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3. PROBLEM MODELLING  

The main focus of this research is to propose an evident model to predict water quality 

index for river water mainly for the Bhavani River and the Bharathapuzha River. The research 

problem of predicting water quality is formulated as a regression task and a suitable solution is 

proposed using deep learning architectures and transfer learning approaches. This chapter portrays 

the approach of problem modelling that facilitates the objectives. The creation of four independent 

datasets consisting of the water quality features is also described in this chapter. The WQI 

prediction models developed using deep learning techniques and transfer learning approaches in 

four phases are elucidated in detail in this chapter. 

3.1. OVERALL FRAMEWORK OF THE WQI PREDICTION MODEL 

The methodology designed to generate the WQI prediction model comprises four modules. 

They are (i) data acquisition (ii) exploratory data analysis, data preprocessing and dataset 

preparation (iii) building the WQI prediction model and (iv) validation and model evaluation.   

A five-year time series data comprising 26 physiochemical water quality parameters 

observed from eleven sampling stations located along the Bhavani River, for the period 1st January 

2016 to 31st December 2020 are collected in real-time. Also, data are collected from three 

sampling stations of the Bharathapuzha River for the period 1st January 2020 to 31st December 

2021. Physical parameters such as temperature, total suspended solids, turbidity, fixed dissolved 

solids, conductivity, and total dissolved solids, as well as chemical parameters such as pH, 

ammonia, alkalinity, chloride, potassium, sulphate, nitrogen, fluoride, hardness, dissolved oxygen, 

biological oxygen demand, and chemical oxygen demand, are taken for study. Total coliform and 

faecal coliform are also measured as biological indicators of water quality. Seasonal variations 

play a critical role in assessing water quality, as changes in weather and atmospheric conditions 

are reflected in seasonal parameters. The seasonal parameters include temperature, dew point, 

humidity, sea level pressure, precipitation, precipitation amount, wind speed, wind direction, cloud 

cover, and visibility. These seasonal data are collected from visual crossing sites for the same 

period and locations. Spatial parameters such as latitude, longitude, station ID and temporal 

parameter Date are also taken into consideration for the study. The WQI is calculated according 

to the Bureau of Indian Standards for drinking water specification and augmented with time series 

data.  



61 
 

The data collected on river water quality is subjected to exploratory data analysis to 

comprehend the properties of the data and evaluate the significance of each parameter in generating 

the water quality index. Various analysis methods such as heatmap analysis, boxplot analysis, 

histogram analysis and pair plot analysis are employed. The preprocessing tasks such as handling 

missing values, removal of outliers, and data normalization is done. Min-max normalization is 

used to normalize the observations. Feature selection technique namely Select K Best is applied 

and the most relevant independent variables that contribute significantly to predicting the WQI are 

identified.  Three datasets namely WQI-PCA, WQI-SA and WQI-BP are developed for building 

deep learning-based WQI prediction models.  

Here, the problem of WQI prediction is modelled as a regression task and an appropriate 

solution is obtained using deep learning. Regression analysis is a statistical technique commonly 

used for data fitting and prediction purposes. The mathematical model of regression describes the 

relationship between a dependent variable (Y) and a set of independent variables (Xi). The model 

is expressed as Y = β0 + β1*X1 + β2*X2 + ... + βn*Xn + ε, where Y represents the dependent variable. 

The intercept (β0) is the constant term, and β1, β2, ..., βn are the coefficients associated with the 

independent variables X1, X2, ..., Xn, respectively. The independent variables X1, X2, ..., Xn are 

used to explain or predict the value of the dependent variable. The error term (ε) accounts for 

unexplained variability or noise in the model. The goal of regression analysis is to estimate the 

coefficients (β0, β1, β2, ..., βn) that provide the best fit to the data, minimizing the difference 

between the observed values of Y and the predicted values based on the independent variables.  

Data fitting for regression is modelled by defining the different categories of water quality 

parameters as independent variables (Xi) and WQI as the target variable (Y). The deep learning 

and transfer learning prediction models are built using various architectures, including RNN, 

LSTM, GRU, and TFT. The research is carried out in four phases. In the first phase, deep learning 

architectures such as RNN, LSTM and GRU are utilized as these architectures are significant in 

training sequence data and accurate WQI prediction models are developed. Next, a modern 

architecture called Temporal Fusion Transformer is employed and efficient WQI prediction 

models are built by training the same datasets. In the third phase, the homogenous transfer learning 

technique is adopted for building the enhanced WQI prediction model. In the fourth phase, the 
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heterogeneous transfer learning approach is adopted for constructing a hybrid WQI prediction 

model. 

The performance of the WQI prediction models is evaluated with various metrics such as 

mean absolute error, mean squared error, root mean squared error and the R2 score and the result 

analysis is done. The proposed framework of the water quality index prediction model is shown in 

Fig.3.1 and the various tasks of the proposed methodology are explained in detail in the following 

sections. 

 

Fig. 3.1 Overall Framework of Water Quality Index Prediction Model 

3.2. DATA COLLECTION 

Data collection is the process of gathering and storing information for analysis and 

decision-making purposes. The data collection for this research involves gathering crucial 

information from two major rivers, namely the Bhavani River and Bharathapuzha River. The 

observation for water quality parameters monitored during the period January 2016 to December 

2020 across 11 monitoring stations of Bhavani River, and the observations monitored during the 

period January 2019 to December 2020 across 3 sampling stations of Bharathapuzha River are 



63 
 

taken for study. The extensive collection of data from multiple monitoring stations provides a 

comprehensive understanding of the water quality dynamics in these rivers over the specified time 

periods.  

The purpose of this research is to develop reliable models for predicting the WQI of river 

water based on water quality parameters, such as physical, chemical, biological and seasonal. 

When the parameter values associated with water quality change, it can have significant effects on 

the overall condition of the water. Parameters such as pH, dissolved oxygen levels, temperature, 

turbidity, nutrient concentrations, and pollutant levels can greatly impact water quality. For 

instance, an increase in nutrient concentrations, such as nitrogen and phosphorus, leads to 

eutrophication and harmful algal blooms, resulting in decreased water quality. Changes in pH 

levels affect the acidity or alkalinity of the water, influencing the health of aquatic organisms. 

Similarly, alterations in temperature impact metabolic rates and habitat suitability for various 

species. Therefore, understanding and monitoring parameter values are crucial in assessing and 

maintaining water quality for various ecosystems and human needs.  

BHAVANI RIVER 

The Bhavani River is a significant water body located in the Tamil Nadu and Kerala states 

of India. It originates from the Silent Valley National Park in Kerala and flows through the 

Coimbatore district of Tamil Nadu before joining the Kaveri River. The river has a total length of 

about 217 kilometres and serves as a major source of irrigation and drinking water for the 

surrounding communities. Despite its vital importance, the Bhavani River has been facing 

significant pollution levels due to industrial and domestic waste discharges, deforestation, and 

other human activities. The high levels of pollution have led to the deterioration of the river's water 

quality and have negatively impacted the health of the local ecosystem, including the aquatic life 

and the surrounding vegetation. The river is also prone to flash floods during heavy rains, which 

further exacerbate pollution levels and threaten the safety of the local population. The government 

and other stakeholders are taking various measures to address the pollution levels and restore the 

health of the Bhavani River. However, significant challenges remain, and ongoing efforts are 

necessary to ensure the sustainable management and conservation of this vital water resource.  

There are eleven monitoring stations situated in Bhavani River. These monitoring stations 

are located at Kottathara, Thavalam, Chalayur, Karathur, Cheerakuzhi, Elachivazhi, 
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Badrakaliamman kovil, Sirumugai, Bhavanisagar, Bhavani, Sathyamangalam. The water flow of 

the Bhavani River is depicted in Fig.3.2. 

 

Fig. 3.2 The Flow of the Bhavani River 

BHARATHAPUZHA RIVER  

Bharathapuzha River is a significant river system located in the southern Indian state of 

Kerala. It is also known as the river Nila and is the second-longest river in Kerala, spanning a 

length of approximately 209 kilometres. The river originates from the Anaimalai Hills in Tamil 

Nadu and flows through several districts of Kerala, including Palakkad, Thrissur, and 

Malappuram, before draining into the Arabian Sea. The Bharathapuzha River has immense 

ecological and socio-economic significance to the region, supporting a range of aquatic flora and 

fauna and providing irrigation, drinking water, and livelihoods for millions of people. The river is 

facing significant pollution and degradation due to various anthropogenic activities, such as 

agricultural run-off, industrial effluent discharge, and urbanization. The river water quality has 

become a matter of great concern for water managers, and other stakeholders. Various studies have 

been conducted to assess and monitor the water quality of the Bharathapuzha River, and it is 

imperative to continue such efforts to ensure the sustainable development and conservation of this 

vital river system. There are three different sampling stations situated across the Bharathapuzha 

River. These sampling stations are located at Kuttipuram, Pattambi and Korayar Kanjikode. The 

water flow of Bharathapuzha river is shown in Fig.3.3.  
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Fig. 3.3 The Flow of the Bharathapuzha River 

It is essential to continue monitoring and assessing the water quality of these rivers to 

ensure sustainable development and the well-being of both the human population and the aquatic 

ecosystem. Accurate and reliable data on various water quality parameters, like pH, dissolved 

oxygen, turbidity, and nutrients, among others, are essential for developing reliable models and 

methods for predicting the WQI of these rivers. Moreover, collecting data over time helps to 

identify trends in water quality and understand the sources of pollution and their impacts. 

WATER QUALITY PARAMETERS  

Accurate prediction of the WQI necessitates the availability of dependable and inclusive 

data encompassing multiple parameters. Collecting accurate and reliable data on these parameters 

is very important for this study. Various parameters that are required to build the prediction model 

or WQI prediction are classified into four categories: physical, chemical, biological and seasonal 

parameters.  

Physicochemical parameters are properties of water that relate to its physical and chemical 

characteristics. These parameters play a crucial role in determining the water quality of a particular 

source. The physical parameters include temperature, conductivity, turbidity, total suspended 

solids, and fixed dissolved solids. The chemical parameters of water quality such as pH, ammonia, 

alkalinity, chloride, potassium, sulphate, nitrogen, fluoride, hardness, dissolved oxygen, biological 

oxygen demand, and chemical oxygen demand. The biological water quality indicators are total 

coliform and faecal coliform. Seasonal parameters refer to variables that exhibit regular patterns 

or fluctuations based on the time of year, allowing for effective analysis and prediction of seasonal 
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trends. The seasonal parameters include dew, humidity, sea level pressure, precipitation, precip 

over, wind speed, wind direction, cloud cover, and visibility. 

Physical Parameters 

Physical parameters such as temperature, conductivity, turbidity, total suspended solids, 

and fixed dissolved solids, significantly affect the chemical and biological properties of water and 

they are described below. 

Temperature 

Temperature plays a crucial role in predicting the WQI, serving as a measure of water's 

hotness or coldness and impacting its physical, chemical, and biological properties. High water 

temperatures promote biological activity, leading to algae and bacteria growth that deplete oxygen 

levels and affect aquatic organisms' survival. Conversely, low temperatures restrict biological 

activity and reduce dissolved oxygen. Temperature also influences the solubility of minerals and 

chemicals, altering water chemistry. Measuring temperature at various depths helps assess thermal 

stratification, crucial for nutrient and oxygen distribution. Understanding temperature patterns is 

vital for predicting and managing water quality. The WQI calculates by determining the deviation 

from the standard value, which is 25°C according to the Bureau of Indian Standards (BIS).  

Turbidity 

Turbidity is an essential parameter used to predict the WQI and assess the clarity of water. 

Elevated turbidity levels indicate a cloudy or hazy appearance due to suspended particles 

originating from natural sources or human activities. These particles can include sediment, organic 

matter, and runoff from construction or agriculture. Turbidity influences light penetration, 

impacting aquatic plant growth and the survival of organisms. The WQI considers a minimum 

turbidity value of 0 Nephelometric Turbidity Units (NTU) and a maximum value of 1000 NTU. 

Turbidity is measured with a turbidimeter, and the WQI is calculated by determining the deviation 

from the standard value. The BIS has established a surface water turbidity standard of 5 NTU, with 

the deviation calculated by subtracting the measured turbidity from 5 NTU and dividing by 1. BIS 

also defines a maximum permissible limit of 25 NTU for surface water turbidity, beyond which it 

is deemed unsuitable for human consumption. 
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Conductivity 

Conductivity is an essential parameter used in the prediction of the Water Quality Index 

and measures the ability of water to conduct electrical current, reflecting the concentration of 

dissolved salts and minerals. High conductivity values indicate elevated concentrations of 

dissolved minerals, while low values suggest lower concentrations. The WQI considers a 

minimum conductivity value of 0 micro siemens per centimetre (uS/cm) and a maximum value of 

1000 uS/cm. Measuring conductivity is done using a conductivity meter, and the WQI calculation 

involves determining the deviation from the standard value. The BIS has established a surface 

water conductivity standard of 75 uS/cm, with the deviation calculated by subtracting the measured 

conductivity from 75 uS/cm and dividing by 25. BIS has also specified a maximum permissible 

limit of 2250 uS/cm for surface water conductivity, beyond which it is considered unsuitable for 

human consumption.  

Total Suspended Solids  

Total Suspended Solids (TSS) is an important parameter used in the prediction of the Water 

Quality Index. TSS is the amount of solid material that is suspended in water and includes particles 

such as silt, clay, and organic matter. High TSS levels can reduce water clarity, interfere with 

aquatic life, and affect water treatment processes. The minimum value considered for WQI 

prediction is 0 milligrams per litre (mg/L), while the maximum value is 500 mg/L. TSS is measured 

using a filter and gravimetric analysis, and the WQI is calculated by determining the deviation of 

the measured TSS from the standard value. The BIS has set a standard value of 10 mg/L for TSS 

in surface water, and the deviation from the standard value is calculated by subtracting the 

measured TSS from 10 mg/L and then dividing by 2. The BIS has also specified a maximum 

permissible limit of 100 mg/L for TSS in surface water, beyond which it can be considered 

unsuitable for human consumption.  

Total Dissolved Solids 

Total Dissolved Solids (TDS) is an important parameter used in the prediction of the WQI. 

TDS is the amount of inorganic and organic materials that are dissolved in water and includes 

minerals, salts, and organic compounds. High TDS levels can affect water taste, interfere with 

aquatic life, and increase the risk of scaling and corrosion in pipes and equipment. The minimum 

value considered for WQI prediction is 0 milligrams per litre (mg/L), while the maximum value is 
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2000 mg/L. TDS is measured using a gravimetric analysis or conductivity meter, and the WQI is 

calculated by determining the deviation of the measured TDS from the standard value. The BIS 

has also specified a maximum permissible limit of 2000 mg/L for TDS in surface water, beyond 

which it is considered unsuitable for human consumption.  

Fixed Dissolved Solids 

Fixed Dissolved Solids (FDS) is a significant parameter used in the prediction of the WQI. 

FDS refers to the inorganic materials remaining in solution after evaporation, including calcium, 

magnesium, and chloride ions. High FDS levels impact water taste and can lead to scaling and 

corrosion in pipes and equipment. The WQI considers a minimum value of 0 mg/L and a maximum 

value of 1500 mg/L for FDS. FDS is measured using gravimetric analysis or a conductivity meter, 

and the WQI calculates the deviation from the standard value. BIS has also specified a maximum 

permissible limit of 1500 mg/L for FDS in surface water, beyond which it is unsuitable for human 

consumption.  

Chemical Parameters 

Chemical river water quality parameters refer to the various chemical components present 

in water that affect its suitability for different uses. These parameters are essential for 

understanding the overall health of a river and its potential impact on the environment and human 

health. Some of the key chemical parameters used in river water quality assessment include pH, 

ammonia, alkalinity, chloride, potassium, sulphate, nitrogen, fluoride, hardness, dissolved oxygen, 

biological oxygen demand, and chemical oxygen demand and these are described below. 

pH 

pH is a critical chemical parameter used in river water quality assessment. It is a measure 

of the acidity or basicity of water and has a significant impact on the chemical and biological 

processes in water bodies. The minimum pH value considered for water quality index prediction 

is 0, which represents highly acidic water, while the maximum value is 14, which represents highly 

alkaline water. The pH is measured on a scale of 0 to 14 using a pH meter or pH indicator strips. 

In the context of river water quality index calculation, the pH value is compared to a standard 

value, which is typically set at 7.0. The deviation from the standard value is then calculated by 

subtracting the measured pH value from 7.0. The BIS has specified a permissible limit for pH in 
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river water between 6.5 and 8.5. pH levels outside this range can have adverse effects on aquatic 

life and indicate potential pollution sources.  

Ammonia 

Ammonia is one of the chemical parameters used for river water quality index prediction. 

It is a colourless, pungent gas that dissolves readily in water to form ammonium ions. Ammonia 

levels in river water increase due to various human activities such as agriculture, sewage treatment, 

and industrial discharge. The minimum and maximum permissible limits for ammonia in river 

water according to the BIS are 0.5 and 2.0 mg/L, respectively. The concentration of ammonia is 

measured using various methods, including colourimetry and ion-selective electrodes. The 

deviation from the standard value of ammonia is calculated by subtracting the measured value 

from the permissible limit of 1.25 mg/L. Therefore, regular monitoring of ammonia levels in river 

water is crucial to maintain the quality and health of the water body. 

Alkalinity 

Alkalinity is an important chemical parameter used in the prediction of river WQI. It 

measures the water's capacity to neutralize acids and maintain a stable pH level. Alkalinity is 

influenced by the presence of dissolved bicarbonates, carbonates, and hydroxides in the water. 

These compounds are naturally occurring in river water and can be affected by human activities 

such as agriculture and industrial activities. The minimum value for alkalinity in river water is 20 

mg/L, while the maximum value is 600 mg/L. Alkalinity is calculated by titrating a water sample 

with acid until the pH drops to a specific level. The amount of acid required to reach this level is 

then used to determine the alkalinity. The standard value for alkalinity in surface water is 200 

mg/L, according to the BIS. A higher alkalinity value indicates better water quality, as it can buffer 

against pH changes and maintain a stable aquatic environment. 

Chloride 

Chloride is a chemical parameter used for the prediction of the river water quality index. It 

is an anion commonly found in natural water sources and is an important indicator of water salinity. 

High chloride levels indicate contamination from sources such as road salts, industrial waste, and 

agricultural runoff. Chloride is measured in milligrams per litre (mg/L) and the minimum and 

maximum permissible levels for river water, according to the BIS, are 250 mg/L and 1000 mg/L, 

respectively. The deviation of chloride levels from the standard value of 250 mg/L is used in the 
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calculation of WQI. The WQI score decreases with increasing deviation from the standard value. 

Chloride affects the taste of water and high levels can also corrode pipes and damage aquatic 

habitats. Understanding chloride levels in river water is important for maintaining water quality 

and ensuring safe usage. 

Potassium 

Potassium is one of the essential parameters used in the prediction of river water quality 

index. It is a crucial element in the growth and development of aquatic plants and is an indicator 

of the presence of nutrients in the water. The minimum value of potassium that is considered 

acceptable for river water is 2 mg/L, while the maximum value should not exceed 12 mg/L. The 

calculation of potassium levels in river water is typically done through laboratory analysis using 

spectrophotometry or atomic absorption spectrometry. The BIS has set a standard value of 6 mg/L 

for potassium in river water, which serves as a benchmark for water quality assessment.  

Sulphate 

Sulphate is an important parameter used in the prediction of river water quality index. It is 

a naturally occurring compound found in rocks and soils, and can also be present in water due to 

human activities such as mining and industrial discharges. The acceptable range for sulphate levels 

in river water is typically between 200-400 mg/L, with a maximum limit of 1000 mg/L to prevent 

adverse effects on aquatic life. The calculation of sulphate levels in river water is typically done 

through laboratory analysis using methods such as turbidimetry or ion chromatography. The BIS 

has set a standard value of 200 mg/L for sulphate in river water, which serves as a benchmark for 

water quality assessment.  

Nitrate 

Nitrate is a critical parameter used in the prediction of river water quality index. It is an 

essential nutrient for aquatic plant growth and is naturally present in water bodies. However, 

excessive amounts of nitrate can lead to eutrophication, which can have harmful effects on aquatic 

life. The acceptable range for nitrate levels in river water is typically between 2-10 mg/L, with a 

maximum limit of 50 mg/L to prevent eutrophication. The calculation of nitrate levels in river 

water is typically done through laboratory analysis using methods such as colourimetry or ion 

chromatography. The BIS has set a standard value of 10 mg/L for nitrate in river water, which 

serves as a benchmark for water quality assessment.  
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Fluoride 

Fluoride is a crucial parameter used in the prediction of river water quality index. It is a 

naturally occurring compound found in rocks and soils, and can also be present in water due to 

human activities such as industrial discharges and agricultural run-off. While fluoride is essential 

for dental health, excessive amounts can lead to fluorosis, a condition that can cause discolouration 

and weakening of teeth and bones. The acceptable range for fluoride levels in river water is 

typically between 0.5-1.5 mg/L, with a maximum limit of 1.5 mg/L to prevent adverse effects on 

human health. The calculation of fluoride levels in river water is typically done through laboratory 

analysis using methods such as ion-selective electrodes. The BIS has set a standard value of 1 

mg/L for fluoride in river water, which serves as a benchmark for water quality assessment.  

Hardness 

Hardness is an essential parameter used in the prediction of water quality index. It is a 

measure of the amount of dissolved minerals such as calcium and magnesium in the water. High 

levels of hardness can cause scaling in pipes and appliances and can also affect the effectiveness 

of cleaning agents. The acceptable range for hardness levels in river water is typically between 50-

300 mg/L, with a maximum limit of 600 mg/L to prevent adverse effects on human health and 

aquatic life. The calculation of hardness levels in river water is typically done through laboratory 

analysis using methods such as titration or atomic absorption spectrometry. The BIS has set a 

standard value of 300 mg/L for hardness in river water, which serves as a benchmark for water 

quality assessment.  

Dissolved Oxygen 

Dissolved oxygen is a crucial parameter used in the prediction of river water quality index. 

It is a measure of the amount of oxygen available in water to support aquatic life. DO is essential 

for the survival of fish, insects, and other organisms living in the water. Low levels of DO can lead 

to fish kills and other adverse effects on aquatic life. The acceptable range for DO levels in river 

water is typically between 5-10 mg/L, with a minimum limit of 4 mg/L to prevent adverse effects 

on aquatic life. The calculation of DO levels in river water is typically done through laboratory 

analysis using methods such as titration. The BIS has set a standard value of 6 mg/L for DO in 

river water, which serves as a benchmark for water quality assessment.  
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Biological Oxygen Demand 

Biochemical oxygen demand is a critical parameter used in the prediction of river water 

quality index. It is a measure of the amount of oxygen required by microorganisms to break down 

organic matter in the water. High levels of BOD indicate high levels of organic matter in the water, 

which can lead to reduced DO levels and adverse effects on aquatic life. The acceptable range for 

BOD levels in river water is typically between 1-6 mg/L, with a maximum limit of 30 mg/L to 

prevent adverse effects on aquatic life. The calculation of BOD levels in river water is typically 

done through laboratory analysis using methods such as dilution and incubation. The BIS has set 

a standard value of 3 mg/L for BOD in river water, which serves as a benchmark for water quality 

assessment.  

Chemical Oxygen Demand 

Chemical oxygen demand is an essential parameter used in the prediction of river water 

quality index. It is a measure of the amount of oxygen required to oxidize organic and inorganic 

compounds in the water. High levels of COD indicate high levels of pollutants in the water, which 

can lead to reduced DO levels and adverse effects on aquatic life. The acceptable range for COD 

levels in river water is typically between 10-30 mg/L, with a maximum limit of 250 mg/L to 

prevent adverse effects on aquatic life. The calculation of COD levels in river water is typically 

done through laboratory analysis using methods such as digestion and titration. The BIS has set a 

standard value of 50 mg/L for COD in river water, which serves as a standard for water quality 

assessment.  

Biological Parameters 

Biological water quality parameters are critical indicators used to assess the health and 

overall quality of water bodies such as rivers, lakes, and streams. These parameters provide 

information on the presence and abundance of living organisms, such as algae, bacteria, and fish, 

in the water. The presence of specific species or communities of organisms can be indicative of 

various water quality characteristics, including nutrient levels, temperature, and dissolved oxygen. 

The biological parameters such as total coliform and faecal coliform are described below.   

Total Coliform 

Total Coliform is an important biological parameter used in the prediction of river water 

quality index. They are a type of bacteria found in the intestines of humans and other warm-
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blooded animals, and their presence in water can indicate faecal contamination. High levels of TC 

in river water can pose a significant risk to public health, as it can be indicative of the presence of 

harmful pathogens that can cause waterborne illnesses. The acceptable range for TC levels in river 

water is typically less than 5000 colony-forming units (CFU) per 100 mL, with a maximum limit 

of 10,000 CFU per 100 mL for potable water. The calculation of TC levels in river water is 

typically done through laboratory analysis using methods such as membrane filtration and 

incubation. The BIS has set a standard value of less than 5000 CFU per 100 mL for TC in river 

water, which serves as a benchmark for water quality assessment.  

Faecal Coliform 

Faecal Coliform is another important biological parameter used in the prediction of river 

water quality index. They are a type of bacteria found in the intestines of warm-blooded animals, 

and their presence in water can indicate faecal contamination from human or animal waste. High 

levels of FC in river water can pose a significant risk to public health, as it can be indicative of the 

presence of harmful pathogens that can cause waterborne illnesses. The acceptable range for FC 

levels in river water is typically less than 1000 CFU per 100 mL, with a maximum limit of 2000 

CFU per 100 mL for potable water. The BIS has set a standard value of less than 2500 CFU per 

100 mL for FC in river water, which serves as a benchmark for water quality assessment.  

Seasonal Parameters 

River water quality is subject to significant temporal variability due to changes in 

hydrological conditions, weather patterns, and anthropogenic activities. Seasonal parameters refer 

to various climatic and hydrological factors that vary over time. Understanding the temporal 

variability of water quality is critical for identifying trends, detecting anomalies, and understanding 

the underlying mechanisms that drive changes in water quality. Therefore, collecting and analysing 

seasonal parameters are essential for accurate prediction of river WQI and sustainable management 

of river water resources. Seasonal parameters such as dew, humidity, sea level pressure, 

precipitation, precip over, wind speed, wind direction, cloud cover, and visibility are considered 

in this research and are described below. 

Dew 

Dew plays a crucial role in determining the water quality of rivers, lakes, and groundwater 

systems. It forms overnight or in the early morning as the air cools, carrying various pollutants like 
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dust, pollen, and particulate matter. These contaminants can significantly impact the water bodies' 

health and the well-being of both aquatic ecosystems and humans. Thus, it is imperative to consider 

dew when predicting the WQI to ensure accurate assessments. However, accurately measuring 

dew poses challenges, necessitating advanced equipment and precise techniques. Despite these 

difficulties, incorporating dew in WQI predictions remains vital for the development of dependable 

models and effective water quality management strategies. 

Humidity 

Humidity plays a vital role in determining the water quality of rivers, lakes, and 

groundwater systems. It represents the amount of water vapor in the air and affects the air's 

capacity to hold pollutants like dust and particulate matter. High humidity levels can facilitate the 

removal of pollutants from the air, causing them to deposit into water bodies, thus impacting water 

quality. Additionally, elevated humidity can lead to the formation of fog and dew, further 

introducing nutrients, metals, and contaminants into water bodies, with significant consequences 

for aquatic ecosystems and human health. Therefore, including humidity in the prediction of the 

WQI is crucial for accurate assessments. Fortunately, measuring humidity is relatively 

straightforward using standard equipment, and its incorporation in WQI predictions aids in 

developing reliable models and techniques for effective water quality assessment and 

management. 

Sea Level Pressure 

Sea level pressure (SLP) is a crucial meteorological parameter that represents the 

atmospheric pressure at sea level. It serves as a fundamental indicator of weather patterns and 

atmospheric conditions. SLP influences the movement of air masses and plays a significant role in 

determining weather systems, including the formation of high and low-pressure areas. These 

pressure variations impact wind patterns, storm development, and atmospheric circulation, 

influencing local and regional weather phenomena. Monitoring and analysing SLP data is essential 

for accurate weather forecasting, climate studies, and understanding the dynamics of atmospheric 

processes. SLP measurements provide valuable insights into oceanic conditions and their interplay 

with the atmosphere, aiding in the assessment of marine environments and coastal regions. 
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Precipitation 

Precipitation is a vital component of the Earth's water cycle, representing the various forms 

of water that fall from the atmosphere to the ground. It includes rain, snow, sleet, and hail, each 

with its unique characteristics. Precipitation plays a critical role in replenishing water sources, such 

as rivers, lakes, and groundwater, sustaining ecosystems, and supporting human activities. It is 

influenced by atmospheric conditions, including temperature, humidity, and air pressure, as well 

as geographical factors. Precipitation patterns vary across regions and seasons, affecting 

agriculture, hydroelectric power generation, and overall climate. Monitoring and understanding 

precipitation trends are crucial for water resource management, weather forecasting, and studying 

climate change impacts. 

Precip Over 

Precipitation over a water body significantly impacts its water quality. It can introduce 

pollutants, nutrients, and sediment into the water, leading to adverse effects on the aquatic 

ecosystem and human health. Therefore, measuring precipitation over a specific time period is 

crucial when predicting the WQI of a water body. Collecting precipitation data using standard 

equipment like rain gauges is feasible, enabling the development of reliable techniques for 

assessing and managing water quality. Regular and systematic collection of precipitation data is 

essential due to variations based on location, climate, and season. Including precipitation data in 

WQI prediction helps identify trends and patterns, facilitating the implementation of effective 

strategies for water quality management and improvement. 

Wind Speed 

Wind direction is a critical factor in predicting the WQI of a water body. It has a direct 

impact on water quality by influencing the movement and distribution of pollutants, nutrients, and 

sediments within the water column. The direction of wind determines the flow of surface currents, 

affecting the location and intensity of harmful events like algal blooms. Accurate measurement of 

wind direction using tools like a wind vane is essential for precise WQI predictions. Regular and 

systematic collection of wind direction data is crucial. Wind direction data also aids in identifying 

pollution sources and implementing targeted mitigation measures. Integrating wind direction data 

into WQI predictions provides valuable insights into the factors impacting water quality and 
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facilitates the development of practical management practices for ensuring clean and sustainable 

water resources for both humans and the environment. 

Wind Direction 

Wind direction is an important factor to consider when predicting the WQI of a water body. 

Wind direction influences water quality by affecting the transport and distribution of pollutants, 

nutrients, and sediments within the water column. Measuring wind direction is crucial to predicting 

the WQI accurately. Wind direction can be measured using instruments such as a wind vane, and 

data collected regularly and systematically. By incorporating wind direction data into models and 

techniques for WQI prediction, water quality assessments can be improved, leading to effective 

management strategies for maintaining and improving water quality. Wind direction data can also 

help identify potential sources of pollution and inform targeted management practices to address 

these issues. Incorporating wind direction data into WQI prediction can provide valuable insights 

into the factors that influence water quality and help develop effective management practices to 

ensure clean and healthy water for human and environmental well-being. 

Cloud Cover 

Cloud cover is a significant parameter that influences the WQI of a water body. It impacts 

water quality by affecting light availability for photosynthesis, thereby influencing the growth and 

distribution of aquatic plants and algae. Moreover, cloud cover also affects the temperature and 

heat balance of the water body, influencing chemical and biological processes that impact water 

quality. Accurate measurement of cloud cover is essential for precise WQI predictions. Cloud 

cover data can be obtained through satellite or ground-based observations, collected regularly and 

systematically. Incorporating this data into WQI models enhances water quality assessments and 

enables effective management strategies to maintain and improve water quality. Cloud cover data 

can reveal seasonal or regional patterns, aiding in targeted management practices. Integrating 

cloud cover data into WQI predictions provides valuable insights into the factors influencing water 

quality and supports the development of practical management practices to ensure clean and 

sustainable water resources for both humans and the environment. 

Visibility 

Visibility plays a crucial role in predicting the WQI of a water body. It refers to the distance 

at which objects can be clearly seen in the water and is influenced by factors such as suspended 
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particles, dissolved substances, and algae. A decrease in visibility indicates higher levels of 

pollutants, which can have detrimental effects on aquatic life and human health. Therefore, 

measuring visibility is essential for accurate WQI predictions. Remote sensing and satellite 

imagery have proven effective in assessing visibility and its impact on water quality. Implementing 

management practices to improve visibility, such as reducing sediment runoff and controlling 

nutrient inputs, can contribute to a healthier aquatic ecosystem. By considering visibility in WQI 

predictions, can gain valuable insights into the overall water quality and implement targeted 

measures to safeguard water resources for the well-being of both the environment and society. 

The physical, chemical and biological observations are collected from sampling stations of 

both rivers and the seasonal parameters are collected from visual crossing site based on locations 

of each monitoring stations. The total number of instances obtained for Bhavani and 

Bharathapuzha rivers are 10560 and 2190 respectively.  The list of parameters identified and 

collected for the study is illustrated in Table III. The sample physicochemical parameter data 

collected from Bhavani River is given in Table IV, and the pooled feature Bhavani River features 

are shown in Table V. The sample data of Bharathapuzha River is illustrated in Table VI. 

Table III. List of Water Quality Parameters 

Physicochemical Parameters  Seasonal Parameters  

pH TSS Temperature  

Conductivity  TDS Dew 

Turbidity FDS Humidity 

Phenolphthalein 

Alkalinity  

Phosphate Sea level pressure 

Total Alkalinity Boron Precipitation  

Chloride Potassium Precip cover 

COD BOD Windspeed 

TKN Fluoride Wind dir 

Ammonia Nitrate-N Cloud cover 

Hardness TC Visibility 

Ca. hardness FC Spatial Parameters 

Mg. hardness Dissolved Oxygen  Station ID 

Sulphate Temporal Parameter Latitude  

Sodium Date Longitude  
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Table IV. Sample Bhavani River Data - Physicochemical Parameters  

pH 7.15 7.46 7.5 7.18 7.45 7.05 7.4 7.38 7.56 7.1 

Conductivity  340 339 339 340 340 342 341 339 340 340 

Turbidity 2 2 2 2 2 2 2 2 2 2 

Total Alkalinity 111 110 112 111 110 110 112 111 112 111 

Chloride 21 21 22 21 20 20 20 21 21 21 

COD 4 3.9 4 3.9 4 4 4 3.9 3.9 4 

TKN 0.1 0.1 0.09 0.1 0.1 0.09 0.1 0.1 0.1 0.11 

Ammonia 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Hardness 118 118 119 119 119 119 118 118 118 117.5 

Ca. hardness 74 74 74.5 74.5 74 73.5 73.5 73.5 74 74 

Mg. Hardness 44 44 44 43.5 43.5 43.5 44 44 44 44 

Sulphate 12 12.5 12 12 12.5 12.5 12 12 12.5 12 

Sodium 27.1 27.1 27.2 27.2 27 27.1 27.1 27 27.1 27.1 

TSS 300 300 300 300 300 300 300 300 300 300 

TDS 190 190 189 189 189 190 189 190 189 188 

FDS 174 174 174 174.5 174.5 174 174 174 173.5 173 

Phosphate 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Potassium 2.67 2.67 2.66 2.66 2.67 2.67 2.66 2.66 2.66 2.66 

BOD 0.89 0.87 0.89 0.88 0.85 0.87 0.82 0.81 0.88 0.82 

Fluoride 0.12 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.18 0.18 

Nitrate-N 1.1 1.1 1.1 1 1.2 1 1.2 1.2 1.2 1.2 

DO 6.99 6.97 6.81 7.19 7.3 7.39 7.06 7.02 6.97 7.39 

TC 88 98 118 86 65 105 83 113 65 85 

FC 80 80 80 79.5 79.5 79 79.5 80 80 80 
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Table V. Sample Bhavani River Data- Physiochemical and Seasonal Parameters 

pH 7.15 7.46 7.5 7.18 7.45 7.05 7.4 7.38 7.56 7.1 

Conductivity  340 339 339 340 340 342 341 339 340 340 

Turbidity 2 2 2 2 2 2 2 2 2 2 

Total Alkalinity 111 110 112 111 110 110 112 111 112 111 

Chloride 21 21 22 21 20 20 20 21 21 21 

COD 4 3.9 4 3.9 4 4 4 3.9 3.9 4 

TKN 0.1 0.1 0.09 0.1 0.1 0.09 0.1 0.1 0.1 0.11 

Ammonia 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Hardness 118 118 119 119 119 119 118 118 118 117.5 

Ca. hardness 74 74 74.5 74.5 74 73.5 73.5 73.5 74 74 

Mg. Hardness 44 44 44 43.5 43.5 43.5 44 44 44 44 

Sulphate 12 12.5 12 12 12.5 12.5 12 12 12.5 12 

Sodium 27.1 27.1 27.2 27.2 27 27.1 27.1 27 27.1 27.1 

TSS 300 300 300 300 300 300 300 300 300 300 

TDS 190 190 189 189 189 190 189 190 189 188 

FDS 174 174 174 174.5 174.5 174 174 174 173.5 173 

Phosphate 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Potassium 2.67 2.67 2.66 2.66 2.67 2.67 2.66 2.66 2.66 2.66 

BOD 0.89 0.87 0.89 0.88 0.85 0.87 0.82 0.81 0.88 0.82 

Fluoride 0.12 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.18 0.18 

Nitrate-N 1.1 1.1 1.1 1 1.2 1 1.2 1.2 1.2 1.2 

DO 6.99 6.97 6.81 7.19 7.3 7.39 7.06 7.02 6.97 7.39 

TC 88 98 118 86 65 105 83 113 65 85 

FC 80 80 80 79.5 79.5 79 79.5 80 80 80 

Temp 25 24 25 25 25 24 24 25 25 25 

Dew 15.7 14.6 13.4 13.6 15.6 17.7 18.9 19.4 18.3 17.8 

Humidity 59.3 56.72 51.89 53.06 58.8 62.79 68.91 68.63 65.71 63.8 

Sea level pressure 1016.6 1017.1 1015.8 1015.7 1014.8 1014.8 1015.5 1015.5 1013.7 1014.5 

Precipitation  0 0 0 0 0 0 0.2 0 0 0 

Precip cover 0 0 0 0 0 0 4.17 0 0 0 

Wind speed 16.3 14.4 13.1 15.4 14 18.7 40.2 13.6 14.4 14.9 

Wind dir 52.9 62.3 61.7 68.2 56.5 69.3 114.6 95 94.9 65.1 

Cloud cover 27.4 17.9 5.5 14.1 14.6 16 32.3 42.5 26.3 14 

Visibility 5.5 6 5.7 5.9 5.6 5.5 4.8 5.3 5.1 5.4 
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Table VI. Sample Bharathapuzha River Data-Physiochemical and Seasonal Parameters 

Temp 29 27 30 28 30 30 30 28 29 29 

pH 7.31 7.60 7.43 7.27 7.63 7.20 7.52 7.47 7.38 7.34 

Conductivity  312 316 295 290 316 293 295 308 312 293 

Turbidity 2 2 2 2 2 2 2 2 2 2 

Total 

Alkalinity 77 75 76 79 80 78 79 76 79 80 

Chloride 45 43 39 38 39 39 42 41 43 43 

COD 4 4 4 4 4 4 4 4 4 4 

TKN 0.1 0.1 0.09 0.1 0.1 0.09 0.1 0.1 0.1 0.11 

Ammonia 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

Hardness 105 100 104 108 103 107 105 105 108 107 

Ca. hardness 54 50 51 53 50 50 51 53 51 50 

Mg. Hardness 53 51 50 50 52 50 52 52 52 53 

Sulphate 0.10 0.31 0.14 0.28 0.31 0.18 0.07 0.21 0.58 0.60 

Sodium 16 15 17 17 18 15 15 15 17 18 

TDS 180 173 171 175 180 177 180 172 182 179 

FDS 99 101 94 102 101 100 100 95 94 102 

TSS 300 300 300 300 300 300 300 300 300 300 

Phosphate 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 

Potassium 6.38 6.40 6.46 6.42 6.45 6.41 4.10 4.25 4.45 4.21 

BOD 1.01 1.03 1.02 1.02 1.03 1.02 1.00 1.03 1.00 1.00 

Fluoride 0.58 0.45 0.50 0.45 0.46 0.56 0.43 0.37 0.41 0.33 

Nitrate-N 1.29 1.03 1.51 1.19 1.78 1.49 0.92 1.29 1.10 1.76 

TC 320 306 338 312 261 338 323 293 313 311 

FC 281 272 258 264 254 296 265 254 265 260 

DO 6.12 6.25 6.12 6.25 6.24 6.18 6.26 6.06 6.06 6.07 

Dew 15.7 14.6 13.4 13.6 15.6 17.7 18.9 19.4 18.3 17.8 

Humidity 59.30 56.72 51.89 53.06 58.80 62.79 68.91 68.63 65.71 63.80 

SLP 

1016.

6 1017.1 

1015.8

0 

1015.7

0 

1014.8

0 

1014.8

0 

1015.5

0 

1015.5

0 

1013.7

0 

1014.5

0 

Precipitation  0 2 0 4 18 19.41 14.81 14 5 11.85 

Precipcover 0 4.17 0 8.33 4.17 8.33 8.33 4.17 8.33 8.33 

Windspeed 16.3 14.4 13.1 15.4 14 18.7 40.2 13.6 14.4 14.9 

Winddir 52.9 62.3 61.7 68.2 56.5 69.3 114.6 95 94.9 65.1 

Cloud cover 27.4 17.9 5.5 14.1 14.6 16 32.3 42.5 26.3 14 

Visibility 5.5 6 5.7 5.9 5.6 5.5 4.8 5.3 5.1 5.4 
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3.3 COMPUTATION OF WQI  

The WQI represents the overall impact of water quality standards on water quality. Its 

objective is to translate complex water quality data into meaningful and easily understood 

information. In order to evaluate water quality, parameters must be selected in accordance with a 

set standard, such as the Indian Standard for Drinking Water Specification (BIS 2004). The BIS is 

the national standards organization of India and has established a standard for the calculation of 

the WQI. The BIS standard for the WQI uses a multi-attribute index approach, which considers 

multiple water quality parameters and assigns weights to each parameter based on its relative 

importance. The resulting index provides an overall assessment of water quality and is used to 

evaluate the suitability of water for different uses such as drinking, irrigation, and recreation.  

The WQI provides a comprehensive evaluation of water quality by taking into account 

various physical, chemical, and biological parameters. The WQI is calculated using a weighted 

average of water quality parameters like pH, dissolved oxygen, turbidity, faecal coliform, and etc. 

The computation of the WQI involves the following steps: 

● Assigning weights to each water quality parameter based on their relative importance and the 

weighted are calculated using the formula: Wn = K/Sn, where Wn is the relative weight, K is 

the weight of each parameter, and Sn is the permissible limit.  

● Assigning a water quality rating (Qn) for each parameter: 

Qn = (Vn / Sn) x 100, where Qn is the water quality rating, Vn is the mean concentration value 

for each parameter, and Sn is the desirable limit as specified in the BIS 2004 Indian drinking 

water standard. 

● Determining the sub-index (SI) for each water quality parameter:  

Wn x Qn SI, where SI is the sub-index of the parameter and Qn is the rating based on parameter 

concentration. 

● Calculating the WQI by summing the SI of each water quality parameter. 

𝑊𝑄𝐼 =
ΣW𝑛𝑄𝑛

Σ𝑊𝑛
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The characteristics of water quality parameters are analysed in accordance with the BIS 

drinking water quality requirements, as outlined in Table VII, which displays the BIS water quality 

parameters permissible limits and the formula used to calculate the WQI. 

Table VII. Water Quality Parameter for Computing WQI 

Parameters  Sn 1/Sn ∑⅟Sn K Wn 
Ideal 

Value  
 Vn Vn/Sn Qn Wn*Qn 

Temp 28 0.04 8.4048 0.12 0 0 28 0.4 40 0.17 

pH 8.5 0.12 8.4048 0.12 0.01 7 7.3 0.86 85.88 1.2 

Conductivity  150 0.01 8.4048 0.12 0 0 65 0.43 43.33 0.03 

Turbidity 5 0.2 8.4048 0.12 0.02 0 2 0.4 40 0.95 

PA 20 0.05 8.4048 0.12 0.01 0 0 0 0 0 

TA 200 0.01 8.4048 0.12 0 0 10 0.05 5 0 

Chloride 250 0 8.4048 0.12 0 0 10 0.04 4 0 

COD 10 0.1 8.4048 0.12 0.01 0 4 0.4 40 0.48 

TKN 100 0.01 8.4048 0.12 0 0 0.19 0 0.19 0 

Ammonia 50 0.02 8.4048 0.12 0 0 0.25 0.01 0.5 0 

Hardness 100 0.01 8.4048 0.12 0 0 9 0.09 9 0.01 

Ca. Hardness 75 0.01 8.4048 0.12 0 0 7 0.09 9.33 0.01 

Mg. Hardness 30 0.03 8.4048 0.12 0 0 6 0.2 20 0.08 

Sulphate 200 0.01 8.4048 0.12 0 0 3 0.02 1.5 0 

Sodium 200 0.01 8.4048 0.12 0 0 7 0.04 3.5 0 

TSS 300 0 8.4048 0.12 0 0 300 1 100 0.04 

TDS 1000 0 8.4048 0.12 0 0 45 0.05 4.5 0 

FDS 200 0.01 8.4048 0.12 0 0 35 0.18 17.5 0.01 

Phosphate 0.3 3.33 8.4048 0.12 0.4 0 0.11 0.37 36.67 14.54 

Boron 1 1 8.4048 0.12 0.12 0 0.1 0.1 10 1.19 

Potassium 2.5 0.4 8.4048 0.12 0.05 0 2 0.8 80 3.81 

BOD 3 0.33 8.4048 0.12 0.04 0 2.3 0.77 76.67 3.04 

Fluoride 1.5 0.67 8.4048 0.12 0.08 0 0.119 0.08 7.93 0.63 

DO 7.5 0.13 8.4048 0.12 0.02 14 8.3 1.22 121.82 1.93 

Nitrate-N 0.503 1.99 8.4048 0.12 0.24 0 0.902 1.79 179.32 42.42 

TC 100 0.01 8.4048 0.12 0 0 60 0.6 60 0.07 

FC 60 0.02 8.4048 0.12 0 0 44 0.73 73.33 0.15 

WQI  70.76 
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In selecting the water quality parameters and determining the range for the Water Quality 

Index, it is crucial to consider the impact of each parameter on water quality and the potential 

health implications. The range of the WQI serves as a guide to interpreting water quality data, 

highlighting the significance of each WQI value and the corresponding water quality conditions.  

The Water Quality Index is a numerical representation of water quality that ranges from 0 

to 121. The higher the index value, the lower the quality of water. A WQI of 121 or above is 

considered unacceptable and is categorized as Class E. Water with an index between 91 and 120 

is considered very poor and is classified as Class D. An index between 61 and 90 is considered 

poor and is classified as Class C. A WQI between 31 and 60 is considered good and is categorized 

as Class B. On the other hand, a WQI of 0 to 30 is considered excellent and is classified as Class 

A. This index provides a clear and easily understandable way of evaluating the suitability of water 

for various purposes, such as drinking, irrigation which is depicted in Table VIII. 

Table VIII. BIS (2004) Water Quality Standards 

Water Quality 

Index Value 

Water Quality 

Index Class 

Water Quality 

Label 

>121 E Unsuitable 

91-120 D Very Poor 

61-90 C Poor 

31-60 B Good 

0-30 A Excellent 

 

  For each sample of the time series river data, the WQI values are calculated and assigned 

to the respective samples as the target variable to facilitate the regression modelling.  Once the 

data collection is completed, the EDA is done to identify patterns trends and potential outliers in 

the data. The distribution of observations and the statistical characteristics of the data collected 

from monitoring stations regarding the water quality parameters are analysed using explorative 

and descriptive statistical analysis.   
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3.4. EXPLORATORY DATA ANALYSIS 

Exploratory data analysis (EDA) is a crucial step in the data mining process that involves 

examining and understanding the characteristics of a dataset. It serves as an initial exploration to 

gain insights, discover patterns, and detect anomalies in the data before applying more advanced 

data mining techniques. EDA aims to uncover relationships, identify trends, and extract 

meaningful information from the data, providing a solid foundation for further analysis and 

decision-making. EDA plays a pivotal role in understanding the structure of data, assessing its 

quality, and generating valuable insights that can drive meaningful conclusions and actions. 

EDA TECHNIQUES  

Several techniques are available to carry out EDA for a better understanding of the data 

before applying any modelling techniques. Some common EDA techniques are: 

Univariate Analysis: This technique is used to analyse a single variable in isolation. It involves 

visualizing and summarizing the data using histograms, box plots, and summary statistics like 

mean, median, and mode. 

Bivariate Analysis: This technique is used to analyse the relationship between two variables. It 

involves visualizing and summarizing the data using scatterplots, correlation analysis, and 

regression analysis. 

Multivariate Analysis: This technique is used to analyse the relationship between three or more 

variables. It involves visualizing and summarizing the data using scatterplots, correlation analysis, 

and regression analysis. 

Data Visualization: This technique is used to present data in a graphical format, making it easier 

to understand and interpret. Common visualization techniques include bar charts, line charts, 

scatterplots, heat maps, and box plots. 

Outlier Detection: This technique is used to identify and handle outliers in the data. Outliers are 

data points that are significantly different from the rest of the data and can have a significant impact 

on the analysis results. 



85 
 

Missing Value Analysis: This technique is used to identify missing values in the data and to handle 

them appropriately. Missing values can have a significant impact on the analysis results and can 

cause biases if not handled correctly. 

Dimensionality Reduction: This technique is used to reduce the number of variables in the data by 

identifying and removing redundant or irrelevant variables. Common techniques include PCA and 

factor analysis. 

Statistical charts such as box plot, pair plot, heat map, and bar graph are commonly used 

to visually explore and summarize the data. Box plot is used to display the distribution of a 

variable, including outliers and quartiles. Pair plot is used to visualize the pairwise relationships 

between variables in a dataset, making it easy to identify patterns and correlations. Heat map is 

used to show the relationship between two variables using a colour-coded matrix. The bar graph 

is used to display the comparison between different categories or groups. Explorative and 

descriptive analysis of the Bhavani River data and Bharathapuzha data are described below. 

Box Plot Analysis 

Box plot analysis, also known as box-and-whisker plot analysis, is a graphical 

representation of the distribution of a dataset, providing a visual summary of key statistical 

measures such as median, quartiles, and potential outliers. It is found that the temperature values 

lie between 22 and 33, but most values lie between 25 and 28. Biological oxygen demand values 

range from 0 to 2, with the majority of values falling between 0.8 and 1.8. In most cases, values 

range from 65 to 150, and total alkalinity values range from 804 to 1, with most cases falling 

between 45 and 98. Conductivity has a wide range of values, i.e., from 1 to 1200, but most values 

lie between 60 and 210. Similarly, for total coliform, the values lie from 10 to 2500, with most 

values lying in the range of 10 to 300. It is observed that the parameters conductivity, total coliform 

has a wide range value than other parameters. Hence the parameters need to be normalized during 

pre-processing for building an efficient time-series dataset. Fig.3.4 depicts a box plot analysis of 

physicochemical parameters from Bhavani River for some meaningful variables related to river 

water quality, such as conductivity, temperature, pH, turbidity, nitrate, TC, TDS, sulphate, BOD, 

COD, dissolved oxygen. Box plot analysis of the Bhavani River with seasonal variables are 

illustrated in Fig. 3.5.  The box plot analysis of Bharathapuzha River with both physiochemical 

and seasonal parameters are shown in Fig. 3.6.  
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Fig. 3.4 Sample Box Plot Visualization of Physiochemical Parameters of Bhavani River  

 

Fig. 3.5. Sample Box Plot Visualization of Seasonal Parameters of Bhavani River  

    

Fig. 3.6. Sample Box Plot Visualization of Pooled Parameters of Bharathapuzha River  
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Histogram Analysis 

Histogram analysis of ammonia, BOD, COD, conductivity, DO, FDS, fluoride, hardness, 

nitrate, potassium, sodium, TC, TDS, TKN, temperature, total alkalinity, turbidity, and pH is done 

using the same river quality dataset. The histogram representation helps in understanding the range 

of values, like the pH value being between six and eight. Some parameters, like chloride, 

conductivity, FDS, hardness, sodium, TC, TKN, and total alkalinity, have a wide range of values. 

The minimum value of chloride is zero and the maximum value is 215, whereas the conductivity 

maximum value is 400 and the minimum value is 6.4. The total coliform minimum value is 10 and 

the maximum value is 2500, which shows that the range of parameter values is large. Hence the 

parameters need to be standardized in values to fall within a range. Fig.3.7 depicts the histogram 

analysis of different physiochemical parameters of Bhavani River whereas Fig.3.8 illustrates the 

analysis of pooled parameters of Bhavani River and the analysis of pooled parameters of 

Bharathapuzha River is shown in Fig.3.9.  

 

Fig.3.7. Sample Histogram Visualization of Physicochemical Parameters of Bhavani River  

 

 

Fig. 3.8. Sample Histogram Visualization of Pooled Parameters of Bhavani River  



88 
 

 

Fig. 3.9. Sample Histogram Visualization of Pooled Parameters of Bharathapuzha River  

Pair Plots Analysis 

A pair plot depicts all possible relations between each parameter in the river water quality 

dataset. Relationships between each parameter are visualized using bar graphs and scatter plots. 

The figure depicted below shows how temperature is correlated with pH, conductivity, total 

alkalinity, and other attributes. If the plot is scattered, then the correlation is less. For instance, the 

water quality index is highly correlated with nitrate and it is negatively correlated with DO. The 

bar graph in the pair plot shows the range of values within which it lies and how many instances 

lie within the range. A bar graph of pH values shows that it ranges from 6 to 8.5, with the majority 

of instances falling within the range of eight. The scatter plots of temperature show a high 

correlation with pH, chloride, and chemical oxygen demand and less correlation with nitrate, 

dissolved oxygen, FDS, and turbidity. A pair plot for some meaningful variables related to river 

water quality, such as conductivity, temperature, pH, turbidity, nitrate, TC, TDS, sulphate, BOD, 

COD, dissolved oxygen, and seasonal parameters. The pair plot analysis of physiochemical 

parameters of Bhavani River is depicted in Fig.3.10, whereas the pair plot analysis of the pooled 

parameters of Bhavani River is depicted in Fig.3.11 and the pair plot analysis of the pooled 

parameters of Bharathapuzha River is shown in Fig. 3.12. 
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Fig.3.10. Sample Pair plot Visualization of Physiochemical Parameters of Bhavani River  

 

Fig. 3.11. Sample Pair plot Visualization of Pooled Parameters of Bhavani River  
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Fig. 3.12. Sample Pair plot Visualization of Pooled Parameters of Bharathapuzha River  

Heat Map Analysis 

A heat map is the visual representation of the correlation matrix. Temperature is negatively 

correlated with pH, turbidity, FDS, TC, DO, and nitrate, whereas other attributes are positively 

correlated. pH is negatively correlated with temp, turbidity, chloride, COD, TKN, ammonia, 

sodium, BOD, and potassium. For other parameters, it is positively correlated. Conductivity, 

hardness, and alkalinity are negatively correlated only with DO, with all other attributes being 

positively correlated. pH, DO, and nitrate are negatively correlated with pH, DO, and nitrate, 

whereas all other attributes are positively correlated. Turbidity is negatively correlated with 

temperature, pH, DO, and nitrate. TDS is positively related to all attributes except DO and nitrate. 

FDS is negatively correlated with temp, turbidity, fluoride, and DO. All other attributes are 

positively correlated. BOD is negatively correlated with pH, DO, nitrate, and TC, whereas fluoride 

is negatively correlated with FDS, DO nitrate, and TC. DO is positively correlated with only pH 

and nitrate. TC is negatively correlated with temperature, potassium, fluoride, and DO. Nitrate is 

positively correlated with pH, conductivity, total alkalinity, hardness, FDS, DO, and TC. The heat 

map analysis of the physiochemical parameters of Bhavani River is illustrated in Fig.3.13 and the 

pooled parameters of Bhavani River is shown in Fig.3.14. The heat map analysis of the 

Bharathapuzha river for the pooled parameters is depicted in Fig.3.15. 
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Fig. 3.13. Sample Heat Map Visualization of Physiochemical Parameters of Bhavani River  

 

Fig.3.14.  Sample Heat Map Visualization of Pooled Parameters of Bhavani River 

 

Fig. 3.15.  Sample Heat Map Visualization of Pooled Parameters of Bharathapuzha River 
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TEMPORAL VARIATION OF PARAMETERS 

Temporal variation of physiochemical and seasonal parameters is an important aspect to 

consider while predicting the WQI of a river. The physiochemical parameters such as dissolved 

oxygen, pH, temperature, conductivity, and turbidity changes over time due to seasonal variations, 

natural processes, or anthropogenic activities. Similarly, seasonal parameters such as rainfall, 

temperature, and land use also affect the water quality of a river. The temporal variation of 

physiochemical and seasonal parameters of both Bhavani River and Bharathapuzha River is 

carried out. From the analysis it is identified that how each parameter influences the water quality. 

The significance of temporal variation of physiochemical parameters with WQI of Bhavani River 

is shown in Fig.3.16 and the variation of seasonal parameters is depicted in Fig.3.17. The temporal 

variation of pooled parameters of Bharathapuzha River is illustrated in Fig 3.18. 

 

Fig. 3.16. Sample Temporal Variation of Physiochemical Parameters of Bhavani River 
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Fig.3.17. Sample Temporal Variation of Seasonal Parameters of Bhavani River 

 

Fig.3.18. Sample Temporal Variation of Pooled Parameters of Bharathapuzha River 

Incorporating the temporal variation of water quality parameters provides insights in 

developing the WQI prediction models. Descriptive analysis of the Bhavani River data and 

Bharathapuzha data are described below. 

DESCRIPTIVE ANALYSIS 

Descriptive analysis is a statistical technique used to summarize and describe the important 

characteristics of the data. Descriptive analysis of WQI parameters involves calculating various 

statistical measures such as mean, median, maximum, minimum, standard deviation, and range. 
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These measures help in identifying the range and distribution of each parameter, as well as any 

potential outliers or abnormal values that affect the overall WQI score.  In the context of water 

quality assessment, descriptive analysis is used to understand the distribution and variability of 

different water quality parameters that contribute to the calculation of the WQI.  

The descriptive statistics of the physiochemical parameters of Bhavani River are tabulated 

in Table IX, which illustrates each parameter along with their count, mean, maximum, minimum, 

and standard deviation values. The parameters included are temperature, pH, conductivity, 

turbidity, phenolpth alkalinity, total alkalinity, chloride, COD, TKN, ammonia, hardness, calcium 

hardness, magnesium hardness, sulphate, sodium, TSS, TDS, FDS, phosphate, boron, potassium, 

BOD, fluoride, DO, nitrate, TC, and FC. The count column shows the number of observations for 

each parameter, while the mean, maximum, and minimum values indicate the central tendency, 

upper limit, and lower limit of the values respectively. The standard deviation value reflects the 

spread or dispersion of the data around the mean value. Overall, the descriptive analysis provides 

a comprehensive overview of the physiochemical parameters with their statistical characteristics.  

Table IX. Descriptive Analysis of Physiochemical Parameters of Bhavani River  

Parameters Count Mean Maximum Minimum SDV 

Temp 10560 26 33 20 2.41 

pH 10560 7.49 8.76 5.9 0.49 

Conductivity 10560 161 400 6.4 127.13 

Turbidity 10560 2 332 1 20.99 

Phenolpth Alkalinity 10560 0 26 0 2.31 

Total Alkalinity 10560 63 804 1 43.76 

Chloride 10560 14 215 0 17.87 

COD 10560 4 24 0.12 5.54 

TKN 10560 0.1 39 0.001 1.48 

Ammonia 10560 0.25 5.393 0.205 0.49 

Hardness 10560 67 298 4 48.91 

Ca. Hardness 10560 26 330.1 1 30.41 

Mg. Hardness 10560 15 110 0.62 18.12 

Sulphate 10560 6 55 0.00154 7.71 

Sodium 10560 9 182 0 15.38 

TSS 10560 300 300 1 134.56 

TDS 10560 116 300 10 93.34 

FDS 10560 125 300 0.02 100.88 
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Phosphate 10560 0.11 1.5 0.00063 0.19 

Boron 10560 0.1 0.1 0.002 0.05 

Potassium 10560 2 29 0.00845 1.57 

BOD 10560 1.13 6.5 0.00036 0.9 

Fluoride 10560 0.39 9.4 0 0.68 

DO 10560 7.19 67 0.35 1.28 

Nitrate 10560 0.54 11.423 0.0027 0.89 

TC 10560 158 1800 8 220.44 

FC 10560 70 1600 10 179.51 

 

The descriptive statistics of pooled parameters of Bhavani River are tabulated in Table X 

which illustrates each parameter along with their count, mean, maximum, minimum, and standard 

deviation values the mean, maximum, minimum, and standard deviation values are given for each 

parameter. The parameters include physical, chemical, and biological parameters such as 

temperature, pH, conductivity, turbidity, alkalinity, chloride, COD, TKN, ammonia, hardness, and 

others. Additionally, meteorological parameters such as precipitation, wind speed, wind direction, 

cloud cover, and visibility are also included. The descriptive analysis is used to understand the 

variations and ranges of these parameters and to assess water quality and environmental 

conditions. 

Table X. Descriptive Analysis of Pooled Parameters of Bhavani River  

Parameter Count Mean Maximum Minimum SDV 

Temp 10560 26 33 20 2.41 

pH 10560 7.49 8.76 5.9 0.49 

Conductivity 10560 161 400 6.4 127.13 

Turbidity 10560 2 332 1 20.99 

Phenolpth Alkalinity 10560 0 26 0 2.31 

Total Alkalinity 10560 63 804 1 43.76 

Chloride 10560 14 215 0 17.87 

COD 10560 4 24 0.12 5.54 

TKN 10560 0.1 39 0.001 1.48 

Ammonia 10560 0.25 5.393 0.205 0.49 

Hardness 10560 67 298 4 48.91 

Ca. Hardness 10560 26 330.1 1 30.41 

Mg. Hardness 10560 15 110 0.62 18.12 

Sulphate 10560 6 55 0.00154 7.71 

Sodium 10560 9 182 0 15.38 

TSS 10560 300 300 1 134.56 
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TDS 10560 116 300 10 93.34 

FDS 10560 125 300 0.02 100.88 

Phosphate 10560 0.11 1.5 0.00063 0.19 

Boron 10560 0.1 0.1 0.002 0.05 

Potassium 10560 2 29 0.00845 1.57 

BOD 10560 1.13 6.5 0.00036 0.9 

Fluoride 10560 0.39 9.4 0 0.68 

DO 10560 7.19 67 0.35 1.28 

Nitrate 10560 0.54 11.423 0.0027 0.89 

TC 10560 158 1800 8 220.44 

FC 10560 70 1600 10 179.51 

Dew 10560 20.09 24.7 3.3 2.78 

Humidity 10560 70.46 97.27 28.44 10.32 

Sea level pressure 10560 1009.45 1020.4 987.4 2.61 

Precipitation 10560 9.2 251 0 18.16 

Precip cover 10560 7.04 100 0 13.42 

Windspeed 10560 17.65 268.6 0.1 9.82 

Wind direction 10560 154.7 337 1.2 69.26 

Cloud cover 10560 48.98 99.9 1.2 18.92 

Visibility 10560 5.52 10 2.2 0.98 

 

The descriptive statistics of pooled parameters of Bharathapuzha River are tabulated in 

Table XI which illustrates each parameter along with their count, mean, maximum, minimum, and 

standard deviation values the mean, maximum, minimum, and standard deviation values are given 

for each parameter. The first column lists each parameter, followed by the number of observations 

or data points in the second column.  It is evident that the temperature of the environment ranges 

from 24.00 to 33.00 degrees with an average of 27.61 and a standard deviation of 1.75, the 

environment has a relatively narrow range of temperatures, with most observations clustered 

around the mean value.  The pH parameter represents the water's acidity or alkalinity, with a mean 

of 7.34 and a range of 6.72 to 8.40. Other significant parameters include Conductivity, Turbidity, 

Total Alkalinity, Chloride, COD, TKN, Hardness, and Sulphate, among others. Additionally, the 

last three parameters in the table, TC, FC, and DO, are useful indicators of water quality and are 

used to measure the level of microbial contamination in the water. Overall, this comprehensive 

data provides valuable insight into the water quality status and aids in making informed decisions 

towards the improvement of the water system. Another insight that drawn is that the TSS variable 
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has a count of 2190, which means that all observations have the same value of 300.  TSS is a 

significant differentiating factor in the water quality environment.  

Table XI. Descriptive Analysis of Pooled Parameters of Bharathapuzha River  

Parameter Count Mean Max Min SDV 

Temp 2190 27.61 33 24 1.75 

pH 2190 7.34 8.4 6.72 0.29 

Conductivity 2190 205.51 396 86 59.38 

Turbidity 2190 1.91 2 1 0.29 

Total Alkalinity 2190 99.54 290 15 63.5 

Chloride 2190 53.67 140 13 31.18 

COD 2190 8.36 28 2 5.24 

TKN 2190 0.09 0.9 0 0.06 

Hardness 2190 73.07 168 30 25.66 

Ca. Hardness 2190 79.49 200 16 52.12 

Mg. Hardness 2190 65.36 209 8 54.21 

Sulphate 2190 12.7 40.32 0 10.95 

Sodium 2190 36.87 120 6 28.69 

TDS 2190 205.95 500 60 111.81 

FDS 2190 141.6 345 38 71.57 

TSS 2190 300 300 300 0 

Phosphate 2190 0.17 1.84 0.01 0.32 

Boron 2190 0.1 0.1 0.1 0 

Potassium 2190 5.73 41.48 1 6.34 

BOD 2190 1.5 3.2 0.6 0.51 

Fluoride 2190 0.33 0.58 0.1 0.1 

Nitrate-N 2190 1.21 11.4 0.04 1.65 

TC 2190 245.83 350 80 40.77 

FC 2190 139.54 300 21 61.75 

DO 2190 6.81 7.89 4.52 0.66 

Dew 2190 20.09 24.7 3.3 2.78 

Humidity 2190 70.46 97.27 28.44 10.32 

Sea level pressure 2190 1009.45 1020.4 987.4 2.61 

Precipitation 2190 9.2 251 0 18.16 

Precip cover 2190 7.04 100 0 13.42 

Windspeed 2190 17.65 268.6 0.1 9.82 

Wind direction 2190 154.7 337 1.2 69.26 

Cloud cover 2190 48.98 99.9 1.2 18.92 

Visibility 2190 5.52 10 2.2 0.98 
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Exploratory and descriptive data analysis performed on river water quality data is 

extremely beneficial in understanding the characteristics of the primary data about various 

statistical measures. Exploratory data analysis conducted using box plots, heatmaps, pair plots, 

and histograms is used to discriminate between the factors of variation in water quality. The 

attribute distributions and correlations are investigated to find viable solutions for data preparation 

and data modelling requirements.  

3.5.  DATA PRE-PROCESSING AND DATASET PREPARATION 

Data pre-processing is vital in machine learning research to ensure accurate and reliable 

results. Data cleaning, normalization and feature selection are three important preprocessing tasks 

carried out here for preparation of datasets. The main objective of data cleaning is to identify and 

correct errors or missing values in the data to ensure that the results of the analysis are accurate 

and reliable. In water quality analysis, errors arise due to various factors such as improper sample 

collection, measurement errors, or data entry errors.  Through the process of EDA, it is revealed 

that certain instances of Bhavani River and Bharathapuzha River data contain missing values 

which required elimination. Consequently, data cleaning is performed to ensure data accuracy.  

Normalization is an important step in preparing data for predictive modelling, and it is 

particularly relevant for water quality prediction datasets. Normalization involves scaling the 

values of each feature in the dataset to a common range, typically between 0 and 1. One common 

technique for normalization is Min-Max normalization, which involves subtracting the minimum 

value of each feature from all values in that feature and then dividing by the range of the feature. 

It is evident from the EDA that certain parameter such as conductivity, total coliform, wind speed 

and cloud cover of both Bhavani and Bharathapuzha river, have a wide range of observations, 

which requires normalization. Hence, min-max normalization is applied to standardise the values 

of all parameter. 

  Feature selection is a critical step in preparing data for predictive modelling, and it is 

particularly relevant for water quality datasets. Feature selection involves identifying and selecting 

the most relevant features from the pre-processed data which can be used in the predictive model. 

This help to improve the efficiency of the model and reduce the risk of over fitting, which occurs 

when a model is too complex and performs well on the training data but poorly on new data. In 
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the context of water quality prediction, relevant features include parameters such as temperature, 

pH, dissolved oxygen, turbidity, and other chemical and physical characteristics of the water.  

In this research SelectKBest algorithm is used for feature selection. It is a widely used 

feature selection technique based on a statistical test, the chi-squared test, that measures the 

relevance of each feature to the target variable is the water quality index. The SelectKBest 

algorithm ranks each feature based on its score and selects the K features with the highest scores, 

where K is a user-defined parameter. This technique helps to reduce the dimensionality of the 

dataset while retaining the most important features for predicting WQI. The two features phenolpth 

alkalinity and boron have negative ranks for both river data and hence considered irrelevant such 

that they do not contribute significantly in predicting the WQI, so discarded. 

Four datasets have been developed for building deep learning-based WQI prediction 

models. The profile of various datasets developed for this research are described below and are 

depicted in Table XII.  

Table XII. Summary of Datasets 

Dataset Parameters Source Number 

of 

Instance

s 

Number of 

Independent 

Variables 

Target 

Variable 

WQI-PCA Physiochemical, Spatial 

and Temporal 

Parameters 

Bhavani River 10560  28 Attributes WQI 

WQI-SA Physiochemical, 

Seasonal, Spatial and 

Temporal Parameters 

Bhavani River 10560  38 Attributes WQI 

WQI-BP Physiochemical, 

Seasonal, Spatial and 

Temporal Parameters 

Bharathapuzh

a River 

2190  38 Attributes WQI 

WQI-EBP Physiochemical, 

Seasonal, Spatial, 

Temporal Parameters 

Flowrate and SAR 

Bharathapuzh

a River 

2190  40 Attributes WQI 

 

WQI-PCA Dataset 

Twenty-four physiochemical parameters, three spatial attributes, and temporal attribute of 

Bhavani River along with the computed WQI are included in the first dataset. A total of 10560 

collected samples having 28 relevant features with WQI as the target variable forms a dataset 
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containing 10560 tagged instances, and this dataset is named as WQI-PCA. The sample dataset is 

given in Appendix A.  

WQI-SA Dataset 

Twenty-four physiochemical parameters, ten seasonal parameters, three spatial attributes, 

and temporal attribute of Bhavani River along with the computed WQI are included in the second 

dataset. A total of 10560 collected samples having 38 relevant features with WQI as the target 

variable forms a dataset containing 10560 tagged instances, and this dataset is named as WQI-SA. 

The sample dataset is given in Appendix A. 

WQI-BP Dataset 

Twenty-four physiochemical parameters, ten seasonal parameters, three spatial attributes, 

and temporal attribute of Bharathapuzha River along with the computed WQI are included in the 

third dataset. A total of 2190 collected samples having 38 relevant features with WQI as the target 

variable forms a dataset containing 2190 tagged instances, and this dataset is named as WQI-BP. 

The sample dataset is given in Appendix A.  

WQI-EBP Dataset 

 To facilitate the implementation of the heterogenous transfer learning, the Bharathapuzha 

river data is extended by adding two more parameters namely flow rate and Sodium Absorption 

Ratio (SAR). In real time, the monitoring stations of Bhavani and Bharathapuzha river does not 

observe the values for these two parameters.  But, recent research reports that these two parameters 

are important and required to be considered for building WQI prediction models.  

The flow rate of a river and the SAR play pivotal roles in calculating the WQI, a crucial 

parameter for assessing the overall health of a water body. The flow rate influences the dilution 

and dispersion of pollutants, directly impacting the concentration levels of various contaminants 

in the water. A higher flow rate can help mitigate the adverse effects of pollutants by carrying them 

away and promoting better mixing. On the other hand, SAR, which evaluates the proportion of 

sodium to other essential ions like calcium and magnesium, is an indicator of the water's suitability 

for irrigation. Elevated SAR levels can indicate potential soil degradation due to sodium 

accumulation, leading to reduced water infiltration and plant growth. Integrating these factors into 
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the WQI provides a more comprehensive understanding of water quality, enabling effective 

management strategies to safeguard both aquatic ecosystems and human needs. 

The flow rate of a river can be estimated using various methods that incorporate physical 

and chemical parameters. One common method involves using the Manning's equation, which 

relates the flow rate (Q) to the cross-sectional area (A) of the river, the hydraulic radius (R), and 

the Manning's roughness coefficient (n). The formula is as follows: 

Q = (1/n) * A * R^(2/3) * S^(1/2) 

Where Q = Flow rate (cubic meters per second), A = Cross-sectional area of the river 

(square meters), R = Hydraulic radius (meters), S = Slope of the river bed (dimensionless), n = 

Manning's roughness coefficient (dimensionless). 

The Sodium Absorption Ratio (SAR) is a measure of the potential impact of sodium on 

soil structure and its suitability for irrigation. It is calculated based on the concentration of sodium, 

calcium, and magnesium ions in the water. The formula to calculate SAR is as follows: 

SAR = (Na⁺ / √((Ca²⁺ + Mg²⁺) / 2)) 

Where SAR = Sodium Absorption Ratio, Na⁺ = Concentration of sodium ions (ppm), Ca²⁺ 

= Concentration of calcium ions (ppm), Mg²⁺ = Concentration of magnesium ions (ppm). 

Hence, the values of these two parameters for the water samples of Bharathapuzha river 

during the period January 2019 to December 2020 are calculated using the formulae and pooled 

with physiochemical and seasonal parameters. Thus, twenty-four physiochemical parameters, ten 

seasonal parameters, three spatial attributes, temporal attribute and two additional parameters flow 

rate and SAR of Bharathapuzha River along with the computed WQI are included in the extended 

Bharathapuzha dataset. A total of 2190 collected samples having 40 relevant features with WQI 

as the target variable forms a dataset containing 2190 tagged instances, and this dataset is named 

as WQI-EBP. The sample dataset is given in Appendix A.  

3.6. TRAINING AND MODEL BUILDING 

The task of predicting the water quality index is formulated as a regression problem and 

modelled using deep neural networks and transfer learning approaches. The WQI prediction 

models are built by learning the trends in the pre-processed time series data using deep learning 
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architectures. The training and model building for WQI prediction is carried out in four phases.  

First deep learning architectures such as RNN, LSTM and GRU are used as these architectures are 

significant in training sequence data and the WQI prediction models are developed. Next, more 

specialized architecture namely Temporal Fusion Transformer is employed and enhanced WQI 

prediction model is built by training the same dataset. In the third phase, the homogenous transfer 

learning technique is adopted for building the hybrid WQI prediction model. Finally, the 

heterogeneous transfer learning is implemented for building the generalized and a robust WQI 

prediction model. 

Model 1: Deep Learning for WQI Prediction Models with Physiochemical Parameters 

 The main aim of the work is to construct an accurate WQI prediction model using 

physiochemical attributes and deep neural network architectures. The network such as RNN, 

LSTM and GRU are employed as they are designed for training sequence data. The WQI-PCA 

dataset is used to train the networks RNN and its variants LSTM and GRU. Various 

hyperparameters such as epoch, dropout, learning rate, optimizers, batch size and activation 

functions are defined appropriately to finetune the training and accurate WQI prediction models 

are developed. 

Model 2: Deep Learning for WQI Prediction Models with Pooled Parameters 

The objective of this work is to develop improved models for predicting the WQI by 

training both physiochemical and seasonal parameters using RNN and its variants. The instances 

of the WQI-SA dataset are given as input to the input layer of networks such as RNN, LSTM and 

GRU for training. The network training is done by properly setting the hyperparameters such as 

epoch, dropout, learning rate, optimizers, batch size and activation functions and the improved 

WQI prediction models are built.  

Model 3: Temporal Fusion Transformer for WQI Prediction Model 

The main goal of this work is to create an efficient WQI prediction model by training 

specialized architecture TFT with physiochemical and seasonal parameter. The adoption of TFT 

architecture in predicting the WQI enhances the accuracy and effectiveness of the forecasting 

model by leveraging the power of transformer-based time series analysis. The WQI-SA dataset is 

used to train the hybrid architecture with special hyperparameters such as attention windows, filter 

heads, value dimensions, and temporal encoder dimensions. The training of the WQI prediction 
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model involves the optimization of a multi-horizon forecasting objective function through the 

iterative updating of model parameters using backpropagation and gradient descent algorithms. 

Finally, an efficient WQI prediction model is constructed.  

Model 4: WQI Prediction Models using LSTM Pre-trained Model 

A homogenous transfer learning approach is adopted to boost the performance of WQI 

prediction models trained with limited data.  Transfer learning is a machine learning technique 

where a model trained on one task is re-purposed on a second related task. It is the improvement 

of learning in a new task through the transfer of knowledge from a related task that has already 

been learned. This work uses the WQI-BP dataset and the LSTM based WQI model developed in 

the previous phase as pre-trained model. The knowledge gained by the pre-trained model is 

transferred to RNN, LSTM and GRU networks while training the WQI-BP dataset. While training 

and optimizing the model, the hyperparameters are correctly configured and new hybrid WQI 

prediction models are built.  

Model 5: WQI Prediction Models using TFT Pre-trained Model 

The WQI prediction models are trained using the most efficient and powerful techniques 

namely TFT and homogenous transfer learning to develop a hybrid model with limited data. This 

work uses the WQI-BP dataset, and the WQI model developed with TFT in the previous phase as 

the pre-trained model. The knowledge gained by the pre-trained model is transferred to RNN, 

LSTM, GRU and TFT networks while training the WQI-BP dataset. While training and optimizing 

the model, the hyperparameters are properly set and a boosted WQI models are built. 

Model 6:  Heterogeneous Transfer Learning for WQI Prediction Models 

A heterogenous transfer learning approach is implemented to enhance the performance of 

WQI prediction models trained with limited data. This work uses the extended Bharathapuzha 

river data i.e., WQI-EBP dataset and the TFT based pre-trained model for training the RNN 

variants and TFT architecture using heterogeneous transfer learning. While training and 

optimizing the model, the hyperparameters are properly configured for each network 

independently and robust WQI prediction models are built.  

3.7. TESTING AND EVALUATION 

Testing and evaluation plays a critical role in building any prediction models using machine 

learning. Evaluation involves a systematic and objective examination of various aspects, such as 
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functionality, quality, usability, to determine their success or failure. Testing, focuses on 

conducting experiments to validate and verify the expected outcomes of a system. Both evaluation 

and testing contribute to informed decision-making, and the advancement of knowledge and 

innovation.  

Various testing methods used in machine learning modules include holdout testing, cross-

validation, bootstrapping, shuffle split, time series split, nested cross-validation, and randomized 

search cross-validation. In this research work, to test the model efficiency hold out testing method 

is used, where 80% of the total instances is used for training and the remaining 20% of the instances 

is for testing  

EVALUATION METRICS 

Evaluation metrics are essential tools for measuring the performance of machine learning 

models, statistical models, and other analytical methods. The metrics provide a quantitative 

measure of how well a model performs its intended task and enable us to compare the performance 

of different models. The different evaluation metrics are used in various types of data analysis and 

deep learning tasks. Some metrics are more appropriate for classification problems, while others 

are more suitable for regression. The standard metrics available in the literature that are used for 

evaluating the prediction models are explained variance score, mean squared error, R2 score, mean 

absolute error, median absolute error, root mean squared error, correlation coefficient and p value. 

Here, the most appropriate metrics used for evaluating the performance of WQI prediction models 

are MAE, MSE, RMSE and R2 score.  

Mean Absolute Error 

Mean Absolute Error is a widely used evaluation metric for regression models that 

measures the average absolute difference between the predicted and actual values of the dependent 

variable. The MAE is calculated by taking the absolute difference between each predicted value 

and the actual value, and then averaging these differences over all samples in the test set. One 

advantage of using MAE is that it provides a simple and intuitive interpretation of the model's 

performance. A lower MAE indicates that the model's predictions are closer to the actual values, 

while a higher MAE indicates more errors in the model's predictions.  MAE is calculated using the 

following formulae.        

𝑀𝐴𝐸 = 𝑎𝑏𝑠(𝑌𝑎 − 𝑌𝑏)                             
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where Y a and Yb are the actual responses and the predicted value, respectively, and n is the total 

number of variables. 

Mean Squared Error 

Mean squared error is a widely used evaluation metric for regression models that measures 

the average of the squared differences between the predicted and actual values of the dependent 

variable. The main advantage of MSE is that it penalizes large errors more heavily than small 

errors, making it particularly useful in cases where outliers or extreme values in the data have a 

significant impact on the performance of the model.  MSE is calculated using the formulae. 

                  𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑎

𝑛
𝑖=1 − 𝑌𝑏)2            

where Y a and Yb are the actual responses and the predicted value, respectively, and n is the total 

number of variables. 

Root Mean Squared Error 

Root Mean Squared Error is a widely used evaluation metric for regression models that 

measures the square root of the average of the squared differences between the predicted and actual 

values of the dependent variable. It is useful because it provides an interpretable measure of the 

average magnitude of the errors in the predicted values and penalizes large errors more heavily 

than small errors, making it sensitive to outliers in the data. Because RMSE is based on the same 

units as the dependent variable, it is more easily interpretable than MSE, which is based on squared 

units. Overall, RMSE is a valuable tool for evaluating the performance of regression models. It is 

calculated using the formulae 

                𝑅𝑀𝑆𝐸 =
√(𝑌𝑎 − 𝑌𝑏)2

𝑛⁄                               

where Y a and Yb are the actual responses and the predicted value, respectively, and n is the total 

number of variables. 

R2 Score 

The R2 score, also known as the coefficient of determination, is a commonly used 

evaluation metric for regression models. It provides a measure of how well the model fits the data 

and helps in selecting the best model for a given dataset. The R2 score ranges from 0 to 1, with 0 



106 
 

indicating that the model explains none of the variance in the dependent variable, and 1 indicating 

that the model explains all of the variance. A high R2 score indicates that the model is a good fit 

for the data and explains a significant portion of the variance in the dependent variable. It is 

calculated using the formulae. 

R2 score = 1 – (RSS/TSS)    

       

Where, RSS is the sum of squares of residuals and  TSS is the total sum of squares. 

SUMMARY 

The main component of this research is problem modelling and the methodology which have 

been well designed and have been explained in this chapter with various tasks such as data collection, 

exploratory data analysis, data pre-processing, dataset creation, training, testing and evaluation. The 

data collection, data analysis, data preprocessing and preparation of datasets have been presented in 

detail with sample data. The training and model building methods used in this research have been 

elucidated. The performance metrics used for evaluating the predictive models are also presented in 

this chapter. Various WQI prediction models built with the WQI-PCA dataset using DNN algorithms 

such as RNN, LSTM, and GRU will be presented in Chapter 4. The WQI prediction models built with 

WQI-SA dataset using RNN, LSTM and GRU will be discussed in Chapter 5. The WQI prediction 

models built with WQI-SA dataset using TFT will be elucidated in Chapter 6. The implementation of 

homogenous transfer learning with RNN, LSTM, GRU and TFT architecture for building WQI 

predictive models are explained in Chapter 7. The implementation of heterogenous transfer learning 

with RNN, LSTM, GRU and TFT architecture for building WQI prediction models will be discussed 

in Chapter 8.  
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