Bibliography

- Abd EL Latif. A.M., Rodyna A-Hosny, Fuzzy soft pre-connected properties in fuzzy soft topological spaces, *South Asian Journal of Mathematics*, 5(2015), 202-213.
- [2] Adiya.K.Hussein, S*-Hyperconnectedness, IOSR Journal of Mathematics, 11(2015), 66-72.
- [3] Ahmed AI.Omari and Shyampada Modak, Filter on generalised topological spaces, *Scientia Magna*, 9(2013), 62-71.
- [4] Ahmed Mostafa Khalil, Sheng-Gang Li, Yong Lin, Hong-Xla Li, Sheng Guan Ma, A new expert system in prediction of lung cancer disease based on soft sets, Soft computing(2020).
- [5] Alessio Petrelli, Gabriella, Anleo, Alessandra, Paola, Elena, Concetta and Angelo, Nutrition, Metabolism and cardiovascular disease, *Education inequalities in cardio vascular and coronary heart disease in Italy and the role of behavioural and biological risk factors*, 32(2022), 918-928.
- [6] Ali M I., Feng F., Liu X., Min W K., Shabbir M., On new operation in soft set theory, *Computers and mathematics with applications*, 57(2009) 1547-1553.
- [7] Al-Saadi H S., HalisAygiin Al-Omari A., Some notes on soft hyperconnected spaces, *The journal of Analysis*, 2019.
- [8] Al- Saadi, Al-omari, Noiri T., On hyperconnected spaces via m-structures, *Italian Journal of Pure and Applied Mathematics*, 42(2019), 290-300.
- [9] Al. Shami T M., Noiri T., More notions and mappings via somewhere dense sets, *Afrika Matematika*, (2019).

- [10] Al. Shami T M., Somewhere dense sets and ST_1 Spaces, *Punjab Univ. J. Math.* (*Lahore*) 49(2017), 101-111.
- [11] Andrijevie D., Semi preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [12] Andrijevie D., Some properties of the topology of α sets, *Mat. Vesnik* 36(1984), 1-10.
- [13] Arockiarani I., Sasikala D., J-closed sets in Generalised Topological spaces, *In*ternational journal of Advanced scientific and Technical Research., 1(2011), 200-210.
- [14] Arockiarani I., Dhavaseelan R., Jafari S., Parimala M., On some new notions and Functions in Neutrosophic Topological Spaces, *Neutrosophic Sets and Systems*, 16(2017), 16-19.
- [15] Arockiarani I., Sasikala D., $\lambda \alpha$ -J closed sets in Generalized Toplogical Spaces, *IJST*, 1(2011), 200-210.
- [16] Arhangelskie A V., Richard Wiegandt, Connectedness and Disconnectedness in topology, *General Topology and its Applications* 5(1975) 9-33.
- [17] Arup Roy Choudhury, Ajoy Mukharjee and Bose M K., Hyperconnectedness and extremal disconnectedness in (a) topological spaces, *Hacettepe Journal of Mathematics and Statistics*, 44(2015), 289-294.
- [18] Aschale Ambissa Bidika, Berhanu Anbase Bedada, Dawit Mikiyas Benti, A fuzzy expert system to monitor pregnancy, *IJARFT*, 12(2021), 18-31.
- [19] Atanassov, Instuitionistic fuzzy sets, Fuzzy sets and systems, 20(1986), 87-96.
- [20] Aysha I.Mansour, Samy S., Abu-Naser, Expert system for the diagnosis of high blood pressure diseases, *International of Academic Information systems Research*, 5(2021), 23-28.
- [21] Basdouri I., Messoud R., Missaoui A., Connected and Hyperconnected generalized topological spaces, *Journal of Linear and topological Algebra*, 5(2016), 229-234.
- [22] Baravan A., Asaad Nazhah Ahmad, Further Characterization of $-\gamma$ extremally disconnected spaces, 108(2016), 533-550.

- [23] Balasubramanian G., Chandrasekar V., Fuzzy α Connectedness and fuzzy α disconnectedness in fuzzy topological spaces, *MATEMAT. BECH.*, 56(2004), 47-56.
- [24] Bhattacharya B., Chakraborty J., Paul A., γ^* Hyperconnectedness in fuzzy topological spaces, *The Journal of Analysis*, (2016).
- [25] Bose M K., Tiwari R., ω topological connectedness and hyperconnectedness, *Note di Mathematica*, 31(2011), 93-101.
- [26] Caldas M., Maxmilian Ganster, Dhavaseelan R., Saeid Jafari, Neutrosophic resolvable and neutrosophic irresolvable spaces, *New trends in Neutrosophic theory and Applications*, 2(2017), 327-335.
- [27] Cauita Rathee, Ridam Girdhar and kusum Dhingra, On Soft ω -interior and soft ω -closure in soft topological spaces, *Journal of Interdisciplinary Mathematics*, (2020), 1-17.
- [28] Chandan Chakkopadhyay and chhanda Bandyopadhyay, On resolvable and irresolvable spaces, *Internat. J. Math. and Math. Sci.*, 16(1993), 657-665.
- [29] Chang C L., Fuzzy Topological Spaces, *Journal of Mathematical Analysis and Applications*, 24(1968), 182-190.
- [30] Chen D., Tsang E C C., Yeung D S., Wang X., The parameterization reduction of soft sets and its applications, *Computers and Mathematics with applications*, 49(2005), 757-763.
- [31] Chen B., Soft Semi-open sets and related propeties in soft topological spaces, *Appl. Mat. Inf. Sci.*, 7(2013), 287-294.
- [32] Debabrata Pal, Mandana K M., Sarbajit Pal, Debranjan Sarkar, Chandan Chakraborty, Fuzzy expert system approach for coronary artery disease screening using clinical parameters, *Knowledge-Based systems*, 36(2012), 162-174.
- [33] Dhavaseelan R., Narmada devi R., Jafari S., Characterization of neutrosophic nowhere dense sets, *International journal of Mathematical Archieve*, 9(2018), 1-5.

- [34] Dhavaseelan R., Saeid Jafari, Rishwanth Parimala M., On some new notions and functions in neutrosophic. topological spaces, *Neutrosophic sets and Systems*, 16(2017), 16-19.
- [35] Dona Papert Strauss, Extremally disconnected space, JSTOR, Proceedings of the American Mathematical Society, 18(1967), 305-309.
- [36] Dont Chev J., Noiri I., Contra semi continuous functions, *Mathematica Pannonica*, 10(1999), 159-168.
- [37] Duszynski z., On some concepts of weak connectedness of topological spaces, Acta Math. Hugar., 110(2006), 81-90.
- [38] Ekici E., On separated sets and connected Spaces, *Demonstratio Mathematica*, 40(2004), 209-217.
- [39] Ekici E., and Kerre E E., On fuzzy Contra continuous, *Advanced in Fuzzy Mathematics*, 1(2006), 35-44.
- [40] Eugene Roventa and George Rosu, The diagnosis of some kidney diseases in a small prolog expert system, sofa 2009: 3rd International workshop on soft computing applications, proceedings, (2009), 219-224.
- [41] Fariha Iftikhar, Faiza Ghulam Nabi, A distinct approach to diagnose dengue fever with the help of soft set theory, *Journal of mechanics of continua and Mathematical Sciences*, 14(2019), 0973-8975,
- [42] Florentin Smarandache A., A unifying field in logics: Neutrosophic logic, Neutrosophy, Neutrosophic set, Neutrosophic probability, *American Research Press*, Rehoboth, NNT, 1999.
- [43] Florentin Smarandache, Neutrosophy and Nentrosophic logic, Test International Conference on Neutrosophy, *Neutrosophic logic, set, Probability and Statistics*, University of New Mexico, Gallup, NM 87301, USA, (2002).
- [44] Florentin Smarandache, Operators on Single valued Neutrosophic oversets, Neutrosphic undersets and Neutrosophic offsets, *Journal of Mathematics and informatics, Neutrosophie Sets and Systems*, 5(2016), 63-67.

- [45] Florentin Smarandache A, Neutrosophic set- A Generalization of Intuitionistic Fuzzy set, *Journal of Defence Resource Management*, 1(2010), 107-116.
- [46] Glaisa I., Catalan Michael P., Baldado Jr and Roberto N., Padua B., Compactness, β^* hyperconnectedness in ideal topological spaces, *Intechopen*, (2021).
- [47] Heyam Hussein Aljarrah, Mohd.Salmi Md. Noorani and Takashi Noiri, On $\omega\beta$ open sets, *Malaysian journal of mathematical sciences*, 8(2014), 325-340.
- [48] Ishwarya P., Bageerathi K., Neutrosophic semi-connected spaces via neutrosophic semi open sets, *Global Journal of Pure and Applied Mathematics*, 17(2021), 399-410.
- [49] Jafari S., Noiri T., Properties of β -connected space, Acta math. Hungar, 101(2003), 227-236.
- [50] Jayasree Chakraborty, Baby battacharya and Arnab Paul, Some results on fuzzy hyperconnected spaces, *Songklanakarin J. Sci. Tech.*, 39(2017), 619-624.
- [51] JeyaPuvaneswari P., Bageerathi K., On neutrosophic feebly open set in neutrosophic topological spaces, *International Journal of Mathematics Trends and Technology*, 41(2017), 230-237.
- [52] Jiarul Hoque and Shyamapada Modak, Some (\land, b) type mappings in topological spaces, Mathematica, 64(2022), 83-94.
- [53] James R. Munkers, Topology, Ed.2., PHI Learning Pvt. Ltd (2010).
- [54] Krassimir T., Atanassov, Intutionistic Fuzzy sets, *Fuzzy sets and systems*, 20(1986), 87-95.
- [55] Kuratowski, Topology I, PWN, Warszawa, (1966).
- [56] Lamis F.,Samhan, Amjad H.,Alfarra Samy S., Abu Naser, An expert system for knee problems diagnosis, *IJAISR*, 5(2021), 59-66.
- [57] LellisThivagar M., Geetha Antoinette I., Note on Nano Hyperconnected spaces, South east Asian journal of Mathematics and Mathematical sciences, 15(2019), 25-36.
- [58] Levine, Dense topologies, Amer. Math. Monthly, 75(1968), 847-852.

- [59] Levine N., Semi open sets and semi continuity in topological spaces, *Amer. Math. Monthly*, 70(1963), 36-41.
- [60] Ma X., Sulaiman N., Qin H., Herawan T., Zain V M., A new efficient normal parameter reduction algorithm of soft sets, *Computers and mathematics with applications*, 62(2011), 588-598.
- [61] Maji P. K., Biswas R., Roy A R., Soft set theory, *Computers and mathematics with applications*, 45(2003),555-562
- [62] Majid Mirmiran, A note on extremally disconnected spaces, *Research open jour-nal of information science*, 1 (2013), 1-3.
- [63] Mathew P M., On hyperconnected spaces, *Indian Journal of Pure appl. Math.*, 19(1988), 1180-1184.
- [64] Maximilan Ganster, Preopen sets and resolvable spaces, *Kyungpook Math. J.*, 27(1987), 135-143.
- [65] Molodstov D., Soft set theory first results, *Computers and Mathematics with applications*, 37(1999), 19-37.
- [66] Muhammed L J., Ebrahem Algehyne, Fuzzy based expert system for diagnosis of coronary artery disease in Nigeria, *Health and Technology*, 11(2021),319-329.
- [67] Muhammad Shabir and Ayreena Bakhtawar, Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces, *Songklanakarin Journal of Science* and Technology, 50(2016) 1-16.
- [68] Munir Abdul, and Khalik AL- khajaji, On fuzzy b-hyperconnected space, *Journal of College of education*, 5(2017), 101-122.
- [69] Murad Aran and Saeid Jafari, Neutrosophic μ-Topological spaces, Neutrosophic sets and systems, 88(2020), 51-66.
- [70] Navalagi G B., Semi-pre continuous function and properties of generalized semipre closed sets in topological spaces, *IJMMS*, 29(2002), 85-98.
- [71] Navalagi G B., Lellis Thivagar M., Rajarajeshwari R., Athisiya Ponmani S., On (1,2) α-Hyperconnected spaces, *International Journal of Mathematics and Analy*sis, 3(2006), 121-129.

- [72] Noiri T., On semi-continuous mappings, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat, Natur, 54(1973), 210-214.
- [73] Noiri T., Hyperconnectedness and Pre open sets, Rev., Roumaine Mat. Pures. Appl., 29(1984), 329-334.
- [74] Noiri T., A Note on hyperconnected sets, Mat. Vesnik, 8(1979), 33-60.
- [75] Noiri T., Properties of hyperconnected spaces, *Acta Math Hugar*, 66(1995), 147-154.
- [76] Noiri T., and Shyamapada Modak, Half b-connectedness in topological spaces, *Journal of the Chungcheong Mathematical society*, 29(2016), 221-227.
- [77] Qays Hatem Imran E., Smanandache Riad K., Al-Hamido, Dhavaseelan R., On Neutrosophic semi alpha open sets, *Neutrosophic sets and Systems*, 18(2017), 37-41
- [78] PreechaYupapin, Vadakasi Subramanian, Yasser Farhat, On nowhere dense sets, *European Journal of pure and Applied Mathematics*, 15(2022), 403-414.
- [79] Renu Thomas, Anila S., On neutrosophic semi-preopen sets and semi pre-closed sets in a Neutrosophic topological space, *International journal of scientific research in Mathematical and Statistical Science*, 5(2018), 138-143.
- [80] Revathy A., Gnanambal Ilango, On Nano β-open sets, International Journal of Engineering, Contemporary Mathematics and Sciences, 1(2015) 1-6.
- [81] Riswanth Parimala M., Saeid Jafari, Karthika Muthusamy, Florentin Smarandache, Neutrosophic $\alpha\psi$ -connectedness, *Journal of Intelligent and Fuzzy Systems*, 88(2020), 853-857.
- [82] Sabir Hussain, A note on soft connectedness, *Journal of the Egyptian Mathematical Society*,23(2015), 6-11.
- [83] Sanjay Mishra, On $\alpha \tau$ disconnectedness and On $\alpha \tau$ connectedness in topological spaces, *Acta Scientiarum*, 37(2015) 395-399.
- [84] Salama A A., Alblowi S A., Neutrosophic set and Neutrosophic Topological spaces, *IOSR Journal of Mathematics*, 3(2012), 31-35.

- [85] Sasikala D., Radhamani K C., A Contemporary Approach on Neutrosophic Nano Topological Spaces, *Neutrosophic Sets and Systems*, 32(2020), 435-443.
- [86] Sasikala D., Deepa M., An elementary approach on hyperconnected spaces, *Turk-ish Journal of Computer and Mathematics Education*, 12(2021), 946-950.
- [87] Sasikala D., Deepa M., A note on Connectedness in Topological spaces, Advances in Mathematics: Scientific Journal, 9(2020), 1-10.
- [88] Savita Rathee, Ridam Girdhar, On Soft ω connectedness in soft topological spaces, *Communications in Mathematics and Applications*, 12(2021), 457-474.
- [89] Savithiri D., Janaki C., Neutrosophic Rw Continuity, Neutrosophic RW-open maps and closed maps, *Bulletin of Mathematics and Statistics Research*, 8(2020), 32-41.
- [90] Sawsan el Sayed, Ali kandil, Osama El-Tantawy and Sobhy A El-Sheikh, Fuzzy soft hyperconnected spaces, Annals of Fuzzy Mathematics and Informatics, 13(2017), 689-702.
- [91] Sharma A K., On some properties of hyperconnected spaces, *Mat Vesnik*, 1(1977), 25-27.
- [92] Shyamapada Modak, Monirul Islam, More connectedness in topological spaces, *Caspian journal of Mathematical Sciences*, 8(2019), 74-83.
- [93] Smita S Sikchi, Sushil Sikchi, Ali M S., Design of Fuzzy expert system for diagnosis of cardiac diseases, *International journal of medical science public health*, 2(2013), 56-61.
- [94] Steen L A., Seebach J A., Counter examples in Topology, *Holt, England, Rinchan and Winston*, 1970.
- [95] Sudha, Operation submaximal (Extremally disconnected) Spaces, Annals of R.S.C.B, 25(2021), 1405-1416.
- [96] Suman Das and Surapati Pramanik, Neutrosophic ϕ open sets and neutrosophic ϕ -continuous functions, *Neutrosophic sets and Systems*, 38(2020), 355-367.
- [97] Tanseem Abu-Jamie N., Mohammed A., Alkahout Samy S., Abu-Naser, An expert system for diagnosing cough problem using clips, *IJAISR*, 5(2021), 79-90.

- [98] Thangaraj G., Dhamasaraswathi S., On Fuzzy strongly hyperconnected spaces, American International Journal of Research in Science, Technology, Enggi and mathematics, 101(2019), 277-279.
- [99] Thangaraj G., Lokeshwari S., Fuzzy irresolvable sets and fuzzy open hereditarly irresolvable spaces, *Bulletin of Pure and Applied Sciences- Mathematics and Statistics*, 38E(2019), 369-377.
- [100] Thangaraj G., Lokeshwari S., Fuzzy resolvable sets and Fuzzy hyperconnected spaces, *Malaya Journal of Mathematik*, 8(2020), 702-708.
- [101] Thangaraj G., Mathivathini B., Sathya P., On Fuzzy resolvable sets and fuzzy resolvable functions, *Advances in Fuzzy Mathematics*, 12(2017), 1171-1181.
- [102] Thangaraj G., Muruganantham S., A note on fuzzy perfectly disconnected spaces, Advances in Fuzzy Mathematics, 13(2018), 59-70.
- [103] Thangaraj G., Senthil S., On fuzzy resolvable functions, *Malaya Journal of Mathematik*, 8(2020), 712-723.
- [104] Turanli N., Coker D., On Some types of fuzzy connectedness in fuzzy topological spaces, *Fuzzy sets and systems*, 60(1993), 97-102.
- [105] Tyagi B K., Bhardwaj M., Singh S., α_{β} -connectedness as a characterization of connectedness, *J.Adv. Stud. Topol.*, 9(2018), 119-129.
- [106] Tyagi B. K, Bhardwaj M., Singh S., S_{α} -connectedness in topological spaces, Jordan Journal of Mathematics and Statistics, 12(2019), 409-429.
- [107] Venkateswara Rao V., Srinivasa Rao Y., Neutrosophic pre-open sets and preclosed sets in Neutrosophic topology, *International journal of chem Tech Research*, 10(2017), 449-458.
- [108] Vimala Devi P., On H-hyperconnected spaces, Journal of Physical Sciences, 24(2019), 45-51.
- [109] William Kannel B., Daniel L., McGee, Diabetes and Cardiovascular disease, *The Framing ham study*,241(1979).
- [110] Zadeh L. A., Fuzzy sets, Information and Control, 8(1965), 338-353.

[111] Zahiruddin Sheriff M., Ponraj A P., H-hyperconnected Spaces, Journal of Computer and Mathematical Sciences, 11(2020) 12-17.

List of Publications

- 1. Sasikala D, Deepa M, A note on connectedness on Topological space, *Advances in Mathematics: Scientific journal*, 9(2020), 1-10. (Scopus)
- Sasikala D, Deepa M, An elementary approach on hyperconnected spaces, *Turkish Journal of Computer and Mathematics Education*, 12(2021), 946-950. (Scopus)
- 3. Sasikala D, Deepa M, A new perspective of neutrosophic hyperconnected spaces, *Neutrosophic Sets and Systems* (Communicated)
- 4. Deepa M, Sasikala D, Neutrosophic resolvable sets and neutrosophic resolvable functions, *Southeast Asian Journal of Mathematics and Mathematical sciences.* (Communicated)
- 5. Deepa M, Sasikala D, A new conception of sets in neutrosophic hyperconnected spaces, *Neutrosophic sets and systems*. (Accepted)
- Jackson S, Sasikala D, Deepa M, An expert system design to diagnose coronary heart disease using soft sets, *Expert system with applications*. (Communicated)
- 7. Deepa M, Sasikala D, On disconnected spaces via liberal class of sets, *Southeast Asian Journal of Mathematics and Mathematical sciences*. (Communicated)

ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.6, 3693–3702 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.6.47

A NOTE ON CONNECTEDNESS IN TOPOLOGICAL SPACES

D. SASIKALA¹ AND M. DEEPA

ABSTRACT. In this paper, we introduce two new types of connectedness namely j-connectedness and $\frac{1}{2}$ j-connectedness in a topological space. Also, we discuss some of their basic properties and analyze the characterization using theorems.

1. INTRODUCTION

Connectedness is one of the most important topological property. In 1975, Pipetone and Russo introduced semiconnectedness [6] in a topological space. Based on the sets of preopen , α open, β open, the concepts of preconnectedness [7], α connectedness [6] and β connectedness [3] were introduced. In 1982, Mashhour et.al [4] introduced preopen sets and pre continuous function in topological space.

In 2005, the concept of (α, β) semi-connectedness [2] was introduced by Ennis Rosas, Carlos Carpintere and Jose Sanabria. In 2015, Tapi, Bhagyashri Deole introduced semiconnectedness and preconnectedness in Biclosure spaces [8]. The new concepts of half b-connectedness in topological space was introduced by T.Noiri and Shyamapada Modak in 2016 [5]. In 2017, Tyagi, Sumit Singh and Manoj Bhardwaj introduced P_{β} connectedness in topological space [9]. I. Arokiarani and D. Sasikala introduced a new type of set namely j-open sets in 2011, [1].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54BXX, 54FXX.

Key words and phrases. j-separated, j-connected, $\frac{1}{2}$ j-separated, $\frac{1}{2}$ j-connected.

An Elementary Approach on Hyperconnected Spaces D.Sasikala^a, and M.Deepa^b

Assistant Professor, Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, India.

Article History: Received: 10 January 2021; Revised: 12 February 2021; Accepted: 27 March 2021; Published online: 20 April 2021

Abstract: This paper aims to establish a new notion of hyperconnected spaces namely semi j hyperconnected spaces by using semi j open sets. The relation between the existing spaces are also discussed. We also investigate some elementary properties of semi j hyperconnected spaces.

Keywords: semi j open set, semi j closed set, semi j regular open, semi j interior, semi j closure

1. Introduction

The notion of hyperconnected space was introduced and studied by many authors[1],[7],[10]. N.Levine[8] introduced D space i., e every non empty open set of X is dense in X. In 1979, Takashi Noiri[10] initiated the concept of hy- perconnected sets in a topological space by using semi open sets. In 1995, T.Noiri[11] formulated various properties of hyperconnected space using semi pre open sets. In 2011, Bose and Tiwari[6] found ω hyperconnectedness in topological space. In 2015, the concept of S* hyperconnectedness in supra topological spaces was studied by Adithya K.Hussain[1]. In 2016, I.Basdouri, R.Messoud, A.Missaoui[5] discussed about connectedness and hyperconnect- edness in generalised topological space. A.K.Sharma[13] determined that D spaces are equivalent to hyperconnected spaces. Recently, Lellis Thivagar and Geetha Antoinette[7] implemented a new concept of nano hyperconnectedness in 2019.

In 1963, N.Levine[9] investigated semi open sets and semi continuity in topological spaces. In 1986, semi preopen sets was introduced by D.Andrijevic[3]. In 2011, I.Arockiarani and D.Sasikala[4] presented j open sets in generalised topological spaces. D.Sasikala and M.Deepa[12] defined j connectedness and half j connectedness with the help of j open sets in 2020.

In this paper, we introduce semi j open sets in topological space and investigate some of its properties. Also, we define semi j hyperconnected spaces by using semi j open sets and also discussed some of its properties. Throughout this paper, X denotes the topological spaces.

2. Preliminaries

Definition 2.1

A subset A is said to be semi open if there exists an open set U of X such that $U \subset A \subset cl(U)$. The complement of semi open set is called semi closed.

Definition 2.2

The semi closure of A in X is defined by the intersection of all semi closed sets of X containing A. This is denoted by scl(A).

The semi interior of A in X is the union of all semi open sets contained in A and is denoted by sint(A). The family of all semi open set is denoted by SO(X).

Definition 2.3

A subset A of a topological space X is semi preopen if there exist a pre- open set U in X such that $U \subset A \subset cl(U)$. The family of semi preopen sets in X will be denoted by SPO(X).

Definition 2.4

A subset A of a topological space X is called

- (i) regular open if A = int(cl(A)).
- (ii) preopen if $A \subseteq int(cl(A))$.
- (iii) α open if $A \subseteq int(cl(int(A)))$.
- (iv) j open if $A \subseteq int(pcl(A))$.

The complement of preopen, α open and j open sets are called pre closed, α closed, j closed respectively. Lemma 2.5

The following properties hold for a topological space (X, τ)

a) $\tau \subset SO(X) \cap PO(X)$.

b) $SO(X) \cup PO(X) \subset SPO(X)$.

Lemma 2.6

Let A be a subset of a topological space X. Then the following properties hold.

- a) $scl(A) = A \cup int(cl(A)).$
- b) $pcl(A) = A \cup cl(int(A)).$
- c) $spcl(A) = A \cup int(cl(int(A))).$

Definition 2.7

A subset A of a supra topological space (X, S^*) is said to be