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6. TEMPORAL FUSION TRANSFORMER FOR WQI  

PREDICTION MODEL 

 In this research, deep learning models have emerged as a promising and viable alternative, 

utilizing diverse data sources, including physiochemical and seasonal data, for building WQI 

prediction models. Temporal Fusion Transformer is a powerful deep learning architecture that 

efficiently handles time-series data by incorporating temporal and cross-dimensional attention 

mechanisms. This architecture has shown promising results in various applications, including 

predicting complex and dynamic patterns in time-series data. In this context, an enhanced WQI 

prediction model using multi-horizon forecasting with a temporal fusion transformer is proposed 

in this work. This chapter demonstrates the application of TFT for building WQI prediction model 

by training the pooled features of Bhavani River data. 

WQI PREDICTION MODEL USING TEMPORAL FUSION TRANSFORMER 

In this study, a new method for modelling and forecasting river WQI using temporal fusion 

transformers is proposed. TFTs are a type of deep learning model used to capture the temporal 

dependencies between time series data. The objective of this work is to build an enhanced WQI 

prediction model using multi-horizon forecasting with a temporal fusion transformer. For training 

TFT, the time series river water quality data is used and various hyperparameters are appropriately 

defined while creating the model. The task of WQI prediction is approached as a regression 

problem, and the regression model is constructed by leveraging insights gained from the training 

data using TFT architectures.  

Methodology 

 Temporal Fusion Transformer is an advanced architecture that combines the power of 

transformer networks with time-series forecasting capabilities. It effectively models temporal 

dependencies in sequential data, making it suitable for time-series forecasting tasks. TFT employs 

self-attention mechanisms to capture long-range dependencies and learns to fuse information from 

multiple temporal resolutions, enabling it to handle irregular time intervals in the input data. The 

proposed methodology consists of the key components such as 1. data collection, 2. EDA and data 

pre-processing 3. construction of the WQI prediction model, and 4. model evaluation. The 

framework of the WQI prediction model built based on TFT architecture is illustrated in Fig.6.1. 
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Fig. 6.1 Framework of the WQI Prediction Model Based on TFT Architecture  

Data Collection and Dataset Preparation  

A total of 10,560 water samples were gathered from 11 monitoring stations situated along 

the Bhavani River. The data collection period spanned from January 1st, 2016 to December 31st, 

2020. A time series data containing 26 physiochemical parameters, 10 seasonal parameters, 

longitude, latitude, station ID, date and calculated WQI has been developed.  EDA is conducted 

on the time series data to gain insights into its characteristics and to analyse the significance of 

each parameter in determining the water quality index. The distribution of parameter values is 

studied and comprehended using a range of statistical techniques, including heatmap analysis, 

boxplot analysis, pair plot analysis, and histogram analysis. Based on the findings of EDA, certain 

preprocessing requirements are identified and subsequently implemented. The Select K best 

feature selection method is applied to retain only the most relevant features. The application of the 
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Select K Best feature selection method yielded significant improvements in the river water quality 

dataset, which finally comprising 10,560 tagged instances and 38 attributes, and this dataset is 

called as the WQI-SA dataset as mentioned in Table XII of Chapter 3.  

Model Building 

The task of predicting the water quality index is approached as a regression problem and 

is tackled using TFT architectures. The WQI prediction model are developed using temporal fusion 

transformer architecture by training the 80% tagged instances of WQI-SA dataset. TFT works by 

combining multiple layers of transformer blocks to capture long-term dependencies in the time 

series data. The input layer takes in the input WQI-SA time series data and converts it into a 

numerical representation. The encoder layers use self-attention mechanisms to process the input 

data and generate feature representations for each instance in the series and allow information from 

past and future time steps to be fused into the representation for each step. The decoder layers use 

self-attention and cross-attention mechanisms to generate predictions for future time steps based 

on the feature representations of encoders. Finally, the output layer generates the final WQI 

predictions for future time steps by applying a linear transformation to the output of the decoder. 

The number of layers, the size of each layer, and the hyperparameters of the model are tuned to 

achieve the best performance on a specific time series prediction task. 

During training, TFTs utilize temporal and cross-dimensional attention mechanisms to 

effectively capture complex temporal patterns and relationships within the water quality data. The 

model processes the sequential instances and attributes of the dataset, learning to weigh their 

importance dynamically over different time steps. The model is trained using the specified number 

of epochs, and the learning rate is set to the specified value.  

The various hyperparameters such as the number of hidden layers, the number of neurons 

in each layer, and the learning rate are set while training. Some of the special hyperparameters 

used in TFT that differ from other deep learning architecture include attention windows, filter 

heads, value dimensions, and temporal encoder dimensions. Attention windows use a sliding 

window mechanism for attention computation, where the size of the window determines the range 

of context considered for each position in the sequence and helps to control the amount of context 

used for each prediction. These special hyperparameters are important for TFT to perform well on 

sequence data and significantly impact the performance of the model. Thus, an enhanced WQI 
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prediction model is built by learning the trends in water quality parameters from the WQI-SA 

dataset with a temporal fusion transformer by properly setting and fine tuning the hyperparameters 

and the model is referred to as the TFT-WQI-SA model. The predictive performance of WQI 

model is evaluated using the metrics such as MAE, MSE, RMSE, and R2 score. 

Experiments and Results 

The experiments are conducted by implementing the TFT deep learning architecture and 

implementing it using Python libraries under TensorFlow and Keras. The training dataset 

comprised 8124 labelled instances of the WQI-SA dataset. The evaluation of the prediction 

performance of the model is undertaken using various metrics, such as MAE, MSE, RMSE and 

R2 score values, utilizing a separate test dataset containing 2009 instances. 

The performance results of the WQI prediction model built using temporal fusion 

transformers depends on a variety of factors depends on the choice of model hyperparameters as 

tabulated in Table XXVIII. The setting of special hyperparameters of TFT encompasses a 

prediction time step of 30 steps, the encoder layer is set as 4, batch sizes are fixed to 64, state sizes 

from 32 to 256 and it is set to 64, learning rates from 0.0001 to 0.1, number of attention heads 

from 1 to 8, dropout rates from 0.2 to 0.3 as tabulated in Table XXIX.  

Table XXVIII. Normal Hyperparameters Setting for Training TFT 

 Hyperparameter Values Hyperparameter Values 

Optimizer Adam Dropout 0.2, 0.3 

Dense Layer 5 to 10 Momentum 0.5 or 0.9 

Epoch 
20, 50, 100, 

150, 200 
Learning rate 0.1 

Batch size 32/64 Activation function Relu 
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Table XXIX:  Setting of Special Hyperparameters for TFT 

Time steps 30 

Encoders Layers 4 

Batch Size 64 

State size 64 

Learning rates 0.01 

Attention heads 4 

Dropout rate                    0.20, 0.30 

Loss Function a 0.8 

Loss Function b 0.01 

Loss Function g 0.1 

 

The results of the TFT-based WQI prediction model (TFT-WQI-SA model) are 

experimented with various epochs such as from 20 to 500 where various metrics are measured at 

different epochs. For the WQI-SA dataset, at epoch 500, the TFT-WQI-SA model achieves an 

MAE value of 0.122, which represents the average absolute difference between the predicted and 

actual values. The MSE is calculated as 0.167, signifying the average of squared differences. The 

RMSE, derived as the square root of the MSE, is reported as 0.4087. The R2 Score, is noted at 

0.941, suggesting a high level of prediction performance. At 200 epochs, the MAE experiences a 

marginal increase to 0.137, indicating a slightly larger average absolute difference in predictions. 

Simultaneously, the MSE rises to 0.183, signifying a higher average of squared differences. The 

RMSE value expands to 0.4278, while the R2 Score decreases slightly to 0.928.  

Continuing to 150 epochs, the MAE exhibits a more pronounced increase to 0.183, and the 

MSE follows suit, expanding to 0.197. The RMSE at this stage reaches 0.4438. The R2 Score 

experiences a further reduction to 0.913. Upon reaching 100 epochs, the MAE increases again to 

0.214, and the MSE follows suit, expanding to 0.218. The RMSE value rises to 0.4669, and the 

R2 Score decreases further to 0.89. As the number of epochs decreases to 50, the MAE exhibits a 

larger increase to 0.227, accompanied by a higher MSE of 0.276. The RMSE now stands at 0.5254, 

and the R2 Score experiences a more substantial decline to 0.887. Finally, with only 20 epochs, 

the MAE maintains a higher value of 0.248, and the MSE increases to 0.293. The RMSE value 

stands at 0.5413, while the R2 Score decreases further to 0.87. The performance analysis of the 

TFT-WQI-SA model on the WQI-SA dataset at different epochs is tabulated in Table XXX. 
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Table XXX. Performance Results of TFT-WQI-SA Model for Different Epochs 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

500 0.122 0.167 0.4087 0.941 

200 0.137 0.183 0.4278 0.928 

150 0.183 0.197 0.4438 0.913 

100 0.214 0.218 0.4669 0.89 

50 0.227 0.276 0.5254 0.887 

20 0.248 0.293 0.5413 0.87 

 

The results of the TFT-based WQI prediction model (TFT-WQI-SA model) have 

experimented with different drop out such as 0.2 and 0.3 where various metrics are measured. For 

a dropout rate of 0.3, the TFT-WQI-SA model achieves an MAE of 0.122, which represents the 

average absolute difference between the predicted and actual values. The MSE is calculated as 

0.167, representing the average of squared differences. The RMSE is 0.4087, which is the square 

root of the MSE. The R2 score, measuring the goodness of fit, is 0.941, indicating a very high level 

of prediction accuracy. Decreasing the dropout rate to 0.2 leads to a higher MAE of 0.183, 

suggesting a larger difference between the predicted and actual values. The MSE increases to 

0.197, and the RMSE becomes 0.4438. The R2 score decreases to 0.913, indicating a slightly lower 

level of prediction accuracy compared to the dropout rate of 0.3. The performance analysis of 

dropout is tabulated in Table XXXI. 

Table XXXI. Performance of TFT-WQI-SA Model for Different Dropout Rates 

Dataset Dropout MAE MSE RMSE R2 Score 

WQI-SA 
0.3 0.122 0.167 0.4087 0.941 

0.2 0.183 0.197 0.4438 0.913 

 

The actual time series data and the predicted time series through the use of quantile bands 

are depicted in Fig.6.2. The bands are determined by the values qL1, qU1, qL2, qU2, qL3, and 

qU3, which define the lower and upper bounds of each quantile. The actual time series is 

represented by a line labelled actual, while the predicted time series is represented by three distinct 
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quantile bands, each defined by qL and qU values and labelled with the corresponding string. The 

expected value of the predicted time series, computed as the median as the central quantile mean, 

is plotted and labelled as expected. 

 

Fig.6.2. Visualization of Actual and Predicted Values with Quantile Bands 

Comparative Analysis 

The results of the TFT-WQI-SA prediction model are compared with the performance 

results of the prediction models such as RNN-WQI-SA, LSTM-WQI-SA and GRU-WQI-SA 

described in Chapter 5. The hyperparameters for the TFT-WQI-SA prediction model are set into 

the model, which is then implemented for 20, 50, 100, 150, 200 and 500 epochs. The RNN-WQI-

SA, LSTM-WQI-SA, and GRU-WQI-SA prediction models are also executed for the same number 

of epochs, using relevant hyperparameters.  

The MAE is observed as 0.122 for TFT based WQI prediction model, whereas 0.428 for 

RNN, 0.298 for LSTM and 0.39 for GRU-based prediction models. High MAE is observed for 

GRU based prediction model and less MAE is obtained for the TFT-WQI-SA prediction model. 

The MSE for the WQI prediction model based on TFT-WQI-SA is observed to be 0.167, the other 

deep learning architectures such as RNN-WQI-SA obtained 0.384, LSTM-WQI-SA is 0.2084 and 

GRU-WQI-SA is 0.2149.  The high MSE is observed for the RNN-WQI-SA prediction model and 

less error is obtained for the TFT-WQI-SA prediction model for the given dataset.  
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The RMSE for the WQI prediction model based on TFT-WQI-SA is observed to be 0.4087, 

the other deep learning architectures such as RNN-WQI-SA obtained 0.6197, LSTM-WQI-SA is 

0.4565 and GRU-WQI-SA is 0.4636. The high RMSE is observed for the RNN-WQI-SA 

prediction model and less error is obtained by the TFT-WQI-SA prediction model for the given 

dataset. The R2 score value for the TFT-WQI-SA prediction model is observed as 0.941 and the 

outperforming model in river water quality forecasting. The LSTM-WQI-SA approach is found 

0.82, RNN-WQI-SA got 0.856 and the GRU-WQI-SA model is observed at 0.839 while training 

with the WQI-SA dataset. 

The comparative performance results of the TFT-WQI-SA prediction model and RNN-

WQI-SA, LSTM-WQI-SA and GRU-WQI-SA models are depicted in Table XXXII and the 

performance analysis is illustrated in Fig.6.3. 

Table XXXII. Performance of Different WQI Models Based on WQI-SA Dataset 

Model  Dropout Epoch MAE MSE RMSE R2 Score 

TFT-WQI-SA 

0.3 500 

0.122 0.167 0.4087 0.941 

RNN-WQI-SA 0.428 0.384 0.6197 0.82 

LSTM-WQI-SA 0.298 0.2084 0.4565 0.856 

GRU-WQI-SA 0.39 0.2149 0.4636 0.839 

 
Fig.6.3. Performance Analysis of the Various WQI Prediction Models  

Based on WQI-SA Dataset 
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Findings 

The results of the present study conclusively demonstrate the efficacy of the Temporal 

Fusion Transformer architecture in the development of prediction models for time series data, such 

as the prediction of water quality index. The WQI-prediction model built with TFT found that the 

model identified and handled time series patterns of water quality data efficiently with a high R2 

score value and less error rate. The temporal fusion approach effectively captures the temporal 

relationships between different water quality parameters, while the Transformer architecture is 

well-suited for the handling of river water quality data. The TFT-based WQI prediction model has 

been found to have several key advantages over traditional models, including improved accuracy, 

better handling of temporal dependencies, better representation of complex relationships, and 

improved generalization performance. The incorporation of specific hyperparameters has led to 

improvements in WQI prediction, making it stand apart from other models. The model 

demonstrates strong generalization performance and can effectively predict the water quality index 

in real-world scenarios. 

SUMMARY 

This chapter presents the methodology of building an enhanced WQI prediction model 

built with specially designed time series architecture TFT. The implementation and model training 

using TFT architecture for predicting the WQI has been described in detail with experimental 

results.  The performance of TFT-WQI-SA prediction models is compared with the models built 

in Chapter 5 and the comparative performance results have been reported. To further generalize 

the method of building the WQI prediction model, a transfer learning approach is proposed in this 

research and the construction of the WQI prediction model with homogenous transfer learning will 

be explained in the next chapter. 
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