	*	*
SCD	.667*	.703*	1	.681*	.622*	.572*	.554*	.591*	.572*	.510*	.682*
SCK	*	*	1	*	*	*	*	*	*	*	*
HM	.584*	.614*	.681*	1	.600*	.597*	.551*	.594*	.576*	.502*	.613*
Р	*	*	*	1	*	*	*	*	*	*	*
SIT	.587*	.574*	.622*	.600*	1	.647*	.618*	.594*	.564*	.561*	.647*
511	*	*	*	*	1	*	*	*	*	*	*
IOI	.490*	.547*	.572*	.597*	.647*	1	.533*	.680*	.572*	.588*	.632*
LOI	*	*	*	*	*	1	*	*	*	*	*
DUE	.507*	.527*	.554*	.551*	.618*	.533*	1	.570*	.640*	.563*	.626*
PUF	*	*	*	*	*	*	1	*	*	*	*
A TT	.527*	.575*	.591*	.594*	.594*	.680*	.570*	1	.545*	.647*	.674*
AII	*	*	*	*	*	*	*	1	*	*	*
TDI	.458*	.546*	.572*	.576*	.564*	.572*	.640*	.545*	1	.473*	.676*
IKU	*	*	*	*	*	*	*	*	1	*	*
IIIC	.463*	.475*	.510*	.502*	.561*	.588*	.563*	.647*	.473*	1	.604*
105	*	*	*	*	*	*	*	*	*	1	*
INT	.609*	.623*	.682*	.613*	.647*	.632*	.626*	.674*	.676*	.604*	1
	*	*	*	*	*	*	*	*	*	*	1

 Table 4.22 Correlation between Variables

Source: Primary Data

Hence, it may be observed that there is a positive and significant association between the constructs identified in the model.

4.5 ANOVA Tests

ANOVA is used with Tukey"s HSD analysis, Independent T-test is used to investigate the differences among various respondent groups based on their demographic aspects, with regard to various aspects of eWOM adoption.

4.5.1 One-way Anova between Various Demographic Groups with Regard to Perceived Usefulness.

The differences in perceived usefulness towards eWOM are studied among various demographic groups categorized based on age, marital status, education, occupation, family size, income, and location.

Mean PUF					95% Co Interval Mean	nfidence for		
	Ν	Mean	Std.	Std.	Lower	Upper	Minimum	Maximum
			Deviation	Error	Bound	Bound		
18-25	143	10.87	2.014	.168	10.54	11.21	6	15
years								
26-39	337	12.51	2.070	.127	12.29	12.73	3	15
Years								
40-60	353	12.51	2.070	.110	11.42	11.74	3	15
years								
Total	833	11.58	2.312	.080	11.42	11.74	3	15

Table 4.23 One -way ANOVA by Age with Perceived Usefulness Descriptives

	Sum of		Mean			
	Squares	Df	Square	F	Sig.	
Between	520.020	2	265 015	56 128	000	
Groups	550.050	2 205.0		50.128	.000	
Within Groups	3918.911	830	4.722			
Total	4448.941	832				

Multiple Comparisons

(I)AGE	(J)AGE	Mean Difference	Std.	Sig.	95% Confid	lence Level
		(I-J)	Error			
					Lower	Upper
					Bound	Bound
18-25	26-39 years	031	.217	.989	54	.48
years	40-60 years	-1.636*	.215	.000	-2.14	-1.13
26-39	18- 25Years	.031	.217	.989	48	.54
years	40-60 years	-1.605*	.165	.000	-1.99	-1.22
40-60	18 - 25Years	1.636*	.215	.000	1.13	2.14
years	26-39 years	1.605*	.165	.000	1.22	1.99

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

The one-way ANOVA results are shown in Table 4.23, along with the Tukeys' post hoc test. One-way ANOVA revealed a statistically significant difference between age groups (F= 56.128, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in perceived usefulness towards eWOM between Gen X (12.5, \pm 2.07, p=.000), Gen Y (10.9, \pm 2.3, p=.000), Gen Z (10.8, \pm 2.01, p=.000). Among the various cohorts based on age, the perceived usefulness towards eWOM is found to be statistically more significant and higher among the age group of 40-60 years (Gen X).

Table 4.24: One-way ANOVA by Education with Perceived Usefulness Descriptives

Mean PUF					95% Confidence			
					Interval	for Mean		
	Ν	Mean	Std.	Std.	Lower	Upper	Minimum	Maximum
			Deviation	Error	Bound	Bound		
Schooling	156	11.42	2.345	.188	11.05	11.79	4	15
Graduation	354	11.12	2.328	.124	10.88	11.36	5	15
Post-	304	12.17	2.168	.124	11.93	12.42	3	15
Graduation								
Others	19	11.89	1.997	.458	10.93	12.86	9	15
Total	833	11.58	2.312	.080	11.42	11.74	3	15

	Sum of		Mean		
	Squares	Df	Square	\mathbf{F}	Sig.
Between Groups	187.538	3	62.513	12.161	.000
Within Groups	4261.403	829	5.140		
Total	4448.941	832			

Multiple Comparisons

Mean PUF						
Tukey						
HSD						
(I)Education	(J) Education	Mean Difference (I-J)	Std. Error	Sig.	95% Co Inte	nfidence erval
					Lower	Upper
					Bound	Bound
	Graduation	.302	.218	.510	26	.86
Schooling	Post-	751*	222	004	1 22	18
Schooling	Graduation	/51*	.225	.004	-1.55	10
	Others	472	.551	.827	-1.89	.95
	Schooling	302	.218	.510	86	.26
Graduation	Post- Graduation	-1.053*	.177	.000	-1.51	60
	Others	773	.534	.470	-2.15	.60
Dest	Schooling	.751*	.223	.004	.18	1.33
Post- Graduation	Graduation	1.053	.177	.000	.60	1.51
Graduation	Others	.280	.536	.954	-1.10	1.66
	Schooling	.472	.551	.827	95	1.89
Others	Graduation	.773	.534	.470	60	2.15
Others	Post- Graduation	280	.536	.954	-1.66	1.10

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

Table 4.24 shows the results of a one-way ANOVA with Tukey HSD post hoc test with education to measure the statistically significant difference among various education groups in terms of eWOM's perceived usefulness. Using one-way ANOVA, a statistically significant difference between groups was discovered (F=12.161, p=.0000).

A Tukey Post hoc test revealed that there is a statistically significant difference in perceived usefulness towards eWOM between the various education groups of the respondents - schooling (11.4, \pm 2.3, p=.000), graduation (11.1, \pm 2.3, p=.000), post-graduation (12.1, \pm 2.1, p=.000), and others (11.8, \pm 1.9, p=.000). Among the various cohorts based on education, the perceived usefulness towards eWOM is found to be statistically more significant and higher among the post-graduate respondent group.

Table 4.25: One -wa	iy ANOVA b	y Occupation	with Perceived	Usefulness
---------------------	------------	--------------	----------------	------------

Descriptives

Mean								
PUF								
	Ν	Mean	Std.	Std.	95	%	Minimum	Maximum
			Deviation	Error	Confi	dence		
					Interv	val for		
					M	ean		
					Lower	Upper		
					Bound	Bound		
Employed in	250	11.36	2.447	.155	11.05	11.66	3	15
a private job								
Employed in	200	11.59	2.442	.173	11.25	11.93	5	15
а								
Government								
job								
Self-	284	11.88	2.067	.123	11.64	12.12	5	15
employed/								
entrepreneur								
Not	60	10.97	2.435	.314	10.34	11.60	5	15
employed								
Student	39	11.74	1.996	.320	11.10	12.39	8	15
Total	833	11.58	2.312	.080	11.42	11.74	3	15

ANOVA

Mean PUF					
	Sum of	Df	Mean	F	Sig.
	Squares		Square		
Between	61.189	4	15.297	2.887	.022
Groups					
Within	4387.752	828	5.299		
Groups					
Total	4448.941	832			

Multiple Comparisons

Mean PUF						
Tukey HSD						
(I)Occupation	(J) Occupation	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
					Lower	Upper
					Bound	Bound
Euclass d'in c	Employed in a Government job	234	.218	.821	83	.36
private job	Self-employed/ entrepreneur	521	.200	.070	-1.07	.03
	Not employed	.389	.331	.765	52	1.29
	Student	388	.396	.865	-1.47	.70
	Employed in a private job	.234	.218	.821	36	.83
Employed in a Government job	Self-employed/ entrepreneur	287	.212	.660	87	.29
	Not employed	.623	.339	.351	30	1.55
	Student	154	.403	.996	-1.26	.95
Self-employed/	Employed in a	.521	.200	.070	03	1.07

entrepreneur	private job					
	Employed in a					
	Government	.287	.212	.660	29	.87
	job					
	Not employed	.910*	.327	.044	.02	1.80
	Student	.133	.393	.997	94	1.21
	Employed in a	- 389	331	765	-1 29	52
	private job	.505	.551	.705	1.27	.52
Not omployed	Employed in a		.339	.351		
	Government	623			-1.55	.30
Notemployed	job					
	Self-employed/	- 910*	327	044	-1.80	- 02
	entrepreneur	neur		.011	1.00	.02
	Student	777	.473	.472	-2.07	.52
	Employed in a	388	396	865	- 70	1 47
	private job	1000		.000		1.17
	Employed in a					
Student	Government	.154	.403	.996	95	1.26
Brudent	job					
	Self-employed/	- 133	393	997	-1 21	94
	entrepreneur	.135		.,,,,	1,21	.27
	Not employed	.777	.473	.472	52	2.07

*. The mean difference is significant at the 0.05 level. Source: Primary Data

Table 4.25 reveals the result of one–way ANOVA with Tukeys HSD post hoc test of occupation. There was no statistically significant difference between groups as determined by one-way ANOVA (F= 2.887, p=.022).

A Tukey Post hoc test revealed that there is no statistically significant difference in perceived usefulness towards eWOM among the various occupation groups of the respondents - employed in a private job(11.3, \pm 2.4,p=.022), employed in a government job (11.5, \pm 2.4, p=.022), self-employed/ entrepreneur (11.8, \pm 2.0, p=.022), not employed (10.9, \pm 2.4, p=.022).

Mean PUF	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		95% Confidence Interval for Mean		95% Confidence Interval for Mean		Minimum	Maximum
					Lower Bound	Upper Bound						
2 or less members	125	11.11	2.349	.210	10.70	11.53	3	15				
3-4 members	327	11.18	2.221	.123	10.94	11.42	5	15				
5-6 members	333	12.04	2.345	.128	11.79	12.29	4	15				
Above 6 members	48	12.31	1.812	.262	11.79	12.84	6	15				
Total	833	11.58	2.312	.080	11.42	11.74	3	15				

Table 4.26: One-way ANOVA by Family Size with Perceived Usefulness

Descriptives

Mean PUF					
	Sum of		Mean		
	Squares	Df	Square	F	Sig.
Between	176 431	3	58 810	11 411	000
Groups	170.101	5	20.010	11.111	.000
Within	1272 511	820	5 154		
Groups	4272.311	02)	5.154		
Total	4448.941	832			

Multiple Comparisons

Tukey HSD							
(I) Family	(J) Family	Mean	Std.	Sig.			
Size	Size	Difference (I-	Error		95% Coi	nfidence	
		J)			Inte	rval	
					Lower	Upper	
					Bound	Bound	
	3-4 members	068	.239	.992	68	.55	
2 or less	5-6 members	930*	.238	.001	-1.54	32	
members	Above 6	1 200*	.385	010	2 10	21	
	members	-1.200		.010	-2.17	21	
	2 or less	068	239	992	- 55	68	
	members	.000	.237	.))2	55		
3-4 members	5-6 members	862*	.177	.000	-1.32	41	
	Above 6	-1 132*	351	007	-2.04	- 23	
	members	1.152	.551	.007	2.01	25	
	2 or less	930*	238	001	32	1 54	
	members	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.230	.001	.52	1.01	
5-6 members	3-4 members	.862*	.177	.000	.41	1.32	
	Above 6	- 270	350	867	-1 17	63	
	members	.270		.007	1.17	.05	
	2 or less	1.200*	385	.010	.21	2.19	
Above 6	members				1	2.17	
members	3-4 members	1.132*	.351	.007	.23	2.04	
	5-6 members	.270	.350	.867	63	1.17	

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

The results of the ONEWAY ANOVA with Tukeys' HSD post hoc test with family size are shown in table 4.26 above. One-way ANOVA revealed a statistically significant difference between groups (F=11.411, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in perceived usefulness towards eWOM between the various family size groups of the

respondents - 2 or fewer members (11.1, \pm 2.3, p=.000), 3-4 members (11.1, \pm 2.2, p=.000), 5-6 members (12.0, \pm 2.3, p=.000), above 6 members (12.3, \pm 1.8, p=.000). Among the various cohorts based on family size, the perceived usefulness towards eWOM is found to be statistically more significant and higher among the respondents" group with family size above 6 members.

Mean								
PUF	N	Moon	Std	St.J	05	0/_	Minimum	Movimum
		witan	Siu. Deviation	Stu. Error	Confi	70 donco	winninum	Waxiiiuiii
			Deviation	LIIUI	Interv	val for		
					M	an 101		
					IVIC			
					Lower	Upper		
					Bound	Bound		
Up to	108	10.76	2.113	.203	10.36	11.16	5	15
Rs								
30000								
Rs	200	10.87	2.371	.168	10.54	11.20	5	15
30001-								
Rs								
60000								
Rs	388	11.97	2.287	.116	11.74	12.19	3	15
60001-								
Rs								
90000								
Above	137	12.17	2.009	.172	11.83	12.51	6	15
Rs								
90000								
Total	833	11.58	2.312	.080	11.42	11.74	3	15

Table 4.27: One-way ANOVA by Income with Perceived Usefulness Descriptives

Mean PUF					
	Sum of		Mean		
	Squares	Df	Square	F	Sig.
Between	278 877	3	92 959	18 480	000
Groups	270.077	5	12.757	10.400	.000
Within	4170 064	829	5 030		
Groups	1170.001	029	2.020		
Total	4448.941	832			

Multiple Comparisons

Turkey HSD						
(I) Income	(J) Income	Mean	Std.		95% Co	nfidence
		Difference (I-J)	Error	Sig.	Inte	rval
					Lower	Upper
					Bound	Bound
	Rs 30001-Rs 60000	-1.207*	.244	.000	-1.84	58
Up to Rs 30000	Rs 60001- Rs 90000	-1.409*	.289	.000	-2.15	67
	Above Rs 90000	.111	.268	.976	58	.80
	Up to Rs 30000	-1.096*	.195	.000	-1.60	59
Rs 30001-Rs 60000	Rs 60001- Rs 90000	-1.298*	.249	.000	-1.94	66
	Above Rs 90000	1.207*	.244	.000	.58	1.84
	Up to Rs 30000	1.096*	.195	.000	.59	1.60
Rs 60001- Rs 90000	Rs 30001-Rs 60000	201	.223	.803	78	.37
	Above Rs 90000	1.409*	.289	.000	.67	2.15
Above Rs	Up to Rs	1.298*	.249	.000	.66	1.94

90000	30000					
	Rs 30001-Rs 60000	.201	.223	.803	37	.78
	Rs 60001- Rs 90000					

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

The above table 4.27 reveals the results of one-way ANOVA with Tukeys" HSD post hoc test with income. There was a statistically significant difference between income groups as determined by one-way ANOVA (F=18.480, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in perceived usefulness towards eWOM between the various income groups of the respondents -Up to Rs 30000 (10.7, \pm 2.1, p=.000), Rs 30001-Rs 60000 (10.8, \pm 2.3, p=.000), Rs 60001- Rs 90000 (11.9, \pm 2.2, p=.000), Above Rs 90000 (12.1, \pm 2.0, p=.000). Among the various cohorts based on income, the perceived usefulness towards eWOM is found to be statistically more significant and higher among the respondents with above Rs 90000 income.

Table 4.28: One -way ANOVA by Residence with Perceived Usef	ulness
Descriptives	

Mean PUF								
	N	Mean	Std.	Std.	95% Co	nfidence	Minimum	Maximum
			Deviation	Error	Interval for Mean			
					Lower	Upper		
					Bound	Bound		
Urban	301	11.41	2.310	.133	11.14	11.67	3	15
Semi-	469	11.68	2.276	.105	11.48	11.89	4	15
Urban								
Rural	63	11.63	2.567	.323	10.99	12.28	5	15
Total	833	11.58	2.312	.080	11.42	11.74	3	15
Urban	301	11.41	2.310	.133	11.14	11.67	3	15

Mean PUF					
	Sum of				
	Squares	Df	Mean Square	F	Sig.
Between	14.490	2	7.245	1.356	.258
Groups					
Within Groups	4434.451	830	5.343		
Total	4448.941	832			

Multiple Comparisons

Mean PUF Turkey HSD						
(I)	(J)	Mean				
RESIDENCE	RESIDENCE	Difference (I-	Std.		95% Co	nfidence
		J)	Error	Sig.	Inte	rval
					Lower	Upper
					Bound	Bound
Urban	Semi-Urban	279	.171	.231	68	.12
	Rural	230	.320	.754	98	.52
Semi-Urban	Urban	.279	.171	.231	12	.68
Senn-Orban	Rural	.050	.310	.986	68	.78
	Urban	.230	.320	.754	52	.98
Rural	Semi-Urban	050	.310	.986	78	.68

*. The mean difference is significant at the 0.05 level

Source: Primary Data

Table 4.28 reveals the results of one-way ANOVA with the Tukey post hoc test. There was no statistically significant difference between groups as determined by one-way ANOVA (F=1.356, p=.258).

A Tukey Post hoc test revealed that there is no statistically significant difference in perceived usefulness towards eWOM among the various residence groups of the respondents - urban (11.4, \pm 2.3, p=.258), semi- urban (11.6, \pm 2.2, p=.258), and rural (11.6, \pm 2.5, p=.258).

4.5.2 One-way ANOVA among the Demographic Groups with Attitude.

The difference in attitude towards eWOM is studied among various demographic groups such as age, marital status, education, occupation, family size, income, and location.

Mean ATT								
			Std	Std	95% Co Interv	95% Confidence		
	N	Mean	Deviation	Error	Me	Interval for Mean		Maximum
					Lower	Upper		
					Bound	Bound		
18 - 25Years	143	14.10	2.752	.230	13.65	14.56	8	20
26-39 years	337	14.60	2.648	.144	14.31	14.88	5	20
40-60 years	353	16.73	2.400	.128	16.47	16.98	8	20
Total	833	15.41	2.803	.097	15.22	15.60	5	20

Table 4.29: One -way ANOVA by Age with Attitude

Descriptives

Mean ATT					
	Sum of		Mean		
	Squares	Df	Square	F	Sig.
Between	1077 225	2	538 612	81 80/	000
Groups	1077.225	2	550.012	01.074	.000
Within	5458 888	830	6 577		
Groups	5 150.000	050	0.577		
Total	6536.113	832			

MeanATT						
Tukey						
HSD						
(I) AGE	(J) AGE	Mean	Std.	Sig.	95% Co	nfidence
		Difference	Error		Inte	erval
		(I-J)				
					Lower	Upper
					Bound	Bound
18-	26-39	492	.256	.134	-1.09	.11
25Years	years					
	40-60	-2.620*	.254	.000	-3.22	-2.02
	years					
26-39	18-	.492	.256	.134	11	1.09
years	25Years					
	40-60	-2.129*	.195	.000	-2.59	-1.67
	Years					
40-60	18-	2.620*	.254	.000	2.02	3.22
years	25Years					
	26-39	2.129*	.195	.000	1.67	2.59
	years					

Multiple Comparisons

*. The mean difference is significant at the 0.05 level Source: Primary Data

Table 4.29 displays the results of the one-way ANOVA with Tukeys" HSD post hoc test. There is a statistically significant difference between age groups as determined by one-way ANOVA (F= 45.090, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in attitude towards eWOM between Gen X (16.7, \pm 2.4, P=.000), Gen Y (14.6, \pm 2.6, P=.000) and Gen Z (14.1, \pm 2.7, P=.000). Among the various cohorts based on age, the attitude towards eWOM is found to be statistically more significant and higher among the age group 40 – 60 years (Gen X).

Mean								
ATT								
	N	Mean	Std. Deviation	Std. Error	95% Con Interva Mea	fidence al for an	Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Schooling	156	14.95	2.570	.206	14.54	15.36	8	20
Graduation	354	15.07	2.967	.158	14.76	15.38	7	20
Post- Graduation	304	16.06	2.624	.150	15.77	16.36	5	20
Others	19	15.26	2.535	.582	14.04	16.49	8	19
Total	833	15.41	2.803	.097	15.22	15.60	5	20

Table 4.30: One-way ANOVA by Education with Attitude

Descriptives

Mean ATT					
	Sum of		Mean		
	Squares	Df	Square	F	Sig.
Between Groups	203.792	3	67.931	8.893	.000
Within Groups	6332.321	829	7.639		
Total	6536.113	832			

Multiple Comparisons

Mean						
ATT						
Tukey						
HSD						
(I)	(J)	Mean	Std. Error	Sig.	95% Co	nfidence
Education	Education	Difference			Inte	rval
		(I-J)				
					Lower	Upper
					Bound	Bound
	Graduation	11169	.06507	.316	2792	.0558
Schooling	Post - Graduation	31949*	.06995	.000	4996	1394
	Others	09375	.17144	.947	5351	.3476
	Schooling	.11169	.06507	.316	0558	.2792
Graduation	Post - Graduation	20780*	.05093	.000	3389	0767
	Others	.01794	.16461	1.000	4058	.4417
Post_	Schooling	.31949*	.06995	.000	.1394	.4996
Graduation	Graduation	.20780*	.05093	.000	.0767	.3389
Graduation	Others	.22574	.16660	.528	2031	.6546
	Schooling	.09375	.17144	.947	3476	.5351
Others	Graduation	01794	.16461	1.000	4417	.4058
Guiers	Post - Graduation	22574	.16660	.528	6546	.2031

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

Table 4.30 reveals the results of one-way ANOVA with Tukey"s HSD post hoc test. There was a statistically significant difference between the educations group as determined by one-way ANOVA (F=8.893, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in attitude towards eWOM between the various education groups of the respondents - schooling (14.9, \pm 2.5, p=.000), Graduation (15.07, \pm 2.9, p=.000), Post-Graduation (16.06, \pm 2.6, p=.000), and others (15.2, \pm 2.5, p=.000). Among the various cohorts based

on education, the attitude towards eWOM is found to be statistically more significant and higher among the education group comprising graduates.

MEAN								
ATT								
	N	Mean	Std. Deviation	Std. Error	95% Co Interval Maan	onfidence I for	Minimum	Maximum
					Lower	Unner		
					Bound	Bound		
Employed in a private job	250	14.94	2.737	.173	14.60	15.28	8	20
Employed in a Government job	200	15.37	2.845	.201	14.97	15.77	8	20
Self- employed/ entrepreneur	284	16.03	2.774	.165	15.70	16.35	5	20
Not employed	60	14.55	2.770	.358	13.83	15.27	8	20
Student	39	15.56	2.404	.385	14.78	16.34	10	20
Total	833	15.41	2.803	.097	15.22	15.60	5	20

Table 4.31: One -way ANOVA by Occupation with Attitude
--

Descriptives

MEANATT					
	Sum of				
	Squares	Df	Mean Square	F	Sig.
Between Groups	210.302	4	52.576	6.882	.000
Within Groups	6325.810	828	7.640		
Total	6536.113	832			

Multiple Comparisons

(J)	Mean	Std.	Sig.	95% Co	nfidence
Occupation	Difference	Error		Inte	rval
	(I-J)				
				Lower	Higher
				Bound	Bound
Employed in	434	.262	.463	-1.15	.28
а					
Government					
job					
Self-	-1.092*	.240	.000	-1.75	44
employed/					
entrepreneur					
Not	.386	.397	.868	70	1.47
employed					
Student	628	.476	.679	-1.93	.67
Employed in	.434	.262	.463	28	1.15
a private job					
Self-	658	.255	.075	-1.36	.04
employed/					
entrepreneur					
Not	.820	.407	.259	29	1.93
employed					
Student	194	.484	.995	-1.52	1.13
Employed in	1.092*	.240	.000	.44	1.75
a private job					
Employed in	.658	.255	.075	04	1.36
а					
Government					
job					
Not	1.478*	.393	.002	.40	2.55
employed					
	(J) Occupation Calperiment a Government job Self- employed/ entrepreneur Student Employed in a private job Self- employed in a private job Sudent	(J)MeanOccupationDifference(I-J)IEmployed in434a434a434a434government1092*job-1.092*employed/1092*employed/.386employed.386employed.386employed628Student628Self658employed in.434a private job.Self658employed/.employed/194Student.1092*a private job.Employed in1.092*a private job194Employed in.658a private job194Anot194job	(J)MeanStd.OccupationDifference (I-J)Error (I-J)Employed in a434.262a434.262a434.262a-1.092*.240employed/-1.092*.240employed/-1.092*.240employed/-1.092*.240employed/-1.092*.240student628.476Student628.476Employed in a private job.434.262a private job.255.255employed/.407.484Employed in student1.092*.240Atta.255.407employed in a private job.255Atta.255.255a.558.255a.558.255a.658	(J)MeanStd.Sig.OccupationDifference (I-J)Error (ErrorIImployed in a434.262.463aImployed in (Imployed in job434.262.463Government jobImployedImployedImployedSelf1.092*.240.000employed/ImployedImployedImployedStudent628.397.868employedImployedImployedImployedStudent628.476.679Employed in a private job.434.262.463Self658.255.075employedImployedImployedImployedStudent658.255.075employedImployedImployedImployedStudent194.484.995Employed in a private job.658.255.075aImployed in Imployed in.658.255.075aImployed in Imployed in.658.255.075aImployed in Imployed in.658.255.075aImployed in Imployed in.658.255.075aImployed in Imployed in.658.255.075aImployed in Imployed in.658.255.075aImployed in Imployed in.1478*.393.002	(J) Mean Std. Sig. 95% Condition Occupation Difference Error Intervalue Intervalue (I-J) Error Intervalue Intervalue Intervalue Employed in 434 .262 .463 -1.15 a Intervalue Intervalue Intervalue Intervalue Government 434 .262 .463 -1.15 a Intervalue Intervalue Intervalue Intervalue Self- -1.092* .240 .000 -1.75 employed/ Intervalue Intervalue Intervalue Intervalue Not .386 .397 .868 70 employed in .434 .262 .463 28 a private job Intervalue Intervalue Intervalue Self- 658 .255 .075 -1.36 employed/ Intervalue Intervalue Intervalue Intervalue Not .820 </td

	Student	.464	.472	.863	83	1.75
Not	Employed in	386	.397	.868	-1.47	.70
employed	a private job					
	Employed in	820	.407	.259	-1.93	.29
	а					
	Government					
	job					
	Self-	-1.478*	.393	.002	-2.55	40
	employed/					
	entrepreneur					
	Student	-1.014	.569	.384	-2.57	.54
Student	Employed in	.628	.476	.679	67	1.93
	a private job					
	Employed in	.194	.484	.995	-1.13	1.52
	а					
	Government					
	job					
	Self-	464	.472	.863	-1.75	.83
	employed/					
	entrepreneur					
	Not	1.014	.569	.384	54	2.57
	employed					

*. The mean difference is significant at the 0.05 level *Source*:

Source: Primary Data

Table 4.31 reveals the results of one-way ANOVA with the Tukey post hoc test. There is a statistically significant difference between occupations as determined by one-way ANOVA (F=6.882, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in attitude towards eWOM between the various occupation groups of the respondents - employed in a private job (14.9, \pm 2.7, p=.000), employed in a government job (15.3, \pm 2.8, p=.000), self – employed / entrepreneur (16.03, \pm 2.7, p=.000), not employed (14.5, \pm 2.7, p=.000), and students (15.5, \pm 2.4, p=.000). Among the various cohorts based on occupation, the attitude towards eWOM is found to be statistically more significant and higher among the self-employed/ entrepreneur respondents.

Mean								
ATT								
					95% Cor	nfidence		
			Std.	Std.	Interv	al for		
	Ν	Mean	Deviation	Error	Me	an	Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
2 or less members	125	14.32	2.635	.236	13.85	14.79	8	20
3-4 members	327	14.68	2.716	.150	14.38	14.97	5	20
5-6 members	333	16.29	2.677	.147	16.00	16.57	8	20
Above 6 members	48	17.23	1.801	.260	16.71	17.75	12	20
Total	833	15.41	2.803	.097	15.22	15.60	5	20

Table 4.32: One-way ANOVA by Family Size with Attitude

Descriptive

Mean ATT					
	Sum of		Mean		
	Squares	Df	Square	F	Sig.
Between	737.251	3	245.750	35.132	.000
Groups		_			
Within	5798 861	829	6 995		
Groups	5770.001	02)	0.770		
Total	6536.113	832			

Multiple Comparisons

MEAN ATT						
Tukey HSD						
(I)	(J)	Mean	Std. Error	Sig.	95% Co	onfidence
FAMILY	FAMILY	Difference			Inte	erval
SIZE	SIZE	(I-J)				
					Lower	Upper
					Bound	Bound
2 or less	3-4	359	.278	.569	-1.07	.36
members	members					
	5-6	-1.965*	.277	.000	-2.68	-1.25
	members					
	Above 6	-2.909*	.449	.000	-4.07	-1.75
	members					
3-4 members	2 or less	.359	.278	.569	36	1.07
	members					
	5-6	-1.606*	.206	.000	-2.14	-1.08
	members					
	Above 6	-2.550*	.409	.000	-3.60	-1.50
	members					
5-6 members	2 or less	1.965*	.277	.000	1.25	2.68
	members					
	3-4	1.606*	.206	.000		
	members					
	Above 6	944	1.08	2.14		
	members					
Above 6	2 or less	2.909*	-2.00	.11	1.75	4.07
members	members					
	3-4	2.550^{*}	.409	.000	1.50	3.60
	members					
	5-6	.944	.408	.096	11	2.00
	members					

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

The above table 4.32 reveals the result of one-way ANOVA with Tukey's post hoc test. There was a statistically significant difference between family groups as determined by one-way ANOVA (F=35.132, p=.000).

A Tukey"s Post hoc test revealed that there is a statistically significant difference in attitude towards eWOM between various family size groups of the respondents - 2 or less members (14.3, \pm 2.6, p=.000), 3-4 members (14.6, \pm 2.7, p=.000), 5-6 members (16.2, \pm 2.6, p=.000), Above 6 members (17.2, \pm 1.8, p=.000). Among the various cohorts based on family size, the attitude towards eWOM is found to be statistically more significant and higher among the family size above 6 members.

 Table 4.33: One-way ANOVA by Income with Attitude

Descriptives

Mean								
ATT								
					95%			
					Confi	dence		
			Std.	Std.	Interv	al for		
	Ν	Mean	Deviation	Error	Me	an	Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Up to Rs	108	14 32	2 513	242	13.84	14 80	5	20
30000	100	11.52	2.515	.212	15.01	11.00	5	20
Rs 30001-	200	14.78	2.455	.174	14.44	15.13	8	20
Rs 60000								
Rs 60001-	388	15.65	2.938	.149	15.36	15.95	7	20
Rs 90000								
Above Rs	137	16.52	2.607	.223	16.08	16.96	8	20
90000								
Total	833	15.41	2.803	.097	15.22	15.60	5	20

Mean ATT					
	Sum of		Mean		
	Squares	Df	Square	F	Sig.
Between	306 / 68	3	132 156	17.844	000
Groups	370.408	5	152.150	17.044	.000
Within	6139 645	829	7 406		
Groups	0137.043	027	7.400		
Total	6536.113	832			

Multiple Comparisons

MEAN ATT Tukey HSD						
(I)	(J)	Mean	Std.	Sig.	95% Co	nfidence
INCOME	INCOME	Difference	Error		Inte	erval
		(I-J)				
					Lower	Upper
					Bound	Bound
Up to Rs	Rs 30001-	461	.325	.488	-1.30	.38
30000	Rs 60000					
	Rs 60001-	-1.328*	.296	.000	-2.09	57
	Rs 90000					
	Above Rs	-2.194*	.350	.000	-3.10	-1.29
	90000					
Rs 30001-Rs	Up to Rs	.461	.325	.488	38	1.30
60000	30000					
	Rs 60001-	867*	.237	.002	-1.48	26
	Rs 90000	-te				
	Above Rs	-1.733*	.302	.000	-2.51	96
D (0001	90000	1.000*	20.6	000		2.00
Rs 60001-	Up to Rs	1.328*	.296	.000	.57	2.09
Rs 90000	30000					

	Rs 30001-	.867*	.237	.002	.26	1.48
	Rs 60000					
	Above Rs 90000	866*	.270	.008	-1.56	17
Above Rs 90000	Up to Rs 30000	2.194*	.350	.000	1.29	3.10
	Rs 30001- Rs 60000	1.733*	.302	.000	.96	2.51
	Rs 60001- Rs 90000	.866*	.270	.008	.17	1.56

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

Table 4.33 reveals the result of one-way ANOVA with Tukey's post hoc test by income. There was a statistically significant difference between groups as determined by one-way ANOVA (F= 17.844, p= .000).

A Tukey''s Post hoc test revealed that there is a statistically significant difference in attitude towards eWOM between various income groups of the respondents - Up to Rs 30000 (14.3, \pm 2.5, p=.000), Rs 30001-Rs 60000 (14.7, \pm 2.4, p=.000), Rs 60001- Rs 90000 (15.6, \pm 2.9, p=.000), and above Rs 90000 (16.5, \pm 2.5, p=.000). Among the various cohorts based on income, the attitude towards eWOM is found to be statistically more significant and higher among the income group of above Rs 90000.

Table 4.34: One -way ANOVA by Residence with Attitude

Descriptives

Mean ATT								
	N	Mean	Std. Deviation	Std. Error	95% Conf Interval fo	idence or Mean	Minimum	Maximum
					Lower Bound	Upper Bound		
Urban	301	15.37	2.626	.151	15.07	15.67	8	20
Semi- Urban	469	15.39	2.908	.134	15.13	15.66	7	20
Rural	63	15.78	2.842	.358	15.06	16.49	5	20
Total	833	15.41	2.803	.097	15.22	15.60	5	20

MEANATT					
	Sum of		Mean		
	Squares	Df	Square	F	Sig.
Between	9.086	2	4 543	578	561
Groups	9.080	2	1.0 10		
Within	6527 027	830	7 864		
Groups	0521.021	050	7.004		
Total	6536.113	832			

Multiple Comparisons

MEAN ATT Tukey HSD								
(I)	(J)	Mean	Std.	Sig.	95% Conf	95% Confidence		
RESIDENCE	RESIDENCE	Difference (I-	Error		Interval			
		J)						
					Lower	Upper		
					Bound	Bound		
	Semi-Urban	020	.207	.995	51	.47		
Urban	Rural	406	.389	.549	-1.32	.51		
	Urban	.020	.207	.995	47	.51		
Semi-Urban	Rural	385	.376	.562	-1.27	.50		
	Urban	.406	.389	.549	51	1.32		
Rural	Semi-Urban	.385	.376	.562	50	1.27		

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

Table 4.34 reveals the result of one-way ANOVA with Tukey's post hoc test. There was no statistically significant difference between groups as determined by one-way ANOVA (F= .578, p=.561).

A Tukey"s Post hoc test revealed that there is no statistically significant difference in attitude towards eWOM among the various residence groups of the respondents - urban (15.3, ± 2.6 , p=.561), semi-urban (15.3, ± 2.9 , p=.561), and rural (15.7, ± 2.8 , p=.561).

4.5.3 One-way Anova by Demographic Groups with Trust.

The difference in trust towards eWOM is studied among various demographic groups such as age, marital status, education, occupation, family size, income, and location.

Table 4.35: One-way ANOVA by Age with Trust

Mean TRUST								
	N	Mean	Std. Deviation	Std. Error	95 Confi Interv Me	% dence /al for ean	Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
18 - 25Years	143	10.63	1.981	.166	10.30	10.96	5	15
26-39 years	337	10.87	2.065	.112	10.65	11.09	5	15
40-60 years	353	12.53	1.967	.105	12.33	12.74	4	15
Total	833	11.53	2.185	.076	11.38	11.68	4	15

Descriptives

Mean Trust					
	Sum of	Df	Mean	F	Sig.
	Squares		Square		
Between	619 184	2	309 592	76 654	000
Groups	019.104	2	505.672	101001	.000
Within Groups	3352.223	830	4.039		
Total	3971.407	832			

Multiple Comparisons

Mean TRUST Tukey HSD						
(I) AGE	(J) AGE	Mean Difference (I-J)	Std. Error	Sig.	95% Co Inte	nfidence rval
					Lower Bound	Upper Bound
18- 25Vears	26-39 years	237	.201	.464	71	.23
	40-60 years	-1.903*	.199	.000	-2.37	-1.44
26-39 years	18- 25Years	.237	.201	.464	23	.71
	40-60 Years	-1.666*	.153	.000	-2.03	-1.31
40-60 years	1 8 - 25Years	1.903*	.199	.000	1.44	2.37
	26-39 years	1.666*	.153	.000	1.31	2.03

*. The mean difference is significant at the 0.05 level. Source: Primary Data

Table 4.35 reveals the result of one-way ANOVA with the Tukey post hoc test. There was a statistically significant difference between age groups as determined by one-way ANOVA (F= 34.032, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in trust towards eWOM between Gen X (12.5, \pm 1.9, P=.000), Gen Y (10.8, \pm 2.05, P=.000) and Gen Z (10.6, \pm 1.9, P=.000). Among the various cohorts based on age, the trust towards eWOM is found to be statistically more significant and higher among the age group 40 – 60 years (Gen X).

Mean								
TRUST								
			Std.	Std.	95% Co	nfidence		
	Ν	Mean	Deviation	Error	Interval	for Mean	Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Schooling	156	11.28	2.005	.161	10.96	11.59	4	15
Graduation	354	11.13	2.232	.119	10.90	11.37	5	15
Post- Graduation	304	12.12	2.095	.120	11.88	12.35	5	15
Others	19	11.68	2.212	.508	10.62	12.75	7	15
Total	833	11.53	2.185	.076	11.38	11.68	4	15

Table 4.36: One-way ANOVA by Education with Trust

Descriptives

Mean Trust					
	Sum of	Df	Mean	F	Sig.
	Squares		Square		
Between	171.658	3	57.219	12.484	.000
Groups					
Within Groups	3799.749	829	4.584		
Total	3971.407	832			

Multiple Comparisons

Mean TRUST Tukey HSD							
(I) Education	(J) Education	Mean Difference (I- J)	Std. Error	Sig.	95% Cor Inte	95% Confidence Interval	
					Lower	Upper	
					Bound	Bound	
	Graduation	.143	.206	.899	39	.67	
Schooling	Post- Graduation	843*	.211	.000	-1.39	30	
	Others	409	.520	.861	-1.75	.93	
	Schooling	143	.206	.899	67	.39	
Graduation	Post- Graduation	986*	.167	.000	-1.42	55	
	Others	551	.504	.693	-1.85	.75	
Post-	Schooling	.843*	.211	.000	.30	1.39	
Graduation	Graduation	.986*	.167	.000	.55	1.42	
Ciuduuion	Others	.434	.506	.827	87	1.74	
	Schooling	.409	.520	.861	93	1.75	
Others	Graduation	.551	.504	.693	75	1.85	
	Post- Graduation	434	.506	.827	-1.74	.87	

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

Table 4.36 reveals the result of one-way ANOVA with the Tukey post hoc test. There was a statistically significant difference between groups as determined by one-way ANOVA (F=12.484, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in trust towards eWOM between the various education groups of the respondents - schooling (11.2, \pm 2.0, p=.000), graduation (11.1, \pm 2.2, p=.000), post-graduation (12.1, \pm

2.09, p=.000), and others (11.6, \pm 2.21, p=.000). Among the various cohorts based on education, the trust towards eWOM is found to be statistically more significant and higher among the education group of post-graduation.

Table 4.37: One-way ANOVA by occupation with trust

Descriptives

Mean								
TRUST								
					95	%		
					Confi	dence		
			Std.	Std.	Interv	val for		
	Ν	Mean	Deviation	Error	Me	ean	Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Employed in	250	11 28	2 264	143	10.99	11 56	5	15
a private job	250	11.20	2.204	.145	10.77	11.50	5	15
Employed in								
а	200	11.46	2 284	161	11 14	11 78	4	15
Government	200	11.40	2.204	.101	11.14	11.70		15
job								
Self-								
employed/	284	11.92	2.098	.124	11.67	12.16	5	15
entrepreneur								
Not	60	11.02	1 891	244	10.53	11 51	7	15
employed	00	11.02	1.071	.277	10.33	11.71	1	15
Student	39	11.51	1.819	.291	10.92	12.10	8	15

Mean Trust					
	Sum of	Df	Mean	F	Sig.
	Squares		Square		
Between	75.907	4	18.977	4.034	.003
Groups					
Within Groups	3895.500	828	4.705		
Total	3971.407	832			

Multiple Comparisons

Mean TRUST						
Tukey HSD						
(I) Occupation	(J) Occupation	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
					Lower Bound	Upper Bound
	Employed in a Government job	184	.206	.899	75	.38
Employed in a private job	Self-employed/ entrepreneur	643*	.188	.006	-1.16	13
	Not employed	.259	.312	.921	59	1.11
	Student	237	.373	.969	-1.26	.78
	Employed in a private job	.184	.206	.899	38	.75
Employed in a Government job	Self-employed/ entrepreneur	459	.200	.148	-1.01	.09
	Not employed	.443	.319	.635	43	1.32
	Student	053	.380	1.000	-1.09	.99
	Employed in a private job	.643*	.188	.006	.13	1.16
Self-employed/ entrepreneur	Employed in a Government job	.459	.200	.148	09	1.01
	Not employed	$.902^{*}$.308	.029	.06	1.74
	Student	.406	.370	.808	61	1.42
	Employed in a private job	259	.312	.921	-1.11	.59
Not employed	Employed in a Government job	443	.319	.635	-1.32	.43
	Self-employed/	902*	.308	.029	-1.74	06

	entrepreneur					
	Student	496	.446	.800	-1.72	.72
Student	Employed in a private job	.237	.373	.969	78	1.26
	Employed in a Government job	.053	.380	1.000	99	1.09
	Self-employed/ entrepreneur	406	.370	.808	-1.42	.61
	Not employed	.496	.446	.800	72	1.72

*. The mean difference is significant at the 0.05 level. Source: Primary Data

Table 4.37 reveals the results of one-way ANOVA with the Tukey post hoc test. There was a statistically lower significant difference between groups as determined by one-way ANOVA (F=4.034, p=.003).

A Tukey Post hoc test revealed that there is a statistically significant difference in trust towards eWOM between the various occupation groups of the respondents - employed in a private job (11.2, \pm 2.2, p=.003), employed in a government job (11.4, \pm 2.2, p=.003), self-employed/ entrepreneur (11.9, \pm 2.09, p=.003), not employed (11.02, \pm 1.9, p=.003), and student (11.5, \pm 1.8, p=.003). Among the various cohorts based on occupation, the trust towards eWOM is found to be statistically more significant and higher among the self-employed/ entrepreneurs.

Table 4.38: One -way ANOVA by Family Members with Trust

Descriptives

Mean TRUST								
			Std.	Std.	95% Co	nfidence		
	Ν	Mean	Deviation	Error	Interval	Interval for Mean		Maximum
					Lower	Upper		
					Bound	Bound		
2 or less members	125	11.18	2.008	.180	10.82	11.53	6	15
3-4	327	10.95	2.168	.120	10.71	11.18	5	15

members								
5-6	333	12.04	2 144	117	11 80	12.27	4	15
members	555	12.01	2.1.1.1	,	11.00	12.27	•	10
Above 6	48	12 94	1 508	218	12 50	13 38	9	15
members	-10	12.74	1.500	.210	12.50	15.50	,	15
Total	833	11.53	2.185	.076	11.38	11.68	4	15

Mean Trust					
	Sum of	Df	Mean	F	Sig.
	Squares		Square		
Between Groups	306.783	3	102.261	23.133	.000
Within Groups	3664.624	829	4.421		
Total	3971.407	832			

Multiple Comparisons

Mean						
Tukev HSD						
(I) Family	(J) Family	Mean	Std.		95% Co	nfidence
Size	Size	Difference (I-J)	Error	Sig.	Inte	rval
					Lower	Upper
					Bound	Bound
	3-4 members	.228	.221	.731	34	.80
2 or less	5-6 members	860*	.221	.001	-1.43	29
members	Above 6 members	-1.761*	.357	.000	-2.68	84
	2 or less members	228	.221	.731	80	.34
3-4 members	5-6 members	-1.088*	.164	.000	-1.51	67
	Above 6 members	-1.989*	.325	.000	-2.83	-1.15
5-6 members	2 or less members	.860*	.221	.001	.29	1.43
	3-4 members	1.088^{*}	.164	.000	.67	1.51

	Above 6 members	901*	.325	.029	-1.74	07
Above 6 members	2 or less members	1.761*	.357	.000	.84	2.68
	3-4 members	1.989*	.325	.000	1.15	2.83
	5-6 members	.901*	.325	.029	.07	1.74

*. The mean difference is significant at the 0.05 level

Source: Primary Data

The results of the ANOVA are revealed in above table 4.38. There was a statistically significant difference between groups determined by one-way ANOVA (F=23.133, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in trust towards eWOM between the various family size groups of the respondents - 2 or less members (11.1, \pm 2.0, p=.000), 3-4 members (10.9, \pm 2.1, p=.000), 5-6 members (12.0, \pm 2.1, p=.000), above 6 members (12.9, \pm 1.5, p=.000). Among the various cohorts based on family size, the trust towards eWOM is found to be statistically more significant and higher among the family size group with above 6 members.

Table 4.39: One -way ANOVA by Income with Trust

D	•	4.
Des	crip	tives

Mean TRUST								
	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean		95% Confidence Interval for Mean Minimum	
					Lower	Upper		
					Bound	Bound		
Up to Rs 30000	108	10.52	2.053	.198	10.13	10.91	5	15
Rs 30001- Rs 60000	200	10.96	2.235	.158	10.65	11.27	5	15
Rs 60001- Rs 90000	388	11.83	2.033	.103	11.62	12.03	4	15
Above Rs 90000	137	12.33	2.153	.184	11.96	12.69	6	15
Total	833	11.53	2.185	.076	11.38	11.68	4	15

Mean Trust					
	Sum of	Df	Mean	F	Sig.
	Squares		Square		
Between Groups	297.115	3	99.038	22.345	.000
Within Groups	3674.292	829	4.432		
Total	3971.407	832			

Multiple Comparisons

Mean						
TRUST						
Tukey HSD						
(I) Income	(J) Income	Mean	Std.	Sig	95% Confidence	
		Difference (I-J)	Error	Sig.	Interval	
					Lower	Upper
					Bound	Bound
	Rs 30001-Rs	441	.251	.295	1.00	21
	60000	441			-1.09	.21
Up to Rs	Rs 60001- Rs	1 200*	.229	.000	1.00	72
30000	90000	-1.509			-1.90	72
	Above Rs	-1.810*	271	000	-2.51	_1 11
	90000	-1.010	.271	.000	-2.31	-1.11
	Up to Rs	.441	.251	.295	- 21	1.09
	30000				21	1.09
Rs 30001-Rs 60000	Rs 60001- Rs	867*	.183	.000	-1 34	- 40
	90000				1.5 1	.10
	Above Rs	-1 368*	.233	.000	-1.97	77
	90000	1.500				
Rs 60001- Rs 90000	Up to Rs	1.309*	.229	.000	.72	1.90
	30000					1170
	Rs 30001-Rs	.867*	.183	.000	.40	1.34
	60000					1.01
	Above Rs	501	.209	.079	-1.04	.04
	90000	301			2.01	
	Up to Rs 30000	1.810*	.271	.000	1.11	2.51
-------------------	-----------------------	--------	------	------	------	------
Above Rs 90000	Rs 30001-Rs 60000	1.368*	.233	.000	.77	1.97
	Rs 60001- Rs 90000	.501	.209	.079	04	1.04

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

The results of a one-way ANOVA with the Tukey post hoc test of Income are shown in table 4.39 above. The analysis revealed a statistically significant difference between groups (F=22.345, p=.000).

A Tukey Post hoc test revealed that there is a statistically significant difference in trust towards eWOM between various income groups of the respondents - Up to Rs 30000 (10.8, \pm 2.0, p=.000), Rs 30001-Rs 60000 (10.9, \pm 2.2, p=.000), Rs 60001- Rs 90000 (11.8, \pm 2.03, p=.000), and above Rs 90000 (12.3, \pm 2.1, p=.000). Among the various cohorts based on income, the trust towards eWOM is found to be statistically more significant and higher among the income group of above Rs 90000.

Table 4.40: One-way ANOVA by Residence with Trust

Descriptives

Mean								
TRUST								
			Std.	Std.	95% Co	nfidence		
	Ν	Mean	Deviation	Error	Interval for Mean		Minimum	Maximum
					Lower	Upper		
					Bound	Bound		
Urban	301	11.46	2.151	.124	11.21	11.70	4	15
Semi-	469	11 54	2 216	102	11 34	11 74	5	15
Urban	105	11.01	2.210	.102	11.51	11.7 1	5	15
Rural	63	11.83	2.114	.266	11.29	12.36	5	15
Total	833	11.53	2.185	.076	11.38	11.68	4	15

ANOVA

Mean Trust					
	Sum of Squares	Df	Mean Square	F	Sig.
Between Groups	7.244	2	3.622	.758	.469
Within Groups	3964.163	830	4.776		
Total	3971.407	832			

Multiple Comparisons

Mean TRUST Tukey HSD			<u> </u>				
(1)	(J)	Mean	Std.	Sig.	95% Co	nfidence	
Residence	Residence	Difference (I-J)	Error	0	Interval		
					Lower	Upper	
					Bound	Bound	
Urban	Semi-Urban	086	.161	.854	47	.29	
Orban	Rural	370	.303	.440	-1.08	.34	
Semi-Urban	Urban	.086	.161	.854	29	.47	
Senir Orban	Rural	284	.293	.597	97	.40	
Rural	Urban	.370	.303	.440	34	1.08	
iturui	Semi-Urban	.284	.293	.597	40	.97	

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

Table 4.40 displays the results of one-way ANOVA with a Tukey post hoc test. The analysis showed no statistically significant difference between the groups (F=.758, p=.469).

A Turkey Post hoc test revealed that there is no statistically significant difference in trust towards eWOM among the various residence groups of the respondents - urban $(11.4, \pm 2.1, p=.469)$, semi-urban $(11.5, \pm 2.2, p=.469)$, and rural $(11.8, \pm 2.1, p=.469)$.

4.5.4. Comparison between Gender with regard to Perceived Usefulness, Attitude and Trust towards using T-Test.

To determine whether a significant relationship exists between perceived usefulness, attitude, and trust, a T-test was conducted.

Levene's			t-test for Equality of Means							
		Test	for							
		Equal	ity of							
		Varia	nces							
		F	Sig.	t	Df	Sig.	Mean	Std. Error		
						(2-	Difference	Difference		
						tailed)				
AUTOSUM	Equal	.854	.356	-	831	.198	217	.169		
PUF	variances			1.287						
	assumed									
	Equal			-	595.259	.193	217	.167		
	variances			1.303						
	not									
	assumed									
AUTOSUM	Equal	3.680	.055	-	831	.007	554	.204		
ATT	variances			2.719						
	assumed									
	Equal			-	617.885	.005	554	.199		
	variances			2.790						
	not									
	assumed									
AUTOSUM	Equal	1.344	.247	984	831	.325	157	.160		
TRU	variances									
	assumed									
	Equal			965	544.734	.335	157	.163		
	variances									

 Table 4.41: Difference in Perceived Usefulness, Attitude, and Trust by Gender

not				
assumed				

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

Table 4.41 presents the results of an independent T-test examining perceived usefulness, attitude, and trust by gender. The analysis revealed no statistically significant differences between perceived usefulness (F=.854, P=.356), attitude (F=3.680, P=.055), and trust (F=1.344, P=.247) based on gender.

4.5.5. Difference in Perceived Usefulness, Attitude and Trust by Marital Status Using T-Test.

Table 4.42: Difference in Perceived Usefulness, Attitude, and Trust based onMarital Status

	Levene's		t-test for Equality of Means					
Test for								
Equality of								
		Varia	nces					
		F	Sig.	Т	Df	Sig.	Mean	Std. Error
						(2-	Difference	Difference
						tailed)		
AUTOSUM	Equal	8.099	.005	6.698	831	.000	1.116	.167
PUF	variances							
	assumed							
	Equal			6.615	516.625	.000	1.116	.169
	variances							
	not							
	assumed							
AUTOSUM	Equal	.845	.358	8.115	831	.000	1.620	.200
ATT	variances							
	assumed							
	Equal			8.024	518.198	.000	1.620	.202
	variances							
	not							

	assumed							
AUTOSUM	Equal	.248	.619	6.854	831	.000	1.078	.157
TRU	variances							
	assumed							
	Equal			6.926	548.033	.000	1.078	.156
	variances							
	not							
	assumed							

*. The mean difference is significant at the 0.05 level.

Source: Primary Data

The results of the T-tests, as shown in Table 4.42, indicate that there is a significant difference in perceived usefulness (F=8.099, P=.005). For attitude (F=.845, P=0.35) and trust (F=.248, P=.619), there were no significant differences among respondents based on marital status.

4.6 Chapter Summary

In this chapter, the collected data was meticulously processed, analysed, and interpreted to derive meaningful conclusions and fulfil the research objectives. To facilitate this analysis, a range of statistical tools were employed, including Descriptive Statistics, Case Summaries, Correlation, and Reliability analysis using SPSS. Furthermore, Regression analysis was conducted to examine the rela tionships between variables and a Multivariate Normality test was performed using a Structural Equation Model developed in AMOS. The Model was empirically tested and the results were explained.

Additionally, ANOVA was utilized, Turkey HSD post hoc test was applied and T-Test was used to investigate any significant differences among groups. The forthcoming chapter will present the findings and provide relevant suggestions based on the insightful analysis conducted in this chapter.