Chapter 2

j-connectedness and j-disconnectedness

2.1 Introduction

In this Chapter, a new space called j-connectedness in topological space is introduced
with the help of j-open sets and j-separated sets. The properties of j-separated sets, j-
connectedness were examined by suitable examples and theorems. The notion of half
j-separated sets and half j-connected sets were investigated. Also, we discuss the inter-
relation between half j-connectedness and j-connectedness. Finally, j-disconnectedness
and extremally j-disconnectedness are proposed and their characteristics are studied

with relevant theorems and examples.

2.2 j-separated sets

Definition 2.2.1. Let R and S be two non-empty subsets of a topological space (X, Tx).
Then R and S in (X, Tx) are said to be j-separated if and only if R N cl;(S) = 0 and

Example 2.2.2. Let X = {q,r,s,t} and 72 = {0, X, {q}, {t}, {¢. t}, {q, 7, s}} be the

topology on X. For this topology tx, 0, X, {q}, {t},{¢, 7}, {q, s}, {a, t}, {q,m s}, {q, 7, 1},
{q, s,t} are the j-open sets of (X, Tx). Put E = {t} and F = {q,r, s}. The sets E and F
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are j-separated, since ENcl;(F) = {t}n{q,r,s} = D and cl;(E)NF = {t}N{q, 7, s} =
0.

Theorem 2.2.3. Two subsets R and S of (X, Tx) are j-separated if and only if there
exists a two j-open sets U and V suchthat RC U, S CVand RNV =0, SNU = (.

Proof. Let R and S be j-separated sets and V' = X — cl;(R), U = X — cl;(5). Then U
and V are j-open sets in X suchthat RC Uand S C V. Also RNV =0,SNU = 0.

Conversely, suppose U and V € JO(X) suchthat R C U, S C Vand RNV = (),
SNU =. Since ¥ — U and X — V are j-closed, then ¢/;(R) C X —V C X — S and
clj(S) C X —U C X — R. Therefore, c/;(R) NS = 0 and cl;(S) N R = (. Hence R

and S are j-separated. [

Theorem 2.2.4. Let R and S be two non-empty subsets in a space (X, 7Tx). Then the

following statements hold:

(i) If RN'S = () such that R and S are both j-closed and j-open, then R and S are

j-separated.

(ii) Suppose R and S are j-separated sets, Ry C R and S, C S, then R, and S, are
also j-separated sets.

(iii) If each of these sets R and S are both j-closed(j-open) and if G = RN (X — S)
and H = SN (X — R), then G and H are j-separated sets.

Proof. (i) Since R and S are both j-open and j-closed with R NS = (), then R =
clj(R) and S = ¢l;(S). This implies R N ¢l;(S) = B and S N cl;(R) = 0. Hence
R and S are j-separated sets.

(ii) Since Ry C R, then cl;(R;) C clj(R). We have, R and S are j-separated sets,
then RN ¢l;j(S) = 0 and S N cl;(R) = 0. This implies Ry N ¢l;(S;) = 0 and
clj(Ry) NSy = 0. Hence R, and S are j-separated sets.

(iii) If R and S are j-open, then X — R and X — S are j-closed. Since G C X — 5,
cj(G) Celj(X —S) =X —Sandsoclj(G)NS = 0. cl;(G) N H = (. Similarly
G Neclj(H) = (. Hence G and H are j-separated sets.
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]

Theorem 2.2.5. Let R and S be two non-empty disjoint subsets of a topological space
(X,7x) and G = RUS. Then R and S are j-separated if and only if R and S are both

j-closed and j-open in G.

Proof. Let R and S be j-separated sets. Then, we have cl;(R)NS = () and RNcl;(S) =
(). Taking

ci(R)NG =clj(R)N[RUS]
=RU
=R

Therefore, R is j-closed set in G = R U S. Similarly we obtain S is also j-closed set in
G. Since RNS = (P and RU S = G. This implies R = G — S and S = G — R are
j-open sets in G.

Conversely, let R and S be two disjoint sets and both are j-open and j-closed in G. We
have R C G'and S C G. This implies c/;(R) NG = R and c/;(S) NG = S. Thus

RNS=[c;(R)NG|NS
= c;(R)N(GNS)
—c;(R)NS
— 0.

Similarly we obtain R N ¢l;(S) = 0. Hence R and S are j-separated sets in G. [l

Theorem 2.2.6. If R and S are j-separated sets of (X, Ty ), then R and S are disjoint.

Proof. Let Rand S are j-separated sets of (X', 7x), then c/;(R)NS = () and RNel;(S) =
(). We know that R C cl;(R). Now, RN S C ¢l;(R) NS = (). This implies RN S = {.
Thus R and S are disjoint sets. [
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Remark 2.2.7. The following example verified that disjoint sets need not be a j-separated

sets in (X, Tx).

Example 2.2.8. Let X = {q,r, s, t} withty = {0, X, {q}, {t},{q. t}, {r, s}, {q, 7, s}, {r,

s,t}}. Here the subsets {s} and {r,t} are disjoint sets but not j-separated. Since

{s}necli{r,t} = {s}n{r,s,t} #0.

Proposition 2.2.9. Let R and S be j-separated sets in (X, Tx), then the following state-
ments hold:
(i) If R € JO(X), then | J R; € JO(X).

1EN

(ll) Ile, R2 S JO(X), then Rl N R2 € JO(X)

Theorem 2.2.10. Let R and S be j-separated sets in (X, Tx), then the following state-

ments hold:

(i) If RU S is j-open, then R and S are j-open sets in (X, Tx).

(ii) If RU S is j-closed, then R and S are j-closed sets in (X, Tx).

Proof. (i) Let R U S be j-open set in (X, 7x). Since cl;(5) is j-closed set, we have
[cl;(S)]¢ is a j-open set which implies (R U S) N [cl;(S)]¢ is j-open. Therefore,
[RNO(cl;(S))]U[SN(cl;(S))]] is j-open. We have RN cl;(S) = 0, R C (cl;(S))°
= RN (cl;(5) = R. Now, S C cl;(S) = [cl;(S)]° € 5 = Sn
(cl;(9)) C O = SN(cl;(S))¢ = 0. Therefore [RN (cl;(S))]U[S N (cl;(S))]
= RU( = R. Hence R is a j-open set. Similarly, we have S is also a j-open set in
(X, Tx).

(ii) Let RUS be j-closedin (X, 7x). Then cl;(RUS) = RUS = cl;(R)Ucl;(S) =
RUS = clj(R) Cclj(R)Ucl;j(S)=RUS = clj(R)N[RUS] = cl;(R)
= [cl;(R) N R U [cl;(R) N S] = cl;(R). Therefore, R = cl;j(R). Hence R is

j-closed set in (X, 7x). Similarly, we have S is also a j-closed set in (X', Tx).
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Theorem 2.2.11. If R and S are j-open sets in (X, Tx ), then RN(X —S) and SN(X —R)

are j-separated sets in (X, Tx).

Proof. Let R and S be j-open sets in (X, 7x). Then X — R and X — S are j-closed sets
in (X, 7x). Hence RN (X — S) and SN (X — R) are j-separated sets in (X, 7y). [

Theorem 2.2.12. Let R and S be j-separated sets in (X, Tx) with X = RU S, then R¢

and S°¢ are also j-separated sets in (X, Tx).

Proof. Since R and S are j-separated sets in (X, 7x). Then c/;(R) NS = ) and R N
clj(S) =0. Wehave ¥ = RU S and RN S = (). Therefore, R = S and S = R°. Put
cj(R)NS°=clj(R)NR =0 and R°Ncl;(S°) = SNel;j(S°) =0 . Hence R° and S°

are j-separated sets in (X, 7y ). O

2.3 j-connected spaces

Definition 2.3.1. A ropological space (X, Tx) is said to be j-connected if X cannot be

written as a union of two non-empty j-separated sets in (X, Tx).

Example 2.3.2. Let X = {q,r, s, t} withty = {0, X, {r}}. Forthistx, 0, X,{r},{q,r},
{r,s}, {r,t},{q,r, s}, {q,r t},{r, s,t} are the collection of j-open sets. Here X can-
not be written as the union of two disjoint nonempty j-open sets. Therefore, (X, Ty) is

J-connected.

Theorem 2.3.3. A ropological space (X, Tx) is j-connected if and only if X # RU S

such that R and S are disjoint nonempty j-open subsets of (X, Tx).

Proof. Let (X, Tx) be j-connected space and X = RUS where R and S are disjoint non
empty j-open subsets of (X', 7y). Then R and S are also j-closed subsets in (X, 7v).
This implies R N ¢l;(S) = 0 and c¢l;(R) NS = () which forms a j-separation of X.

Therefore, (X', 7x) is not j-connected, which is a contradiction.
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Conversely, assume R and S forms a j-separation of X’. Therefore, R = () and S # (),
RNS =0, cl;(R)NS = @ and RNcl;(S) = (. This implies ¢/;(R) = Rand cl;(S) = S.
Hence R and S are nonempty j-open subsets of (X, 7y) and X = R U S, which is a

contradiction. Hence (X, 7y ) is j-connected. O

Theorem 2.3.4. If R is a j-connected set of a topological space (X, 7y) and G, H are
J-separated sets in (X, Ty) such that R C G U H, then either R C G or R C H.

Proof. Suppose G and H are j-separated. Since R C G U H which implies R =
RN(GUH)=(RNG)U(RNH)= Ry URywhere Ry = RNGand Ry = RN H.
Now, we take ¢l;(R1) N Ry = cl;(RNG)N(RNH) Ccl;(R)Nel;(G)N(RNH) = 0.
Similarly, R; N clj(RQ) = (). But we have R is a j-connected set. Therefore, either
Ry=0orRy=0.If Ry =0, then RNG = ()and R C GU H. This implies R C H. If
Ry =(),then RN H =(and R C G U H. This implies R C G. Hence the proof.  []

Theorem 2.3.5. A topological space (X, Ty) is j-connected then (X, Tx) is connected.

Proof. Let (X, Ty) be j-connected. Suppose (X, 7y ) is disconnected. Then there exist
a proper subset () # R of (X, 7x) which is both open and closed set in (X, 7y ). Since
every closed set is j-closed, we have, R is a proper nonempty subset of (X', 7x) which
is both j-open and j-closed in (X', 7x). This is a contradiction to (X, 7y ) is j-connected.

Hence, every j-connected space is connected. O]

Theorem 2.3.6. A topological space (X, Ty) is j-connected if and only if the null set

and X are the only j-open and j-closed in (X, Tx).

Proof. Let ) # R be a proper subset of X’ which is both j-open and j-closed in X. Then
there exista sets U = Rand V = X — R, which forms a j-separation of X. Thus (X, 7x)
is not j-connected. Hence null set and X are the only j-open and j-closed sets in (X, 7x).
Conversely, assume that if U and V forms a j-separation of X and X = U U V. This
implies U is non-empty and different from X. Since UNV = U N (c;(V)) = ¢l;(U) N
V' = (). This implies U and V" are j-open and j-closed in (X, 7). O

Theorem 2.3.7. If a subset R of (X, Tx)is j-connected, then cl;(R) is also j-connected.
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Proof. Assume R is j-connected set and cl;(R) is not j-connected. Then there exist two
j-separated sets S and 7" such that c/;(R) = SUT. But R C cl;(R). This implies
R C SUT. Using theorem[2.3.4] we have R C Sor R C T.

(i) If R C S, then cl;(R) C cl;(S). But we have c/;(S) N T = (. This implies
c;(R)NT = (. Since T" C clj(R). Therefore, we have ' = () which is a

contradiction to 1" # ().

(i) If R C T, then cl;(R) C cl;(T). But we have S N cl;(T) = (. This implies
SNelj(R) = 0.. Since S C cl;(R). Therefore, we have S = () which contradicts
the fact that S # (). Hence cl;(R) is connected in (X, 7).

]

Theorem 2.3.8. Let R and S be the subsets of a topological space (X,7x). If R is

j-connected and R C S C clj(R), then S is j-connected.

Proof. Suppose S is j-disconnected set. Then S = E U F, where E # () and F' # ()
such that c/;(E) N (F) = @ and E N ¢cl;(F) = 0. As, wehave R C S C E U F where
E and F are j-separated sets. Therefore, either R C For R C F. If R C F, then
cl;(R) C clj(E) which implies cl;(R)NF C cl;(EYNF =0 = F C (cl;(R))".
Since FF C S C cl;(R), this implies F' = () which contradicts F' # (). Equivalently,
R C F. This implies E = () which contradicts E # (). Therefore S is j-connected set in
(X, Tv). O

Theorem 2.3.9. Let R C S UT such that R be a non-empty j-connected set in X and
S, T are j-separated. Then only one of the following conditions hold:

(i) RC Sand RNT =1

(i) RCTand RNS =10

Proof. Suppose RNT = () implies R C S. If RNS =, then R C T. Since SNT # ()
then both RN'S = () and R N'T = () does not hold. Similarly, assume that RN S # ()
and RNT # (). Then, by the theorem[2.2.4, R N S and RN T are j-separated such that
R = (RN S)U(RNT) which contradicts the fact as j-connectedness of R. U
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Theorem 2.3.10. Let R and S be two non-empty subsets of (X, 7x). If R and S are

j-connected in (X, Ty), then R U S is also j-connected.

Proof. Assume RU S is not j-connected. Then there exist j-separated sets R and S such
that ¥ = R U S. This implies R C RU S. Therefore, R C Ror R C S. Similarly,
S C RUS implies S C Ror S C S. Suppose R C Rand S C Rimplies RUS C R
and S = (). This is a contradiction. Therefore, R C Rand S C Sor R C Sand S C R.
In the first case, cl;(R) NS C cl;(R)NS = 0 and cl;(S)NR C c;(S)N R = 0.
In the second case, we obtain R = S. It contradicts our assumption, hence R U S is

j-connected. ]

Theorem 2.3.11. If {G,\oc € 7x} is a non-empty family of j-connected subset of a
topological space (X, Tx) such that (| G, # 0 then |J G, # 0 is j-connected.

oETY ocT

Proof. Assume that H = |J G, and H is not j-connected. Then H = R U S, where
R and S are j-separated sgtesni(n X. Letx € () G,. Therefore, x € |J G, = H.
Since H = RU S impliesz € Rorx € S. §1§173pose that x € R. Sinci:e; € G, for
each o € 7y. Therefore, GG, and R intersect for each o € 7. This implies, G, C R or
G, C S. Since R and S are disjoint, G, C Rforall o € 7 and hence H C R. Therefore
we have S = (). This is a contradiction to our assumption. Hence H = |J G, # 0 is

oET

j-connected. [

Theorem 2.3.12. Let f : (X, 7x) — (¥, 7y) be a j-irresolute surjective function from a
topological space (X, Ty ) into another topological space (), Ty). If R is a j-connected

subset of (X, Tx), then f(R) is also j-connected in (), Ty).

Proof. Suppose f(R) is j-disconnected in (), 7). Then there exist a pair of subsets
) # Ry and § # Ry of (Y, 7y) such that f(R) = R; U Ry and Ry N Ry = (. Since f
is j-irresolute function, we obtain a pair of subsets () # f~'(R;) and ) # f~!(Rs) of
(X, 7x) such that f~'(Ry) N f~H(Re) = f~H(RiNRy) = f~1(0) = Dand f~'(Ry) U
f~Y(Ry) = X. This implies f~'(R;) and f~'(R,) forms a j-separation in (X, Tx)
which is a contradiction to a topological space (X, Tx) is j-connected. Hence f(R) is

j-connected in (), Ty). )
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Definition 2.3.13. Let (X, 7x) be a topological space and x € X. The j-component of

X containing x, is the union of all j-connected subsets of X containing x.

Definition 2.3.14. A ropological space (X, Tx) is called as locally j-connected at x € X
if for each j-neighbourhood U containing x, there is a j-connected neighborhood V of
x contained in U ie. x € V C U. The space X is locally j-connected if it is locally

Jj-connected at each of its points.

Theorem 2.3.15. A space (X, Tx) is locally j-connected if and only if for each j-open
set U of X and for each j-component of U is j-open in X.

Proof. Suppose that X is locally j-connected. Let U be j-open in X. Let R be the j-
component of U. If we take a point = in R, we select a neighborhood V' of x such that
V C U. Since V is j-connected, this implies V' is entirely contained in the j-component
R of U. Hence R is j-open in X. Conversely, assume that U C X be a j-open and
x € U. By our hypothesis, the j-component V' of U containing x is j-open. Hence X’ is

locally j-connected in (X, Ty ). O

24 3 J-separated sets

Definition 2.4.1. Two subsets R and S of a topological space (X, Ty ) are said to be 2
j-separated if and only if cl;(R) NS = () or RN cl;(S) = 0.

Remark 2.4.2. We obtain the following implications from the above definitions of 2

j-separated, cl-cl-separated, j-separated and separated sets.

The converse of the above implications need not be true as shown in the following

examples.

Example 2.4.3. Let X = {p,q,r, s} with a topology T = {0, X, {p},{p,q}},
¢ ={0, X,{q, 7, s},{r,s}}. The j-open sets are O, X, {p},{p,q},{p,r}, {p, s},

{p,q,r},{p,q, s}, {p,r, s}. The j-closed sets are O, X, {q,r, s}, {r, s}, {q,s},{q, 7},
{s}.{r},{q}. Here {p} and {q,r, s} are 2j-separated sets as {p} N cl;{q, 7, s} = O but
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cl-cl separated Separated

(SR

j-separated j-separated

ci{p} N{q,r, s} # 0. Therefore the two sets {p} and {q,r, s} are not j-separated.
Since clj(R) C cl(R) for every subset R of X, every cl-cl separated set is 2j-separated.
The sets {p} and {q,r, s} are 2j-separated. But cl{p} N cl{q,r,s} # 0. Therefore the

sets {p} and {q,r, s} are not cl-cl separated.

2.5 2 J-connected sets

Definition 2.5.1. A subset R of a topological space (X, Tx) is said to be 2 Jj-connected

if R # G U H such that G and H are non empty half j-separated sets in (X, Tx).

Definition 2.5.2. A subset R of a topological space (X, Tx) is said to be cl-cl connected

if R # G'U H such that G and H are non empty cl-cl separated sets in (X, Tx).

Theorem 2.5.3. A ropological space (X, Ty) is 3 J-connected if and only if X # RU S
and RN S = () such that R and S are non empty j-open and j-closed sets in (X, Tx).

Proof. Let X be a %j—connected space. Suppose that X = RUS, where RNS = (). Also
R be a non-empty j-open set and S be a non-empty j-closed set in X'. Then RNcl;(S) =
() since S is j-closed set in X'. Therefore R and S are 2 j-separated. This implies (X', Tx)
isnota 2 j-connected space. This is a contradiction.

Conversely, suppose that (X', 7y) is not a 2 j-connected space, then there exist non-
empty 2j-separated sets R and S such that ¥ = RU S. Let RN c;j(S) =0, R =
X —clj(S)and S = X — R. Then RUS = X and RN S = () where R and S are
non-empty j-open set and j-closed set respectively. Similarly we have cl;(R) NS = ()

which contradicts the fact that X # R U S. Hence (X, Tx) is 2j-connected. O
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Theorem 2.5.4. Let (X, Tx) be a topological space if R is a 2 Jj-connected subset of X
and R1, Ry are the 3 J-separated subsets of X with R C Ry U Ry then either R C Ry or
R C Rs.

Proof. Let R be a %j—connected set. Take R C R; U R,. Since R; and R, are 3 J-
separated, clj(R;) N Ry = 0 or Ry N clj(Ry) = (0. Consider Ry N clj(Ry) = 0.
Therefore, R = (RN R;) U (RN Ry), then (RN R2)Nelj(RNRy) C RoNelj(Ry) = 0.
Suppose R N Ry and R N R, are non-empty sets. Then R is not 2 j-connected. This is
a contradiction. Hence either RN Ry = () or RN Ry = () which implies R C R; or

R C R,. Similar argument is used for another case, cl;(R2) N Ry = 0. O

Theorem 2.5.5. In a topological space (X, Tx), j-irresolute image of a 3 Jj-connected

[
space is zj-connected.

Proof. Let X be a zj-connected space and f : (X,7x) — (), 7y) be a j-irresolute
function. Suppose f () is not a 2 j-connected subset of (), 7y) such that f(z) = RU S.
Since R and S are %j—separated ie. cl;(R)NnS =0or RNecl;(S) = 0. Since a function
f is irresolute, therefore we have cl;(f~'(R)) N f~4(S) C f~'(cl;(R)) N f71S) =
PR N (S)) = Dor fH(R) N ely(F(S) € [ (R) N f A ely(S)) = FH(R D
cl;j(S)) = 0. But R # (), there exist a point 7 € X such that f(r) € R and hence
f~YR) # 0. Equivalently, we have f~'(S) # (. Therefore, f~'(R) and f~(95)
are non-empty 2j-separated sets such that X = f~'(R) U f~(S) which implies X’ is
not a 2 j-connected space. This is a contradiction to our assumption that f(z) is not a

2j-connected subset of (), 7). Hence f(z) is a 2j-connected subset of (), 7). O

Theorem 2.5.6. In a topological space (X, Ty ), the j-continuous image of a 2 Jj-connected

R
space is 2j-connected.

Proof. Let f : (X,7%) — (¥, 7y) be a j-continuous function and (X, Ty) be 2j-
connected space. Suppose that f(X) is not zj-connected subset of (), 7y). Then
there exists 2j-separated sets R and S in (Y, 7y) such that f(X) = RUS. Since R
and S are 2j-separated, Therefore cl;(R) NS = 0 or RN ¢l;(S) = . Since f is j-
continuous, cl;(f~H(R) N f~1(S)) C f~Hc;(R) N f71S)) = fHc;(R)NS) =0
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or f7Y(R)Ncl(f~HS)) € fAHR)N fHcl;(S)) = fFHRNcl;(S)) = 0. Since
R # S, Then there exist a point » € X such that f(r) € R and hence f~!(R) # 0.
Similarly, f~1(S) # 0. This implies f~'(R) and f~(S) are zj-separated sets such that
X = f~Y(R)Uf~1(S). Therefore, X is not a 2j-connected space. This is a contradiction

to the fact that X is 2 j-connected space. Hence f(X) is 2 j-connected in ). ]

Lemma 2.5.7. Let f : (X,7x) — (Y, Ty) be a j-continuous function. Then cl;(f~*(S) C
(el (S)) for each S C Y.

Theorem 2.5.8. If f : (X,7x) — (Y, 7y) be a j-continuous function and T is %j-

connected set in a space (X, Tx), then f(T) is cl-cl connected in (Y, Ty).

Proof. Suppose that f(7T) is not cl-cl connected in (), 7). There exists two non-empty
cl-cl separated sets R and S of (), 7y) such that f(7) = RUS. Let us take a set
C=Tnf(R)yand D=Tn f~1(9). Since f(T)NR # B then TN f~*(R) # 0 and
also C' # (0. Similarly, D # (). Now we have CUD = (TN f~Y(R))U(TN f~1(9)) =
TO(f Y R)USFHS)=TnfYRUS)=TNf1(f(T)) =T. Since f is continuous,
by lemma2.5.7, C N cl(D) C f~Y(R) Nel(f~1(S)) C fHc(R)) N fHcl(9)) =
FY(cl(R)Nel(S)) = (. This is a contradiction to our assumption that T is 2j-connected.

Hence f(T) cl-cl connected in ). O

Theorem 2.5.9. IfR is 2 j-connected then cl;(R) is also 2 Jj-connected.

Proof. Suppose that cl;(R) is not 2 j-connected. Then there exist two 2 J-separated sets
Ry and R in (X, 7x) such that ¢/;(R) = Ry U Ry. Since R = (R N R) U (Ry N R)
and cl;(Ry) N Ry = (). Therefore, ¢l;(R; N R) N (Ry N R) = (. This implies R is not

2 j-connected, contradiction. Hence cl;(R) is 2 j-connected. [

Theorem 2.5.10. If [ : (X, 7x) — (Y, 7y) is bijective j-closed function and T is 2 J-

connected in (), Ty), then f~1(T) is cl-cl connected in (X, Tx).

Proof. Let f : (X,7x) — (¥, 7y) be a j-closed bijective i.,e one-one and onto, then
F (Y, 7y) — (X, 7x) is a continuous bijection. Since T is 2j-connected in (Y, 7y),

by theorem [2.5.8} f~*(T) is cl-cl connected in X. O
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2.6 j-disconnected spaces

Definition 2.6.1. A ropological space (X, Tx) is said to be j-disconnected if X can be

expressed as a union of two non-empty j-separated sets in (X, Ty).

Example 2.6.2. Consider X = {q,r,s,t} and 7x = {0,{q},{r,s,t}, X'}. For this
topology, we have 0, {q}, {r,s,t} and X are j-open sets. Then X = {q} U {r,s,t}.
Since {q} and {r, s, t} of (X, Tx) are j-separated sets. i.e., {q} Ncli{r,s,t} = cl;{¢} N
{r,s,t} = 0. Thus N (X, Tx) is a j-disconnected space.

Theorem 2.6.3. Every disconnected space is j-disconnected space.

Proof. Let us take a topological space N (X, Tx) to be a disconnected space. Then
X = RUS, where ) # R and () # S, such that R and S are separated sets. This
implies, cl(R) NS = @ and RN cl(S) = 0. Also clj(R) C cl(R), which implies,
cj(R)NS C cl(R) NS = (. Correspondingly, RN clj(S) € RNcl(S) = 0. Thus R
and S are j-separated sets such that ¥ = RUS. Hence N (X, 7y) is j-disconnected. [

Theorem 2.6.4. A topological space N (X, Tx) is j-disconnected if and only if there
exists a proper subset ) # R of X is both j-closed and j-open.

Proof. Suppose N (X, 7x) is j-disconnected space. Then X = R U S where ) # R
and ) = S are j-separated sets. i.e., c;(R) NS = RNcl;j(S) = 0. This implies
RNS=0and X = RUS. Then S = R°and R = S°. We have cl;(R) NS = () and
RNel;(S) =0 = clj(R) C S°= Randcl;(S) C R° = S. Butwe have, R C cl;(R)
and S C cl;(S). Thus R = cl;(R) and S = cl;(S). Therefore, R and S are j-closed
sets and also R° = S, S = R are j-open sets. Hence a non-empty proper subsets of
X are both j-open and j-closed. Conversely, assume () # R be a proper subset of X.
Then there exist a subset S which is both j-open as well as j-closed and RN.S = (). This
implies c/;(R) = R and cl;(S) = S. Now cl;(R)NS = RN¢l;(S) = (. Thus Rand S
are j-separated such that ¥ = R U S. Hence N (X, 7x) is j-disconnected space. [

Remark 2.6.5. The following example shows that, every discrete space (X, ;) is j-

disconnected if the space contains atleast two elements.
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Example 2.6.6. Ler X = {q,r}. ThenT = {0, {q},{r}, X}, 7, = {0, {q¢}. {r}, X} and
75 = {0,{q},{r}, X}. Since ) # q is a proper subset of X which is both j-open and

j-closed.Therefore (X, T;) is j-disconnected.

Theorem 2.6.7. If () # R and () # S are two j-separated subsets of a topological space
(X,7;) then RU S is also j-disconnected in (X, ;).

Proof. Let R and S be the j-separated subsets of (X', 7;). Then we have @ # R, ) # S,
Rnecli(S) =0,c;(R)NS =0and RN S = (). Now, we consider X — cl;(R) = M;
and X — cl;(S) = N;. This implies ¢l;(R) # 0 and cl;(S) # 0, also ¢l;(R) and cl;(5)
are j-closed subsets of N (X, 7y ). Therefore M; and N; are non-null j-open subsets of

(X, Tx). But

(RUS)NM; = (RUS)N(X —clj(R))
= [RO(X —clj(R)]U[SN (X = cl;(R))]
= [RNRJU[SNS]
= Qus
= S

In the same way, we get (R U S) N N; = R. It shows that, there exist a subsets M, and
Nj in 7; such that (R U S) N M, and (R U S) N N, are non-empty. [(R U S) N M;| N
(RUS)NN;] =0and [([RUS)NM;N[(RUS)NN,;] =0 =RUS = X. Then
M; U Nj is the j-disconnectedness of 2 U S. Hence R U S is j-disconnected. O

Theorem 2.6.8. Let N'(X, ) and (X, 1;) be two topological spaces, R be non-empty
subset of X and M; U N; be j-disconnection of R. Then R N M; and R N N; are

Jj-separated subsets of (X, ;).

Proof. Let M; U N; be j-disconnection of R. Using our assumption and the definition
of j-disconnected, there exist M;, N, € 7; such that RN M; = () and RN N; = () which
implies (RNM;)N(RNN;) = @ and (RNM;)U(RNN;) = RN[M;UN,] = RNR = R.
Now we prove, cl;(RNM;) N (RN N;) =@ and [RNM;]Neclj(RNN;) = 0. Assume
the contrary cl;(R N M;) N (RN N;) # 0. This implies © € cl;(RN M;), x € R
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contradicts (R N M;) N (RN N;) = 0. Thus cl;(RN M;) N (RN N;) = . Similarly
(RNM;)Ncl(RNN;) = (0. Hence RN M; and RN N; are j-separated sets in [X, 7;]. [

Theorem 2.6.9. Let S be a subset of a topological space N' (X, 7x) and N (X, 7x) be
J-disconnected if and only if S = R U S where R and S are j-separated sets.

Proof. Assume S = RUS where R and S are j-separated sets in N (X, 7y ). Therefore,
R U S is j-disconnected. Hence S is also j-disconnected.

Conversely, let S be j-disconnected. To prove R and S are two j separated subsets of
& such that S = R U S. By the definition of j-disconnected there exists a subsets )
and N; in 7; such that S N M; # @and SN N; # 0. (SN M;)N(SNN;) =0 and
(SNM;)U(SNN;)=S8.Put SNM; =Rand SN N; =S. Hence R and S are two
j-separated subsets of N'(X, 7x) such that S = RU S. O

2.7 Extremally j-disconnected Spaces

Definition 2.7.1. A topological space (X, Ty) is called extremally j-disconnected if
clj(R) is j-open for all R € JO(X).

Example 2.7.2. Let X = {q,r,s,t} witha = {0, {q}, {q,t}, {r, s},

{q,r,s},X}. Then 75 = {0,{r,s,t},{r,s},{q,t},{t},0}. For this topology, 0, X,

{q}, {r}, {s}. {q, 7}, {a, s}, {q,t}, {r,s}, {q,7, s}, {q,7, t}, {q, s,t} are the collection
of pre-open sets . Therefore we have (), X, {q}, {q,t}, {r, s}, {r, st} are the family of j-

open sets. Here cl;i{q} = {q,t}, cli{q,t} = {q.t}, cl{r, s} = {r,s} and cl;{q,7, s} =
X. Therefore j-closure of every j-open set is j-open. Hence (X, Ty) is extremally j-

disconnected.

Theorem 2.7.3. In general, the following statements are equivalent for any topological

space (X, 7).
(i) (X, Tx) is extremally j-disconnected.
(ii) int;(R,) is j-closed for all j-closed set R, in X.
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(iii) cl;(R,) Ucl[X — cl;(R,)] = X for all j-closed set R, in X.

(iv) clj(R,) U cl;j(Ry) = X for every pair of j-open sets R, and Ry, in (X,Tx) with
clj(R)) URy = X.

Proof. (i) = (ii)
Let R be a j-closed subset of (X, 7). To prove int;(R,) is j-closed.
Put X-int;(R,) = cl;(X — R,). Since R, is j-closed and (X, 7,) is extremally j-
disconnected. Then (X — R,) is j-open and cl;(X — R,) is j-open. This implies (X" —
int;(R,)) is j-open and int;(R,) is j-closed.
(i) = (iii)
Assume R, is j-open subset of (X, 7). Put
X —cli(R,) = intj(X — R,).
Then clj(R,) Uclj(X —cl;j(R,)) = cl;(R) Uclj(int;(X — R,))

= clj(R,) Uintj(X — R,)

=cl;(R)U (X —clj(R)) =X
(1) = (v)

Let R, and Ry, be two j-open subsets of (X', 7.) such that

cl;(R) URy = X. 2.1)
Using (iii)  clj(Ra) U cl;(X — clj(Ry)) = clj(Ra) U Ry (2.2)
— Ry = clj(X — clj(R,)). (2.3)

From (2.3), R, = X — cl;(R,).
From (2.3) and (2.5),



iv) = )

Let R, be any j-open subset of (X', 7,.).

Take Ry = X — cl;(R,) = cl;(R,)UR, = X.

Using (iv) we have cl;(R,) U cl;(Ry) = X and cl;(R,) is j-open in (X, 7).

Hence (X, 7,) is extremally j-disconnected. [

Theorem 2.7.4. Let R, and R, be any two non-empty j-open subsets of (X, ,) and
R, N Ry = (). Then a topological space (X, Tx) is extremally j-disconnected if and only
if clj(R,) Nclj(Ry) = 0 for every R,, Ry € X such that R, N Ry, = 0.

Proof. Let() # R, and ) # Ry, be two j-open subsets of extremally j-disconnected space
(X, 1) with B, N Ry, = 0. cl;(R,) Nintj(Ry) = clj(Ry) N Ry = 0. int;(clj(Ry)) N
int;(clj(Ry)) =0 = clj(R,) Ncli(Ry) = 0.

Conversely, take GG be an arbitrary j-open subset in (X, 7y ). Then X’ — G is j-closed set.
This implies int;(X — Q) is j-open set such that G Nint;(X — G) = (. By hypothesis,

— ol;(G) N cly(X — cly(G)) =0
— ,(G) N ely(X — cly(G)) =0
— ol;(G) Cint;el;(G) C cly(G)
— ol;(G) N [X — int;[cl;(G)] = 0
cl;(G) C int;[cl;(G)] 2.4)
In general, int; (cl;(G)) C cl;(G) (2.5)

From (2.6) and (2.7), cl;(G) = int;cl;(G).Thus cl;(G) is j-open set in (X, 7x). Also

G is arbitrary j-open set. Hence (X', 7x) is extremally disconnected. [

Theorem 2.7.5. In a topological space (X, 1,) the following relations are equivalent.

(i) (X,7x) is extremally j-disconnected.

(ii) For every j-open subsets of R, and Ry, in X such that
Clj(Ra) N Clj(Rb) = Clj (Ra N Rb)
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(iii) For every j-closed subsets of S, and Sy, of X, int;(S,) Uint;(Sy) = int;(S, U Sh).

Proof. (1) = (i1)

Taking R, and R, as two non-empty j-open subsets of extremally j-disconnected space
(X, 7x). We have cl;(R,) Ncl;j(Ry) = clj(R, N Ry).

(i) = (iii)

Take S, and S, are two j-closed subset of extremally j-disconnected space (X, 7x).

Then (X — S5,) and (X — Sp) are j-open subsets. Therefore, we have

cli(X — Sq) Nelj(X = Sy) = cl;[(X = S,) N (X = 5)].
(X —int;(Se)) N (X —int;(Sp)) = cl|X — (Sa U Sp)]
X — [mt](Sa) U mtj(Sb)] =X — ’intj(Sa U Sb)

Therefore, int;(S,) U int;(Sy) = int;(S, U Sp).

(1) = (1)

Proof is similar to (ii)) = (ii1).

(i) = (@)

Let R, be arbitrary j-open subsets of (X, 7,). Then X — R, is j-closed. cl;(R,) =
int;(clj(R,)). By lemma, we have cl;(R,) is arbitrary j-open set in (X', 7,). Hence

(X, 7,) is extremally j-disconnected. [

Theorem 2.7.6. If R, and R, are any two non-null j-open subsets of (X, Tx). Then

(X, 7x) is extremally j-disconnected if and only if
int;(clj(R,)) Uint;(clj(R,)) = int;(clj(R, U Ry)) for all R, and Ry, in X.

Proof. Let (X, 7,) be extremally j-disconnected space, R, and R, be arbitrary j-open
subsets of (X, 7). Therefore cl;(R,) and cl;(R;) are j-closed subsets of (X, 7x).

Therefore, int;(cl;(R,))Jint;(cl;j(Ry)) = int;(cl;(R,)Ucl;(Ry)) = int;(clj(RyURy)).
Conversely, Let M, and M, are two j-closed subsets of (X, 7x). Then int;(M,) and
int;(M,) are j-open subsets of (X, 7x). By our assumption, int;(cl;(int;(M,))) U
int;(cl;(int;(My))) = int;(cl;[int;(M,) U int;(M,)]), since M, and M, are j-closed
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subsets of (X, 7x). Therefore, we have

int;[cl;[int;[clj(mg)] Uint;lclj(my)]]] = int;cl;[int;cl;[M, U My)]

= intjclj [Ma U Mb]
Hence (X, 7x) is extremally j-disconnected. []

Theorem 2.7.7. If S, and S, are any two non null j-closed subsets of (X, 7x). Then

(X, Tx) is extremally j-disconnected if and only if
cl;(int;(S,)) Nclj(int;(Sy)) = clj(int;(S, N Sy)) for all S, and Sy in (X, Tx).

Proof. Assume (X, 7y) is extremally j-disconnected and S,, S, are any two j-closed
subsets of (X, 7x). Then int;(S,) and int;(Sy) are j-open subsets of (X, 7x). There-
fore, cl;(int;(S,)) Nclj(int;(Sy)) = cl;(int;(S,) Nint;(Sy)) = cljint; (S, N Sp).
Conversely, let N, and N, be any two j-open subsets of (X', Ty ).

Then cl;(N,), cl;(N,) are j-closed subsets of (X, 7x).

Now cl;(int;(cl;(N,))) N cl;(int;(cl;(Ny)))

= cljint;[cl;(int;(Ng))] N cljint;[clj(int;(Ny))]

= cljint;(Na) N eljintj(Ny)

= cljint;(N, N Np) = clj(Ng N N).

Hence (X, 7x) is extremally j-disconnected. [l

2.8 Conclusion

In this chapter, the researcher studied j-separated sets, j-connectedness, half j-separated
sets, half j-connectedness, j-disconnectedness and extremally j-disconnectedness in topo-
logical spaces. We have plotted the work in subsequent chapters which gives more

insight about connectedness in topological spaces.
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