SYNTHESIS OF C03O4 NANOPARTICLES FOR NH3 GAS SENSING AT ROOM TEMPERATURE & CELL VIABILITY ANALYSIS

THESIS SUBMITTED TO THE BHARATHIAR UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

DOCTOR OF PHILOSOPHY IN PHYSICS

By

JINCY C. S

Under the Guidance of

Dr. P. MEENA

Principal

DEPARTMENT OF PHYSICS

PSGR KRISHNAMMAL COLLEGE FOR WOMEN

College of Excellence

An Autonomous Institution- Affiliated to Bharathiar University

Accredited with A++ Grade by NAAC, An ISO 9001-2015 Certified Institution

NIRF 2022- 6th Rank

COIMBATORE - 641 004

MAY 2023

Certificate

CERTIFICATE

This is to certify that the thesis, entitled "SYNTHESIS OF Co₃O₄ NANOPARTICLES FOR NH₃ GAS SENSING AT ROOM TEMPERATURE & CELL VIABILITY ANALYSIS", submitted to the Bharathiar University, in partial fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY IN PHYSICS is a record of original research work done by Mrs. JINCY C. S during the period 2017-2023 of her research in the Department of Physics at PSGR Krishnammal College for Women, Coimbatore, under my supervision and guidance and the thesis has not formed the basis for the award of any Degree/ Diploma/ Associate ship/ Fellowship or other similar title to any candidate of any University.

Date: 26 05 2023

Place: COINBATORE

p.rue

Dr.P. MEENA, M Sc. M.Phil., Ph.D. PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN PEELAMEDU, COIMBATORE - 641 004.

Signature of the Guide

Countersigned

J. Ralani jogly

Head of the Department

Dr. J. BALAVIJAYALAKSHMI M Sc(Phy).,M.Phil.,Ph.D.,MCA.,M.Phil(C.S)., Associate Professor & Head Department of Physics PSGR Krishnammal College For Women Peelamedu, Coimbatore - 641 004.

pre Principal

Dr.P. MEENA, M.Sc., M.Phil., Pr PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WORL PEELAMEDU, COIMBATORE - 641 004.

DECLARATION

I, JINCY C.S hereby declare that the thesis, entitled "SYNTHESIS OF Co₃O₄ NANOPARTICLES FOR NII₃ GAS SENSING AT ROOM TEMPERATURE & CELL VIABILITY ANALYSIS", submitted to the Bharathiar University, in partial fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY IN PHYSICS is a record of original and independent research work done by me during the period of 2017–2023 under the Supervision and Guidance of Dr. P. MEENA, M.Sc., M.Phil., Ph.D., Principal, PSGR Krishnammal College for Women, Coimbatore and it has not formed the basis for the award of any Degree/ Diploma/ Associateship/ Fellowship or other similar title to any candidate of any University.

Date: 26 05 2023 Place: COIMBATORE

Graf.

Signature of the Candidate

Scanned with CamScanner

Certificate of Genuineness of the Publication

CERTIFICATE OF GENUINENESS OF THE PUBLICATION

This is to certify that the Ph.D. candidate **Mrs. C. S. JINCY** working under my supervision has published the following research articles in Scopus and Web of Science – Science Citation Index Expanded.

- C. S. Jincy, Dr. P. Meena., Synthesis of Co₃O₄ nanoparticles for sensing toxic gas at room temperature., Materials Today Proceedings.,33 (2020) 2362-2365. https://doi.org/10.1016/j.matpr.2020.04.857.
- C.S. Jincy, Dr. P. Meena., Synthesis of Cu doped cobalt oxide nanoparticles as ammonia gas sensor operating at room temperature., Materials Today Proceedings, 43 (2021) 2459-2463. https://doi.org/10.1016/j.matpr.2021.02.529.(Cited by 1)
- C.S. Jincy, Dr. P. Meena., Evaluation of cytotoxic activity of Fe doped cobalt oxide nanoparticles., Journal of Trace Elements in Medicine and Biology., 70 (2022) 126916.https://doi.org/10.1016/j.jtemb.2021.126916. (Cited by 1)
- C.S. Jincy, Dr. P. Meena., Synthesis, characterization, and NH₃ gas sensing application of Zn doped cobalt oxide nanoparticles., Inorganic Chemistry Communications, 120 (2020) 108145. https://doi.org/10.1016/j.inoche.2020. 108145. (Cited by 17).

The contents of the publications incorporate part of the results presented in her thesis.

price

Signature of the Guide

Dr.P. MEENA, M.Sc., M, Phil., Ph.D. PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN PEELAMEDU, COIMBATORE - 641 004.

Countersigned

J. Ralanij-ply Head of the Department

Dr. J. BALAVIJAYALAKSHM) M.Sc(Phy).,M.Phil.,Ph.D.,MCA.,M.Phil(C.S)., Associate Professor & Head Department of Physics PSGR Krishnammal College For Women Peelamedu, Coimbatore - 641 004.

prices

Principal

Dr.P. MEENA, M.Sc., M, Phil., Ph.D. PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN PEELAMEDU, COIMBATORE - 641 004.

THE R. L. LOW CO. LANS &

Certificate of Plagiarism Check

பாரதியார் பல்கலைக்கழகம் BHARATHIAR UNIVERSITY COIMBATORE - 641 046, TAMILNADU, INDIA

State University Re-Accredited with "A" Grade by NAAC Ranked 15th among Indian Universities by MHRD-NIRF

CERTIFICATE OF PLAGIARISM CHECK JINCY.C.S Name of the Research Scholar 1 M.Phil., / Ph.D., Course of study 2 SYNTHESIS OF CO204 NANOPARTICLES 3 Title of the Thesis / Dissertation FOR NH3 GAS SENSING AT ROOM TEMPERATURE & CELL VIABILITY ANALYSIS Name of the Supervisor DR. P. MEENA 4 DEPARTMENT OF PHYSICS Department / Institution / Research Centre 5 PSGR KRISHNAMMAL COLLEGE FOR WOHEN PEELAMEDU, COIMBATORE 02. 1 % of Similarity of content Identified 6 Acceptable Maximum Limit 10 % 7 URKUND Software Used 8 25 105/ 2023 Date of verification 9

Report on plagiarism check, items with % of similarity is attached

price Signature of the Supervisor (Seal)

Signature of the Researcher

Dr.P. MEENA, M.Sc., M, Phil., Ph.D. PRINCIPAL

PSGR KRISHNAMMAL COLLEGE FOR WOMEN J. Robrig and PEELAMEDU, COIMBATORE - 641 004. Head of the Department

(Seal)

Dr. J. BALAVIJAYALAKSHMI M.Sc(Phy)., M.Phil., Ph.D., MCA., M.Phil(C.S)., Associate Professor & Head Department of Physics PSGR Krishnammal College For Wom Peelamedu, Coimbatore - 641 004.

Director i/c Center for Research & Evaluation (BU)

University Librarian (BU) University(seal)brarian Arignar Anna Central Library Bharathiar University Coimbatore - 641 046.

Ouriginal

Document Information

Analyzed document	Jincy. C.S.docx (D168340589)
Submitted	2023-05-25 11:15:00
Submitted by	
Submitter email	buaacl.urkund@gmail.com
Similarity	2%
Analysis address	bhauni.urkund.buaacl.bhauni@analysis.urkund.com

Sources included in the report

	SA	Thesis _12092017pdf Document Thesis _12092017pdf (D30499644)	88	7	
	SA	thesis.pdf Document thesis.pdf (D40750906)	88	3	
•7	SA	Geethu CO Rajesh M.Phil Chemistry University College Project June 2021.docx Document Geethu CO Rajesh M.Phil Chemistry University College Project June 2021.docx (D109732203)		1	
	SA	11200131008_Madhan_D_Thesis_A.doc Document 11200131008_Madhan_D_Thesis_A.doc (D21288860)	88	1	
	SA	G.Sasikala _Physics_M.Phil.pdf Document G.Sasikala _Physics_M.Phil.pdf (D138638231)		1	
	SA	Ashwinee Kabure Ph.D. Chemistry.pdf Document Ashwinee Kabure Ph.D. Chemistry.pdf (D130051571)		1	
	SA	DD Thesis 17.09.21.docx Document DD Thesis 17.09.21.docx (D112984055)	00	1	
	SA	corrected thesis SL.doc Document corrected thesis SL.doc (D115567061)		4	
	SA	Rahdeyshyam DAP.docx Document Rahdeyshyam DAP.docx (D25224758)	88	4	
-	w	URL: https://ir.bdu.edu.et/bitstream/handle/123456789/14318 /Asa%20Fetene%20Final%20thesis%20documen Fetched: 2023-03-06 14:52:38		3	
	SA	NLM Thesis 2021.docx Document NLM Thesis 2021.docx (D110786538) University Librarian Arignar Anna Central Library Bharathiar University		1	
		Coimbatore - 641 046.			

Acknowledgement

ACKNOWLEDGEMENT

I owe my sincere thanks to the **Lord Almighty** and my parents for showering me with their generous blessings in all my endeavors.

I express my gratitude and wish to place on record my sincere thanks to Sri. G. Rangaswamy, Managing Trustee, PSGR Krishnammal College for Women, whose untiring zeal and perseverance has laid the foundation to build this paramount masterpiece which is a temple of learning and has inspired many.

I wish to express my deep sense of reverential gratitude to Smt. R. Nandini, Chair Person, PSGR Krishnammal College for Women, for providing the facilities to conduct this study.

I record my thanks to **Dr.** (**Mrs.**) **N. Yesodha Devi, M.Com., Ph.D.,** Secretary, PSGR Krishnammal College for Women, for granting me permission to undertake this project work.

I wholeheartedly thank my guide **Dr.** (**Mrs.**) **P. Meena, M.SC., M.Phil, Ph.D.,** Principal, PSGR Krishnammal College for Women, Coimbatore, for her excellent, outstanding guidance, constructive criticism, motivation, valuable advice, untiring support, timely suggestions, constant encouragement and inspiration throughout the study, holding me strong in all the places I faltered.

I record my deep sense of gratitude and indebtedness to Dr. (Mrs.) J. Balavijayalakshmi, M.Sc., M.Phil. (Phy.), Ph.D., MCA., M.Phil. (Comp.Sci)., Assistant Professor & Head of the Department of Physics, PSGR Krishnammal College for Women, Coimbatore, for providing help towards the completion of this study. I have a great pleasure in thanking my doctoral committee member, Dr. (Mr.) N. Ponpandian, Professor and Head of the Department of Nanoscience & Technology, Bharathiar University, Coimbatore for his valuable guidelines, feedback and recommendations that have enhanced the quality of my research work.

I sincerely thank all the staff members of the Department of Physics, PSGR Krishnammal College for Women, Coimbatore, for being supportive and understanding.

I thank all my family members and friends for their support, understanding and co-operation for the successful completion of the study.

JINCY C. S

List of Figures

FIGURE NO.	TITLE	
1.1	The synthesis of nanomaterials via top-down and bottom-up approaches	
1.1A	Schematic diagram of Application of nanoparticles	4
3.1	Autoclave	23
3.2	Synthesized Co ₃ O ₄ nanoparticles	25
3.3	Muffle Furnace	30
4.1	XRD Instrument	36
4.2	Photograph of TEM	39
4.3	TEM ray diagram.	40
4.4	SEM Instrument	43
4.5	EDAX instrument	45
4.6	FTIR Instrument	47
4.7	Schematic diagram of a FTIR instrument	
4.8	UV-Visible Spectrophotometer	50
4.9	Schematic diagram of a UV-Visible spectrophotometer	51
4.10	XRD Pattern of pure and doped Co ₃ O ₄ nanoparticles	
4.11	TEM images & SAED patterns of pure and doped Co ₃ O ₄ nanoparticles	
4.12	SEM and particle size images for different concentrations of pure and doped Co ₃ O ₄ nanoparticles	58
4.13	EDAX spectra of pure and doped Co ₃ O ₄ nanoparticles	59
4.14	FTIR spectra of Co ₃ O ₄ nanoparticles	61
4.15	UV - Vis Spectrum of pure and doped Co ₃ O ₄ nanoparticles	63
4.15A	Bandgap energy values for pure & 10% of Zn, Fe, Cu and Ni doped Co ₃ O ₄ nanoparticles	63A
5.1	Gas sensing setup	75
5.2	(a) AutoCAD design of IDA mask and (b) fabricated IDA mask	76
5.3	Photograph of DC magnetron sputtering unit for fabricating IDA electrodes.	
5.4	Photograph of Linkam probe station used for temperature dependent electrical properties of sensing materials.	78

LIST OF FIGURES

FIGURE NO.	TITLE	
5.5	Custom-built gas sensor test station facility at PSGIAS used for sensing analysis.	
5.6	(a) Sensitivity of pure Co ₃ O ₄ nanoparticles at room temperature towards different gas concentration and	
	(b) response and recovery time towards 5 ppm of NH ₃	
	(c) I-V characteristics and	
	 (d) Sensor response linear fit plot of pure Co₃O₄ nanoparticles to NH₃ (1-5 ppm) gas at room temperature 	
5.7	 (a) Sensitivity of pure and Zn doped Co₃O₄ nanoparticles at room temperature towards different gas concentration and 	
	(b) response and recovery time towards 5 ppm of NH ₃	
	(c) I-V characteristics and	
	(d) Sensor response linear fit plot of pure and Zn doped Co ₃ O ₄ nanoparticles to NH ₃ (1-5 ppm) gas at room temperature	
5.8	 (a) Sensitivity of pure and Fe doped Co₃O₄ nanoparticles at room temperature towards different gas concentrations and 	88
	(b) Response and recovery times for 5 ppm of NH ₃	
	(c) I-V characteristics and	
	 (d) Sensor response linear fit plot of Fe doped Co₃O₄ nanoparticles to NH₃ (1-5 ppm) gas at room temperature 	
5.9	 (a) Sensitivity of pure and Cu doped Co₃O₄ nanoparticles at room temperature for different gas concentration and 	90
	(b) Response and recovery times for 5 ppm of NH ₃	
	(c) I-V characteristics and	
	(d) Sensor response linear fit plot of Cu doped Co ₃ O ₄ nanoparticles to NH ₃ (1-5 ppm) gas at room temperature	
5.10	 (a) Sensitivity of pure and Ni doped Co₃O₄ nanoparticles at room temperature towards different gas concentrations and 	92
	(b) response and recovery times towards 5 ppm of NH ₃	
	(c) I-V characteristics and	
	(d) Sensor response linear fit plot of Ni doped Co ₃ O ₄ nanoparticles to NH ₃ (1-5 ppm) gas at room temperature	
6.1	Stepwise conversion of normal cells to malignant tumor through initiation, promotion and progression step.	107
6.2	Hemocytometer	122

FIGURE NO.	TITLE	
6.3	Percentage Cytotoxicity for different concentrations of Pure Co ₃ O ₄ nanoparticles	
6.4	The confocal micrograph for 200µg concentrations of pure Co ₃ O ₄ nanoparticles	
6.5	Percentage Cytotoxicity for different drug concentrations of 3%, 5% and 10% Zn doped Co ₃ O ₄ nanoparticles	
6.6	The confocal micrographs for $200\mu g$ concentrations of 3%, 5% and 10% Zn doped Co ₃ O ₄ nanoparticles	128
6.7	Percentage Cytotoxicity for different drug concentrations of 3%, 5% and 10% Fe doped Co ₃ O ₄ nanoparticles	
6.8	The confocal micrographs for $200\mu g$ concentrations of 3%, 5% and 10% Fe doped Co ₃ O ₄ nanoparticles	130
6.9	Percentage Cytotoxicity for different drug concentrations of 3%, 5% and 10% Cu doped Co ₃ O ₄ nanoparticles	135
6.10	The confocal micrographs for 200µg concentrations of 3%, 5% and 10% Cu doped Co ₃ O ₄ nanoparticles	
6.11	Percentage Cytotoxicity for different drug concentrations of 3%, 5% and 10% Ni doped Co ₃ O ₄ nanoparticles	138
6.12	The confocal micrographs for $200\mu g$ concentrations of 3%, 5% and 10% Ni doped Co ₃ O ₄ nanoparticles	138

List of Tables

LIST	OF	TAE	BLES
------	----	-----	------

TABLE NO.	TITLE	
4.1	Average crystallite size of pure and doped Co ₃ O ₄ nanoparticles	53
4.2	Bandgap energies for pure and doped Co ₃ O ₄ nanoparticles	62
6.1	Representation of percentage cytotoxicity for different drug concentrations of pure Co ₃ O ₄ nanoparticles	125
6.2	Representation of percentage cytotoxicity for different drug concentrations of 3%, 5% and 10% Zn doped Co ₃ O ₄ nanoparticles	127
6.3	Representation of percentage cytotoxicity for different drug concentrations of 3%, 5% and 10% Fe doped Co ₃ O ₄ nanoparticles	129
6.4	Representation of percentage cytotoxicity for different drug concentrations of 3%, 5% and 10% Cu doped Co ₃ O ₄ nanoparticles	134
6.5	Representation of percentage cytotoxicity for different drug concentrations of 3%, 5% and 10% Ni doped Co ₃ O ₄ nanoparticles	136

List of Abbreviations

LIST OF ABBREVIATIONS

LSPR	Localized Surface Plasmon Resonance
SERS	Surface Enhanced Raman Scattering
SEF	Surfaced Enhanced Fluorescence
CNW	Carbon Nano Wire
MB	Methyl Blue
РН	Hydrogen Potential
XRD	X-Ray Diffraction
TEM	Transmission Electron Microscopy
SEM	Scanning Electron Microscopy
EDX	Energy Dispersive X-Ray Analysis
FTIR	Fourier Transform Infrared
UV-Vis	Ultra Violet -Visible
CCD	Charged Couple Device
LED	Light Emitting Diodes
FWHM	Full Width At Half Maximum
SAED	Selected Area Electron Diffraction
IUPAC	International Union of Pure and Applied Chemistry
LTCC	Low Temperature Cofired Ceramics
MFC	Mass Flow Controllers
IDA	Interdigitated Array
I-V	Current-Voltage
MOS	Metal Oxide Semiconductor
IONP	Iron Oxide Nanoparticles
OER	Oxygen Evolution Reaction
EPR	Enhanced Permeability & Retention
PBS	Phosphate Buffered Saline
ROS	Reactive Oxygen Species
RDA	Recommended Dietary Allowance