Table of Contents

Sl. Page Title No. No. i Abstract **List of Figures** ii **List of Tables** v **List of Abbreviations** vi **CHAPTER I - INTRODUCTION** 1.1 Introduction 1 1.2 Classification of Nanoparticles 1.2.1. Zero dimension nanomaterial 1.2.2. One dimension nanomaterials 3 1.2.3. Two dimension nanomaterials 1.2.4. Three dimension nanomaterials Application of nanoparticles 1.3 1.3.1. Applications in Optics 1.3.2. Application in Electronics 4 1.3.3. Application in Mechanical Industry 1.3.4. Application in Energy 1.3.4. Applications in Medicine 1.4 Importance of Metal Oxide Semiconducting Gas Sensor 6 1.5 Importance of Nanomedicine 8 9 1.6 Present Study 1.7 Conclusion 9 References 10 **CHAPTER II - SURVEY OF LITERATURE** 2.1 Introduction 13 2.2 Literature Review 13 19 References

TABLE OF CONTENTS

Sl. No.	Title	Page No.
	CHAPTER III - EXPERIMENTAL TECHNIQUES	
3.1	Introduction	21
3.2	3.2. Materials and Methods	22
	3.2.1. Hydrothermal method	22
3.3	3.3. Experimentation	24
3.4	Factors effecting the experimentation	
	3.4.1. Molarity	25
	3.4.2. Effect of pH 3.4.3 Annealing Temperature	
35	Materials Used for Synthesis	27
3.6	Conclusion	30
5.0	Pafarances	31
		51
4.4	CHAPTER IV - CHARACTERIZATION TECHNIQUES	24
4.1	Introduction	34
4.2	X - Ray Diffraction Technique	24
	4.2.1. Experimental set up for XRD	34
12	4.2.2. Working Filiciple	
4.3	4.3.1 Experimentation of a Transmission Electron Microscope	
	4.3.2. Parts of Transmission Electron Microscope	37
	4.3.4. Working Principle of Transmission Electron Microscope	
4.4	Scanning Electron Microscopy Technique	
	4.4.1. Experimental set up for Scanning Electron Microscope	40
	4.4.2. Working Principle	
4.5	Energy Dispersive X-Ray Analysis	
	4.5.1 Experimental set up for Energy Dispersive X-Ray Analysis	44
	4.5.2. Working Principle	
4.6	Fourier Transform Infrared Spectroscopy Techniques	
	4.6.1 Experimental set up for Fourier Transform Infrared Spectroscopy	46
	4.6.2 Working Principle	

Sl. No.	Title	Page No.
4.7	UV-Visible Spectroscopy	
	4.7.1 Experimental set up for UV-Visible Spectroscopy Analysis	49
	4.7.2 Working Principle	
4.8	Results and Discussion	
	4.8.1 X-Ray Diffraction Analysis	
	4.8.2. Transmission Electron Microscope Analysis	
	4.8.3. Scanning Electron Microscope Analysis	52
	4.8.4. Energy Dispersive X - Ray Spectrum Analysis	
	4.8.5 Fourier Transform Infrared Analysis	
	4.8.6 UV-Visible Spectroscopy Analysis	
4.9	Conclusion	64
	References	65
	CHAPTER-V: GAS SENSING PROPERTIES OF PURE AND DOPED COBALT OXIDE NANOPARTICLES	
5.1	Introduction	67
5.2	Classification of Gas Sensors	68
5.3	Characteristics of Gas Sensors	69
5.4	Previous Study	70
5.5	Present Study	71
5.6	Introduction to Sensing Set Up	71
5.7	Factors Influencing The Sensitivity	71
5.8	Structure of the Sensing Layer	72
5.9	Methods of Measurement	
	5.9.1. Flow Through Method	72
	5.9.2. Static Environment Method	
5.10	Drop Coating of Sensing Materials	73
5.11	Electrical Characterization	73
5.12	Fabrication of Gas Sensor Device	74

Sl. No.	Title	Page No.
5.13	Fabrication of Inter digitated Array Electrode Using DC Magnetron Sputtering	76
5.14	Electrical conductivity measurement set up of the sensor	78
5.15	Experimentation and Determination Of Gas Sensing Properties	79
5.16	Gas Sensing Properties Of Cobalt Oxide Nanoparticles	81
5.17	Gas Sensing Properties Of Zn Doped Cobalt Oxide Nanoparticles	83
5.18	Gas Sensing Properties Of Fe Doped Cobalt Oxide Nanoparticles	86
5.19	Gas Sensing Properties Of Cu Doped Cobalt Oxide Nanoparticles	89
5.20	Gas Sensing Properties of Ni Doped Cobalt Oxide Nanoparticles	91
5.21	Summary of the Results	94
5.22	Conclusions	98
	References	99
	CHAPTER-VI: CYTOTOXICITY STUDY OF PURE AND DOPED COBALT OXIDE NANOPARTICLES	
6.1	Introduction	106
6.2	Main Branches of Nanomedicine	
	6.2.1 Diagnostic Branch	110
	6.2.2 Drug delivery Branch	110
	6.2.3 Tissue Engineering Branch	
6.3	Applications of Nanomedicine	111
6.4	Advantages of nanomedicine for cancer imaging and therapy	112
6.5	Nanomedicine and nanotechnology	113
6.6	Nanotechnology and drug delivery	113
6.7	Trends in nanomedicines	
	6.7.1 Size and shape	
	6.7.2 Effect of material chemistry	114
	6.7.3 Effect of charge	114
	6.7.4 Surface Characteristics	
	6.7.5 Chemical agglomeration	

Sl. No.	Title	Page No.
6.8	Nanomedicines synthesis and therapeutic applications	116
6.9	Targetable nanomedicine approaches	
	6.9.1 Passive targeting approaches	117
	6.9.2 Active targeting approaches	
6.10	Trends in nanomedicine targeting	118
6.11	Nanomedicines in cancer chemotherapy	118
6.12	Experimentation of cytotoxicity	
	6.12.1 Aim	118
	6.12.2 In Vivo Characterization	110
	6.12.3 The purpose of the trypan blue	
6.13	Determination of Cell viability analysis	
	6.13.1 Materials required	120
	6.13.2 Procedure	
6.14	Cytotoxicity study of Co ₃ O ₄ nanoparticles	122
6.15	Cytotoxicity study of Zn doped Co ₃ O ₄ nanoparticles	126
6.16	Cytotoxicity study of Fe doped Co ₃ O ₄ nanoparticles	129
6.17	Cytotoxicity study of Cu doped Co ₃ O ₄ nanoparticles	131
6.18	Cytotoxicity study of Ni doped Co ₃ O ₄ nanoparticles	136
6.19	Summary of the Results	139
6.20	Conclusion	140
	References	142
	CHAPTER VII- SUMMARY AND CONCLUSION	158
	PUBLICATIONS	