
119 
 

5. DEEP LEARNING FOR WQI PREDICTION MODELS WITH POOLED 

PARAMETERS 

Water Quality Index prediction models are tools used to evaluate and predict the quality of 

water based on various physical, chemical, and biological parameters. WQI models aim to provide 

a comprehensive and objective assessment of water quality by aggregating several parameters into 

a single index called WQI.  Deep learning models have emerged as a promising alternative for 

WQI prediction using various data sources such as physiochemical and seasonal data. Seasonal 

parameters affect river water quality over time due to sudden climatic changes. It has been 

observed from the literature that the seasonal parameters have an impact on the water quality index 

and its prediction over time series data. Simultaneous rainfall and humidity are strongly related, 

the relative humidity improves as a result of the evaporation of rainwater. In this work, seasonal 

features are considered along with physiochemical parameters, for trend analysis, and to construct 

an improved water quality prediction model using RNN and its variants.  

WQI PREDICTION MODEL USING POOLED FEATURES AND RNN VARIANTS 

This work aims to build a predictive model for WQI by utilizing deep-learning architecture, 

specifically RNN and its variants. The model is designed to capture and learn patterns present in 

the time series data, which comprises both physiochemical and seasonal parameters. The dynamics 

of river water quality are influenced by physiochemical, seasonal parameters, which experience 

abrupt changes due to climatic variations. Extensive research in the literature has revealed the 

significant impact of seasonal parameters on the water quality index and its predictive capabilities 

when analysed over time series data. The relationship between simultaneous rainfall and humidity 

is strong, as the evaporation of rainwater enhances relative humidity. Building on this observation, 

the study aims to leverage advanced deep-learning techniques to enhance the accuracy and 

effectiveness of WQI prediction model.  

Methodology 

RNN, LSTM and GRU are highly valuable architectures in sequence and time series data 

analysis and training, due to their ability to effectively capture temporal dependencies and patterns.  

These architectures, with their recurrent nature and memory mechanisms, excel in recognizing 

trends and dependencies in time series data. The methodology of the proposed WQI prediction 

model consists of important tasks which include 1. data collection 2. EDA and dataset creation 3. 
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construction of WQI prediction model 4. model evaluation. The framework of the WQI prediction 

model based on the pooled parameters is depicted in Fig.5.1. 

 

Fig. 5.1. Framework of the WQI Prediction Model Based on Pooled Parameters and  

RNN Variants 

Data Collection and Dataset Preparation  

The 26 different physicochemical parameters such as pH, conductivity, turbidity, 

phenolpth alkalinity, total alkalinity, chloride, chemical oxygen demand, total Kjeldahl nitrogen, 

ammonia, hardness, Ca.hardness, Mg. hardness, sulphate, sodium, total suspended solids, total 

dissolved solids, fixed dissolved solids, phosphate, boron, potassium, biological oxygen demand, 

fluoride, nitrate, dissolved oxygen, total coliform and faecal coliform, are collected from the 

monitoring stations across Bhavani River.  The seasonal characteristics such as temperature, dew, 

humidity, sea level pressure, precipitation, precip over, wind speed, wind direction, cloud cover, 

and visibility are collected from visual crossing sites for the corresponding locations of monitoring 
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stations of the Bhavani River. The water quality index value for each sample is calculated and 

assigned to the corresponding samples as a target variable. A time series data with 10560 and 41 

attributes including 26 physiochemical parameters, 10 seasonal parameters, longitude, latitude, 

station ID, date and calculated WQI, has been created. 

The river water quality data is subjected to EDA to understand its characteristics and assess 

the importance of each parameter in determining the WQI. Various statistical techniques such as 

heatmap analysis, boxplot analysis, pair plot analysis, and histogram analysis are employed to 

study and comprehend the distribution of parameter values. The min-max normalization is applied 

to water quality to standardise the parameter values. The select K best feature selection method is 

used to remove irrelevant attribute and to substantially improved the river water quality dataset. 

Finally, 10560 tagged instances with 38 attributes are developed and referred to as the WQI-SA 

dataset as mentioned in Table XII of Chapter 3. 

Model Building 

Deep learning architectures such as RNN, LSTM, and GRU are specifically designed and 

developed to train the sequence data and hence chosen in this work to build the river water quality 

index, prediction model. In RNN, the result from the previous section is used as input for the next. 

The hidden state, which stores information about a sequence, is the primary and most crucial 

component of RNN. An LSTM recurrent unit seeks to recall all the earlier data encountered by the 

network and to forget irrelevant data. Each LSTM recurrent unit further stores a vector known as 

the Internal Cell State, which conceptually describes the information retained by the preceding 

LSTM recurrent unit. GRU employs a so-called update gate and reset gate to overcome the 

vanishing gradient problem of a typical RNN. The unique characteristic of GRU is that they may 

be trained to retain knowledge from a long time ago without erasing it or removing extraneous 

data. During training, these architectures optimize their parameters using backpropagation through 

time, adjusting weights to minimize the error between the predicted and actual outputs, thereby 

enabling them to learn complex temporal patterns in the data. 

The 80% of instances of the WQI-SA dataset are given as input to RNN and its variants 

LSTM and GRU for training the networks independently. The best hyperparameters are chosen 

during model training to make the model more effective mapping the input features as independent 

variables to the target variable as the dependent variable. 
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Hidden layers, dense layers, optimizer, epoch, momentum, batch size, activation function, 

and dropout are some of the hyperparameters that are utilized in deep learning architectures to 

enhance model accuracy and fine-tune the forecasting model. Hidden layers are the layers that are 

in between the input and output layers. A layer that is densely connected is one in which each layer 

receives input from all of the layers below it. The range is set between 5 and 10 units, and dense 

layers improve overall accuracy. Optimizers are methods that alter the properties of the neural 

network, like its weights and learning rate, to reduce losses and address optimization issues. The 

number of datasets complete iterations required is determined by the epoch size. Momentum is a 

unique hyperparameter that enables the search direction to be determined not only by the gradient 

from the current step but also by the gradients from previous steps. The model’s nonlinearity is 

introduced through activation functions.  The activation function can split them into different 

layers and get a reduced output of the density layer.  

By passing randomly selected layers and limiting sensitivity to particular layer weights, the 

dropout layer helps prevent training overfitting. The learning rate determines the speed at which a 

deep model replaces a previously learned concept with a new one. Finally, three independent WQI 

prediction models are built by learning water quality patterns from the input instances of the WQI-

SA dataset through training RNN, LSTM and GRU with proper hyperparameters settings. These 

models are called as RNN-WQI-SA, LSTM-WQI-SA and GRU-WQI-SA models for reference. 

The effectiveness of the WQI forecasting models is evaluated using MAE, MSE, RMSE and R2 

score. 

Experiments and Results 

The experiments have been carried out by implementing deep learning algorithms such as 

RNN, LSTM and GRU and by training the Bhavani River water dataset WQI-SA using Python 

libraries under TensorFlow, Keras and scikit learn. The training dataset contains 8124 tagged 

instances of the WQI-SA dataset. The evaluation of the prediction models is carried out using the 

metrics such as MAE, MSE, RMSE and R2 score values with the test data set containing 2009 

tagged instances of the WQI-SA dataset.  

The deep learning algorithms RNN, LSTM, and GRU are implemented by defining 

hyperparameters, dense layer values from 5 to 10 units, and optimizer as adam optimizer. The 

epoch sizes were listed as 20, 50, 100, 150, 200 and 500. The activation function used to train the 
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model is relu and the momentum is set between 0.5 and 0.9.  The dropout unit is 0.2, the learning 

rate is 0.1, and the batch size is set at either 32 or 64. From the experimental results, it is proved 

that with momentum as 0.8, epoch sizes 500, drop out 0.3 and with relu activation function better 

results are achieved.  The hyperparameter settings for training deep neural networks are tabulated 

in Table XXI. 

Table XXI. Hyperparameters Setting for Training Deep Neural Networks 

Hyperparameter Values Hyperparameter Values 

Optimizer Adam Dropout 0.2, 0.3 

Dense Layer 5 to 10 Momentum 0.5 or 0.9 

Epoch 
20, 50, 100, 

150, 200 
Learning rate 0.1 

Batch size 32/64 Activation function Relu 

 

The results of the RNN-based WQI prediction model (RNN-WQI-PCA model) are 

experimented with various epochs such as from 20 to 500 where various metrics are measured at 

different epochs. At epoch 500, the RNN model achieves an MAE of 0.424, indicating the average 

absolute difference between the predicted and actual values. The MSE is calculated as 0.384, 

representing the average of squared differences. The RMSE is 0.6196, which is the square root of 

the MSE. The R2 score, measuring the goodness of fit, is 0.82, indicating a high level of prediction 

accuracy. Moving to epoch 200, the MAE increases slightly to 0.459, while the MSE becomes 

0.392. The RMSE is 0.6260, and the R2 score remains relatively high at 0.813. As the number of 

epochs decreases, the MAE and MSE values gradually increase, indicating a larger difference 

between the predicted and actual values.  

At epoch 150, the MAE is 0.482, and the MSE is 0.424, resulting in an RMSE of 0.6511. 

The R2 score decreases to 0.806, suggesting a slightly lower level of prediction accuracy compared 

to the previous epochs. At epoch 100, the MAE increases further to 0.512, and the MSE becomes 

0.462. The RMSE is 0.6797, and the R2 score remains relatively stable at 0.80. With only 50 

epochs, the MAE reaches 0.537, and the MSE increases to 0.527. The RMSE becomes 0.7259, 

while the R2 score decreases slightly to 0.79. Finally, at epoch 20, the MAE is 0.579, the MSE is 
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0.561, and the RMSE is 0.7489. The R2 score drops to 0.78. These values reflect the performance 

of the RN-WQI-SA model on the WQI-SA dataset at different epochs, providing insight into the 

prediction results which are tabulated in Table XXII. 

Table XXII. Prediction Results of RNN-WQI-SA Model for Various Epochs 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

500 0.428 0.384 0.6196 0.82 

200 0.459 0.392 0.6260 0.813 

150 0.482 0.424 0.6511 0.806 

100 0.512 0.462 0.6797 0.8 

50 0.537 0.527 0.7259 0.79 

20 0.579 0.561 0.7489 0.78 

 

The prediction results of the LSTM-based WQI prediction model (LSTM-WQI-SA model) 

for different epochs on the WQI-SA dataset. At epoch 500, the LSTM-WQI-SA model achieves 

an MAE of 0.298, indicating the average absolute difference between the predicted and actual 

values. The MSE is calculated as 0.2084, representing the average of squared differences. The 

RMSE is 0.4565, which is the square root of the MSE. The R2 score, measuring the goodness of 

fit, is 0.856, indicating a high level of prediction accuracy. Moving to epoch 200, the MAE 

increases slightly to 0.304, while the MSE becomes 0.239. The RMSE is 0.4888, and the R2 score 

remains relatively high at 0.85. As the number of epochs decreases, the MAE and MSE values 

gradually increase, indicating a larger difference between the predicted and actual values. At epoch 

150, the MAE is 0.328, and the MSE is 0.274, resulting in an RMSE of 0.5234. The R2 score 

decreases to 0.843, suggesting a slightly lower level of prediction accuracy compared to the 

previous epochs.  

At epoch 100, the MAE increases further to 0.371, and the MSE becomes 0.291. The 

RMSE is 0.5394, and the R2 score remains relatively stable at 0.839. With only 50 epochs, the 

MAE reaches 0.398, and the MSE increases to 0.328. The RMSE becomes 0.5727, while the R2 

score decreases slightly to 0.83. Finally, at epoch 20, the MAE is 0.402, the MSE is 0.367, and the 

RMSE is 0.6058. The R2 score drops to 0.827. These values illustrate the performance results of 
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the LSTM-WQI-SA model on the WQI-SA dataset at different epochs, providing insight into the 

prediction results which are tabulated in Table XXIII. 

Table XXIII. Prediction Results of LSTM-WQI-SA Model for Various Epochs 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

500 0.298 0.2084 0.4565 0.856 

200 0.304 0.239 0.4888 0.85 

150 0.328 0.274 0.5234 0.843 

100 0.371 0.291 0.5394 0.839 

50 0.398 0.328 0.5727 0.83 

20 0.402 0.367 0.6058 0.827 

 

The prediction results of the GRU-based WQI prediction model (GRU-WQI-SA model) 

for different epochs on the WQI-SA dataset. At epoch 500, the GRU-WQI-SA model achieves an 

MAE of 0.39, indicating the average absolute difference between the predicted and actual values. 

The MSE is calculated as 0.2149, representing the average of squared differences. The RMSE is 

0.4636, which is the square root of the MSE. The R2 score, measuring the goodness of fit, is 0.839, 

indicating a relatively high level of prediction accuracy. Moving to epoch 200, the MAE increases 

slightly to 0.412, while the MSE becomes 0.2342. The RMSE is 0.4839, and the R2 score decreases 

to 0.83. As the number of epochs decreases, the MAE and MSE values gradually increase, 

indicating a larger difference between the predicted and actual values.  

At epoch 150, the MAE is 0.436, and the MSE is 0.269, resulting in an RMSE of 0.5187. 

The R2 score decreases to 0.823, suggesting a slightly lower level of prediction accuracy compared 

to the previous epochs. At epoch 100, the MAE increases further to 0.452, and the MSE becomes 

0.287. The RMSE is 0.5357, and the R2 score remains relatively stable at 0.82. With only 50 

epochs, the MAE reaches 0.462, and the MSE increases to 0.315. The RMSE becomes 0.5612, 

while the R2 score decreases slightly to 0.803. Finally, at epoch 20, the MAE is 0.474, the MSE 

is 0.348, and the RMSE is 0.5899. The R2 score drops to 0.793. These values highlight the 

performance of the GRU model on the WQI-SA dataset at different epochs, providing insight into 

the prediction results which are tabulated in Table XXIV.  
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Table XXIV. Prediction Results of GRU-WQI-SA Model for Various Epochs 

Dataset Epochs MAE MSE RMSE R2 Score 

WQI-SA 

500 0.39 0.2149 0.4636 0.839 

200 0.412 0.2342 0.4839 0.83 

150 0.436 0.269 0.5187 0.823 

100 0.452 0.287 0.5357 0.82 

50 0.462 0.315 0.5612 0.803 

20 0.474 0.348 0.5899 0.793 

 

Various experiments have been carried out with different dropout rates such as 0.2 and 0.3 

for building WQI prediction models using the WQI-SA dataset and the experimental results 

concerning the same evaluation metrics are shown in Table XXV. 

Table XXV.  Results of WQI Prediction Models for Different Dropout Rates 

Dataset Algorithm  Dropout MAE MSE RMSE R2 Score 

WQI-SA 

RNN 
0.3 0.428 0.384 0.6197 0.82 

0.2 0.482 0.424 0.6512 0.806 

LSTM 
0.3 0.298 0.2084 0.4565 0.856 

0.2 0.328 0.274 0.5235 0.843 

GRU 
0.3 0.39 0.2149 0.4636 0.839 

0.2 0.436 0.269 0.5187 0.823 

   

   The prediction results of WQI models for various epochs and dropouts have been observed 

while implementing deep learning algorithms to discover the best prediction results. It is proved 

that the models trained with 500 epochs and dropout rate 0.3 with other hyperparameters like adam 

optimizer, momentum as 0.8 and activation function as relu for RNN, LSTM and GRU produced 

the best results and are shown in Table XXVI and depicted in Fig. 5.2. 
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Table XXVI.  Prediction Results of all Three WQI Models  

Dataset Dropout Epoch Models MAE MSE RMSE R2 Score 

WQI-SA 0.3 500 

RNN-WQI-SA 0.428 0.384 0.6197 0.82 

LSTM-WQI-SA 0.298 0.2084 0.4565 0.856 

GRU-WQI-SA  0.39 0.2149 0.4636 0.839 

 

 

Fig.5.2. Prediction Performance of all Three WQI Models 

 From the above results, it is observed that the LSTM-based WQI prediction model shows 

promising results with a high R2 score value and less error rate. The mean absolute error for LSTM 

based forecasting model is found less as compared to RNN and GRU algorithms. The root mean 

squared error is observed to be less for the LSTM-WQI-SA model when compared with RNN-

WQI-SA and GRU-WQI-SA prediction model results. The R2 score value defines the accuracy of 

the model and is observed to be high for the LSTM-WQI-SA forecasting model compared with 

other prediction models.  

Comparative Analysis WQI Models based on WQI-PCA and WQI-SA Datasets 

The performance results of prediction models built using two distinct datasets such as 

WQI-PCA and WQI-SA are compared to analyse influence of seasonal parameters the efficiency 
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of the prediction models. From the comparative study, it is evident that the prediction models built 

using the WQI-SA dataset performed better than the models built using the WQI-PCA dataset. The 

LSTM-WQI-SA model emerged as the most accurate one, exhibiting the lowest MAE, MSE, and 

RMSE, along with the highest R2 Score. Here it is evident that the incorporation of seasonal 

parameters has improved the efficacy of the WQI prediction models. The performance analysis of 

the WQI prediction models is tabulated in Table XXVII and illustrated in Fig. 5.3.  

Table XXVII.  Performance Comparison of WQI Models based on 

 WQI-PCA and WQI-SA Datasets   

Dataset Models MAE MSE RMSE R2 Score 

WQI-PCA 

RNN-WQI-PCA 0.512 0.408 0.6387 0.8 

LSTM-WQI-PCA 0.393 0.2401 0.4900 0.838 

GRU-WQI-PCA 0.364 0.2098 0.4580 0.845 

WQI-SA 

RNN-WQI-SA 0.428 0.384 0.6197 0.82 

LSTM-WQI-SA 0.298 0.2084 0.4565 0.856 

GRU-WQI-SA  0.39 0.2149 0.4636 0.839 

 

 

Fig. 5.3. Performance Comparison of WQI Models based on  

WQI-PCA and WQI-SA Datasets   
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Findings 

The investigations made in this work proved that the deep learning approach is useful for 

developing predictive models for WQI prediction using time series data. The addition of seasonal 

parameters in the time series data enhances the quality of WQI prediction as they are more 

influential in water quality determination. Through adding seasonal parameters, the association 

between the pool of predictors and the targeted variable is strengthened which enables deep neural 

network algorithms RNN, LSTM and GRU to improve the learning of trends in the data. The 

prediction rate of WQI models is increased through learning the self-extracted features in RNN, 

LSTM, and GRU networks. The error rate of trained models is decreased by properly configuring 

the hyperparameters during network training. The enhanced water quality prediction model with 

seasonal time series data has proven to be an effective tool in predicting water quality. 

SUMMARY  

 This chapter described the construction of an improved water quality prediction model 

using pooled parameters and RNN and its variants. The implementation of various deep-learning 

techniques for building WQI models has been described in detail. Three independent models have 

been built using RNN variants and the performance results have been reported. The impact of 

seasonal parameters in determining WQI is analysed through this work. The inclusion of seasonal 

parameters in the time series data elevates the accuracy of WQI prediction, owing to their greater 

influence on water quality prediction. The construction of the WQI prediction model with more 

sophisticated architecture, temporal fusion transformer, will be explained in the following chapter.  
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