
Chapter 2

j-connectedness and j-disconnectedness

2.1 Introduction

In this Chapter, a new space called j-connectedness in topological space is introduced

with the help of j-open sets and j-separated sets. The properties of j-separated sets, j-

connectedness were examined by suitable examples and theorems. The notion of half

j-separated sets and half j-connected sets were investigated. Also, we discuss the inter-

relation between half j-connectedness and j-connectedness. Finally, j-disconnectedness

and extremally j-disconnectedness are proposed and their characteristics are studied

with relevant theorems and examples.

2.2 j-separated sets

Definition 2.2.1. Let R and S be two non-empty subsets of a topological space (X , τX ).

Then R and S in (X , τX ) are said to be j-separated if and only if R ∩ clj(S) = ∅ and

clj(R) ∩ S = ∅.

Example 2.2.2. Let X = {q, r, s, t} and τX = {∅,X , {q}, {t}, {q, t}, {q, r, s}} be the

topology on X . For this topology τX , ∅,X , {q}, {t}, {q, r}, {q, s}, {q, t}, {q, r, s}, {q, r, t},

{q, s, t} are the j-open sets of (X , τX ). PutE = {t} and F = {q, r, s}. The sets E and F
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are j-separated, sinceE∩clj(F ) = {t}∩{q, r, s} = ∅ and clj(E)∩F = {t}∩{q, r, s} =

∅.

Theorem 2.2.3. Two subsets R and S of (X , τX ) are j-separated if and only if there

exists a two j-open sets U and V such that R ⊂ U , S ⊂ V and R ∩ V = ∅, S ∩ U = ∅.

Proof. Let R and S be j-separated sets and V = X − clj(R), U = X − clj(S). Then U

and V are j-open sets in X such that R ⊂ U and S ⊂ V . Also R ∩ V = ∅, S ∩ U = ∅.

Conversely, suppose U and V ∈ JO(X ) such that R ⊂ U , S ⊂ V and R ∩ V = ∅,

S ∩ U = ∅. Since X − U and X − V are j-closed, then clj(R) ⊂ X − V ⊂ X − S and

clj(S) ⊂ X − U ⊂ X − R. Therefore, clj(R) ∩ S = ∅ and clj(S) ∩ R = ∅. Hence R

and S are j-separated.

Theorem 2.2.4. Let R and S be two non-empty subsets in a space (X , τX ). Then the

following statements hold:

(i) If R ∩ S = ∅ such that R and S are both j-closed and j-open, then R and S are

j-separated.

(ii) Suppose R and S are j-separated sets, R1 ⊆ R and S1 ⊆ S, then R1 and S1 are

also j-separated sets.

(iii) If each of these sets R and S are both j-closed(j-open) and if G = R ∩ (X − S)

and H = S ∩ (X −R), then G and H are j-separated sets.

Proof. (i) Since R and S are both j-open and j-closed with R ∩ S = ∅, then R =

clj(R) and S = clj(S). This implies R ∩ clj(S) = ∅ and S ∩ clj(R) = ∅. Hence

R and S are j-separated sets.

(ii) Since R1 ⊆ R, then clj(R1) ⊂ clj(R). We have, R and S are j-separated sets,

then R ∩ clj(S) = ∅ and S ∩ clj(R) = ∅. This implies R1 ∩ clj(S1) = ∅ and

clj(R1) ∩ S1 = ∅. Hence R1 and S1 are j-separated sets.

(iii) If R and S are j-open, then X − R and X − S are j-closed. Since G ⊂ X − S,

clj(G) ⊂ clj(X −S) = X −S and so clj(G)∩S = ∅. clj(G)∩H = ∅. Similarly

G ∩ clj(H) = ∅. Hence G and H are j-separated sets.
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Theorem 2.2.5. Let R and S be two non-empty disjoint subsets of a topological space

(X , τX ) and G = R ∪ S. Then R and S are j-separated if and only if R and S are both

j-closed and j-open in G.

Proof. LetR and S be j-separated sets. Then, we have clj(R)∩S = ∅ andR∩clj(S) =

∅. Taking

clj(R) ∩G = clj(R) ∩ [R ∪ S]

= R ∪ ∅

= R

Therefore, R is j-closed set in G = R ∪ S. Similarly we obtain S is also j-closed set in

G. Since R ∩ S = ∅ and R ∪ S = G. This implies R = G − S and S = G − R are

j-open sets in G.

Conversely, let R and S be two disjoint sets and both are j-open and j-closed in G. We

have R ⊆ G and S ⊆ G. This implies clj(R) ∩G = R and clj(S) ∩G = S. Thus

R ∩ S = [clj(R) ∩G] ∩ S

= clj(R) ∩ (G ∩ S)

= clj(R) ∩ S

= ∅.

Similarly we obtain R ∩ clj(S) = ∅. Hence R and S are j-separated sets in G.

Theorem 2.2.6. If R and S are j-separated sets of (X , τX ), then R and S are disjoint.

Proof. LetR and S are j-separated sets of (X , τX ), then clj(R)∩S = ∅ andR∩clj(S) =

∅. We know that R ⊆ clj(R). Now, R ∩ S ⊆ clj(R) ∩ S = ∅. This implies R ∩ S = ∅.

Thus R and S are disjoint sets.
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Remark 2.2.7. The following example verified that disjoint sets need not be a j-separated

sets in (X , τX ).

Example 2.2.8. Let X = {q, r, s, t} with τX = {∅, X, {q}, {t}, {q, t}, {r, s}, {q, r, s}, {r,

s, t}}. Here the subsets {s} and {r, t} are disjoint sets but not j-separated. Since

{s} ∩ clj{r, t} = {s} ∩ {r, s, t} ≠ ∅.

Proposition 2.2.9. Let R and S be j-separated sets in (X , τX ), then the following state-

ments hold:

(i) If R ∈ JO(X ), then
⋃
i∈λ

Ri ∈ JO(X ).

(ii) If R1, R2 ∈ JO(X ), then R1 ∩R2 ∈ JO(X ).

Theorem 2.2.10. Let R and S be j-separated sets in (X , τX ), then the following state-

ments hold:

(i) If R ∪ S is j-open, then R and S are j-open sets in (X , τX ).

(ii) If R ∪ S is j-closed, then R and S are j-closed sets in (X , τX ).

Proof. (i) Let R ∪ S be j-open set in (X , τX ). Since clj(S) is j-closed set, we have

[clj(S)]
c is a j-open set which implies (R ∪ S) ∩ [clj(S)]

c is j-open. Therefore,

[R∩ (clj(S))
c]∪ [S ∩ (clj(S))

c] is j-open. We have R∩ clj(S) = ∅, R ⊆ (clj(S))
c

=⇒ R ∩ (clj(S))
c = R. Now, S ⊆ clj(S) =⇒ [clj(S)]

c ⊆ Sc =⇒ S ∩

(clj(S))
c ⊆ ∅ =⇒ S ∩ (clj(S))

c = ∅. Therefore [R∩ (clj(S))
c]∪ [S ∩ (clj(S))

c]

= R∪ ∅ = R. Hence R is a j-open set. Similarly, we have S is also a j-open set in

(X , τX ).

(ii) LetR∪S be j-closed in (X , τX ). Then clj(R∪S) = R∪S =⇒ clj(R)∪clj(S) =

R ∪ S =⇒ clj(R) ⊆ clj(R) ∪ clj(S) = R ∪ S =⇒ clj(R) ∩ [R ∪ S] = clj(R)

=⇒ [clj(R) ∩ R] ∪ [clj(R) ∩ S] = clj(R). Therefore, R = clj(R). Hence R is

j-closed set in (X , τX ). Similarly, we have S is also a j-closed set in (X , τX ).

18



Theorem 2.2.11. IfR and S are j-open sets in (X , τX ), thenR∩(X−S) and S∩(X−R)

are j-separated sets in (X , τX ).

Proof. Let R and S be j-open sets in (X , τX ). Then X −R and X − S are j-closed sets

in (X , τX ). Hence R ∩ (X − S) and S ∩ (X −R) are j-separated sets in (X , τX ).

Theorem 2.2.12. Let R and S be j-separated sets in (X , τX ) with X = R ∪ S, then Rc

and Sc are also j-separated sets in (X , τX ).

Proof. Since R and S are j-separated sets in (X , τX ). Then clj(R) ∩ S = ∅ and R ∩

clj(S) = ∅. We have X = R ∪ S and R ∩ S = ∅. Therefore, R = Sc and S = Rc. Put

clj(R
c)∩Sc = clj(R

c)∩R = ∅ and Rc ∩ clj(Sc) = S ∩ clj(Sc) = ∅ . Hence Rc and Sc

are j-separated sets in (X , τX ).

2.3 j-connected spaces

Definition 2.3.1. A topological space (X , τX ) is said to be j-connected if X cannot be

written as a union of two non-empty j-separated sets in (X , τX ).

Example 2.3.2. Let X = {q, r, s, t} with τX = {∅,X , {r}}. For this τX , ∅,X , {r}, {q, r},

{r, s}, {r, t}, {q, r, s}, {q, r, t}, {r, s, t} are the collection of j-open sets. Here X can-

not be written as the union of two disjoint nonempty j-open sets. Therefore, (X , τX ) is

j-connected.

Theorem 2.3.3. A topological space (X , τX ) is j-connected if and only if X ≠ R ∪ S

such that R and S are disjoint nonempty j-open subsets of (X , τX ).

Proof. Let (X , τX ) be j-connected space and X = R∪S whereR and S are disjoint non

empty j-open subsets of (X , τX ). Then R and S are also j-closed subsets in (X , τX ).

This implies R ∩ clj(S) = ∅ and clj(R) ∩ S = ∅ which forms a j-separation of X .

Therefore, (X , τX ) is not j-connected, which is a contradiction.
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Conversely, assume R and S forms a j-separation of X . Therefore, R = ∅ and S ̸= ∅,

R∩S = ∅, clj(R)∩S = ∅ andR∩clj(S) = ∅. This implies clj(R) = R and clj(S) = S.

Hence R and S are nonempty j-open subsets of (X , τX ) and X = R ∪ S, which is a

contradiction. Hence (X , τX ) is j-connected.

Theorem 2.3.4. If R is a j-connected set of a topological space (X , τX ) and G, H are

j-separated sets in (X , τX ) such that R ⊆ G ∪H , then either R ⊆ G or R ⊆ H .

Proof. Suppose G and H are j-separated. Since R ⊆ G ∪ H which implies R =

R ∩ (G ∪H) = (R ∩G) ∪ (R ∩H) = R1 ∪R2 where R1 = R ∩G and R2 = R ∩H .

Now, we take clj(R1)∩R2 = clj(R∩G)∩ (R∩H) ⊆ clj(R)∩ clj(G)∩ (R∩H) = ∅.

Similarly, R1 ∩ clj(R2) = ∅. But we have R is a j-connected set. Therefore, either

R1 = ∅ or R2 = ∅. If R1 = ∅, then R∩G = ∅ and R ⊆ G∪H . This implies R ⊆ H . If

R2 = ∅, then R ∩H = ∅ and R ⊆ G ∪H . This implies R ⊆ G. Hence the proof.

Theorem 2.3.5. A topological space (X , τX ) is j-connected then (X , τX ) is connected.

Proof. Let (X , τX ) be j-connected. Suppose (X , τX ) is disconnected. Then there exist

a proper subset ∅ ≠ R of (X , τX ) which is both open and closed set in (X , τX ). Since

every closed set is j-closed, we have, R is a proper nonempty subset of (X , τX ) which

is both j-open and j-closed in (X , τX ). This is a contradiction to (X , τX ) is j-connected.

Hence, every j-connected space is connected.

Theorem 2.3.6. A topological space (X , τX ) is j-connected if and only if the null set

and X are the only j-open and j-closed in (X , τX ).

Proof. Let ∅ ≠ R be a proper subset of X which is both j-open and j-closed in X. Then

there exist a sets U = R and V = X −R, which forms a j-separation of X. Thus (X , τX )

is not j-connected. Hence null set and X are the only j-open and j-closed sets in (X , τX ).

Conversely, assume that if U and V forms a j-separation of X and X = U ∪ V . This

implies U is non-empty and different from X . Since U ∩ V = U ∩ (clj(V )) = clj(U)∩

V = ∅. This implies U and V are j-open and j-closed in (X , τX ).

Theorem 2.3.7. If a subset R of (X , τX )is j-connected, then clj(R) is also j-connected.
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Proof. Assume R is j-connected set and clj(R) is not j-connected. Then there exist two

j-separated sets S and T such that clj(R) = S ∪ T . But R ⊆ clj(R). This implies

R ⊆ S ∪ T . Using theorem 2.3.4, we have R ⊆ S or R ⊆ T .

(i) If R ⊆ S, then clj(R) ⊆ clj(S). But we have clj(S) ∩ T = ∅. This implies

clj(R) ∩ T = ∅. Since T ⊆ clj(R). Therefore, we have T = ∅ which is a

contradiction to T ̸= ∅.

(ii) If R ⊆ T , then clj(R) ⊆ clj(T ). But we have S ∩ clj(T ) = ∅. This implies

S ∩ clj(R) = ∅.. Since S ⊆ clj(R). Therefore, we have S = ∅ which contradicts

the fact that S ̸= ∅. Hence clj(R) is connected in (X , τX ).

Theorem 2.3.8. Let R and S be the subsets of a topological space (X , τX ). If R is

j-connected and R ⊆ S ⊆ clj(R), then S is j-connected.

Proof. Suppose S is j-disconnected set. Then S = E ∪ F , where E ̸= ∅ and F ̸= ∅

such that clj(E) ∩ (F ) = ∅ and E ∩ clj(F ) = ∅. As, we have R ⊆ S ⊆ E ∪ F where

E and F are j-separated sets. Therefore, either R ⊆ E or R ⊆ F . If R ⊆ E, then

clj(R) ⊆ clj(E) which implies clj(R) ∩ F ⊆ clj(E) ∩ F = ∅ =⇒ F ⊆ (clj(R))
c.

Since F ⊆ S ⊆ clj(R), this implies F = ∅ which contradicts F ̸= ∅. Equivalently,

R ⊆ F . This implies E = ∅ which contradicts E ̸= ∅. Therefore S is j-connected set in

(X , τX ).

Theorem 2.3.9. Let R ⊆ S ∪ T such that R be a non-empty j-connected set in X and

S, T are j-separated. Then only one of the following conditions hold:

(i) R ⊆ S and R ∩ T = ∅

(ii) R ⊆ T and R ∩ S = ∅

Proof. Suppose R∩T = ∅ implies R ⊆ S. If R∩S = ∅, then R ⊆ T . Since S∩T ̸= ∅

then both R ∩ S = ∅ and R ∩ T = ∅ does not hold. Similarly, assume that R ∩ S ̸= ∅

and R ∩ T ̸= ∅. Then, by the theorem 2.2.4, R ∩ S and R ∩ T are j-separated such that

R = (R ∩ S) ∪ (R ∩ T ) which contradicts the fact as j-connectedness of R.
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Theorem 2.3.10. Let R and S be two non-empty subsets of (X , τX ). If R and S are

j-connected in (X , τX ), then R ∪ S is also j-connected.

Proof. Assume R∪S is not j-connected. Then there exist j-separated sets R and S such

that X = R ∪ S. This implies R ⊂ R ∪ S. Therefore, R ⊂ R or R ⊂ S. Similarly,

S ⊂ R ∪ S implies S ⊂ R or S ⊂ S. Suppose R ⊂ R and S ⊂ R implies R ∪ S ⊂ R

and S = ∅. This is a contradiction. Therefore, R ⊂ R and S ⊂ S or R ⊂ S and S ⊂ R.

In the first case, clj(R) ∩ S ⊂ clj(R) ∩ S = ∅ and clj(S) ∩ R ⊂ clj(S) ∩ R = ∅.

In the second case, we obtain R = S. It contradicts our assumption, hence R ∪ S is

j-connected.

Theorem 2.3.11. If {Gσ\σ ∈ τX} is a non-empty family of j-connected subset of a

topological space (X , τX ) such that
⋂

σ∈τX
Gσ ̸= ∅ then

⋃
σ∈τ

Gσ ̸= ∅ is j-connected.

Proof. Assume that H =
⋃

σ∈τX
Gσ and H is not j-connected. Then H = R ∪ S, where

R and S are j-separated sets in X . Let x ∈
⋂
σ∈τ

Gσ. Therefore, x ∈
⋃
σ∈τ

Gσ = H .

Since H = R ∪ S implies x ∈ R or x ∈ S. Suppose that x ∈ R. Since x ∈ Gσ for

each σ ∈ τX . Therefore, Gσ and R intersect for each σ ∈ τX . This implies, Gσ ⊂ R or

Gσ ⊂ S. Since R and S are disjoint, Gσ ⊂ R for all σ ∈ τ and henceH ⊂ R. Therefore

we have S = ∅. This is a contradiction to our assumption. Hence H =
⋃
σ∈τ

Gσ ̸= ∅ is

j-connected.

Theorem 2.3.12. Let f : (X , τX ) → (Y , τY) be a j-irresolute surjective function from a

topological space (X , τX ) into another topological space (Y , τY). If R is a j-connected

subset of (X , τX ), then f(R) is also j-connected in (Y , τY).

Proof. Suppose f(R) is j-disconnected in (Y , τY). Then there exist a pair of subsets

∅ ≠ R1 and ∅ ≠ R2 of (Y , τY) such that f(R) = R1 ∪ R2 and R1 ∩ R2 = ∅. Since f

is j-irresolute function, we obtain a pair of subsets ∅ ≠ f−1(R1) and ∅ ≠ f−1(R2) of

(X , τX ) such that f−1(R1) ∩ f−1(R2) = f−1(R1 ∩ R2) = f−1(∅) = ∅ and f−1(R1) ∪

f−1(R2) = X . This implies f−1(R1) and f−1(R2) forms a j-separation in (X , τX )

which is a contradiction to a topological space (X , τX ) is j-connected. Hence f(R) is

j-connected in (Y , τY).
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Definition 2.3.13. Let (X , τX ) be a topological space and x ∈ X . The j-component of

X containing x, is the union of all j-connected subsets of X containing x.

Definition 2.3.14. A topological space (X , τX ) is called as locally j-connected at x ∈ X

if for each j-neighbourhood U containing x, there is a j-connected neighborhood V of

x contained in U i.e. x ∈ V ⊆ U . The space X is locally j-connected if it is locally

j-connected at each of its points.

Theorem 2.3.15. A space (X , τX ) is locally j-connected if and only if for each j-open

set U of X and for each j-component of U is j-open in X .

Proof. Suppose that X is locally j-connected. Let U be j-open in X . Let R be the j-

component of U. If we take a point x in R, we select a neighborhood V of x such that

V ⊂ U . Since V is j-connected, this implies V is entirely contained in the j-component

R of U . Hence R is j-open in X . Conversely, assume that U ⊆ X be a j-open and

x ∈ U . By our hypothesis, the j-component V of U containing x is j-open. Hence X is

locally j-connected in (X , τX ).

2.4 1
2 j-separated sets

Definition 2.4.1. Two subsets R and S of a topological space (X , τX ) are said to be
1
2

j-separated if and only if clj(R) ∩ S = ∅ or R ∩ clj(S) = ∅.

Remark 2.4.2. We obtain the following implications from the above definitions of
1
2

j-separated, cl-cl-separated, j-separated and separated sets.

The converse of the above implications need not be true as shown in the following

examples.

Example 2.4.3. Let X = {p, q, r, s} with a topology τ = {∅, X, {p}, {p, q}},

τ c = {∅, X, {q, r, s}, {r, s}}. The j-open sets are ∅, X, {p}, {p, q}, {p, r}, {p, s},

{p, q, r}, {p, q, s}, {p, r, s}. The j-closed sets are ∅, X, {q, r, s}, {r, s}, {q, s}, {q, r},

{s}, {r}, {q}. Here {p} and {q, r, s} are
1
2 j-separated sets as {p} ∩ clj{q, r, s} = ∅ but
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clj{p} ∩ {q, r, s} ≠ ∅. Therefore the two sets {p} and {q, r, s} are not j-separated.

Since clj(R) ⊂ cl(R) for every subset R of X , every cl-cl separated set is
1
2 j-separated.

The sets {p} and {q, r, s} are
1
2 j-separated. But cl{p} ∩ cl{q, r, s} ̸= ∅. Therefore the

sets {p} and {q, r, s} are not cl-cl separated.

2.5 1
2 j-connected sets

Definition 2.5.1. A subset R of a topological space (X , τX ) is said to be
1
2 j-connected

if R ̸= G ∪H such that G and H are non empty half j-separated sets in (X , τX ).

Definition 2.5.2. A subset R of a topological space (X , τX ) is said to be cl-cl connected

if R ̸= G ∪H such that G and H are non empty cl-cl separated sets in (X , τX ).

Theorem 2.5.3. A topological space (X , τX ) is
1
2 j-connected if and only if X ̸= R ∪ S

and R ∩ S = ∅ such that R and S are non empty j-open and j-closed sets in (X , τX ).

Proof. Let X be a
1
2 j-connected space. Suppose that X = R∪S, whereR∩S = ∅. Also

R be a non-empty j-open set and S be a non-empty j-closed set in X . Then R∩clj(S) =

∅ since S is j-closed set in X . Therefore R and S are
1
2 j-separated. This implies (X , τX )

is not a
1
2 j-connected space. This is a contradiction.

Conversely, suppose that (X , τX ) is not a
1
2 j-connected space, then there exist non-

empty
1
2 j-separated sets R and S such that X = R ∪ S. Let R ∩ clj(S) = ∅, R =

X − clj(S) and S = X − R. Then R ∪ S = X and R ∩ S = ∅ where R and S are

non-empty j-open set and j-closed set respectively. Similarly we have clj(R) ∩ S = ∅

which contradicts the fact that X ̸= R ∪ S. Hence (X , τX ) is
1
2 j-connected.
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Theorem 2.5.4. Let (X , τX ) be a topological space if R is a
1
2 j-connected subset of X

and R1, R2 are the
1
2 j-separated subsets of X with R ⊂ R1 ∪R2 then either R ⊂ R1 or

R ⊂ R2.

Proof. Let R be a
1
2 j-connected set. Take R ⊂ R1 ∪ R2. Since R1 and R2 are

1
2 j-

separated, clj(R1) ∩ R2 = ∅ or R2 ∩ clj(R1) = ∅. Consider R2 ∩ clj(R1) = ∅.

Therefore, R = (R∩R1)∪ (R∩R2), then (R∩R2)∩ clj(R∩R1) ⊂ R2∩ clj(R1) = ∅.

Suppose R ∩ R1 and R ∩ R2 are non-empty sets. Then R is not
1
2 j-connected. This is

a contradiction. Hence either R ∩ R1 = ∅ or R ∩ R2 = ∅ which implies R ⊂ R1 or

R ⊂ R2. Similar argument is used for another case, clj(R2) ∩R1 = ∅.

Theorem 2.5.5. In a topological space (X , τX ), j-irresolute image of a
1
2 j-connected

space is
1
2 j-connected.

Proof. Let X be a
1
2 j-connected space and f : (X , τX ) → (Y , τY) be a j-irresolute

function. Suppose f(x) is not a
1
2 j-connected subset of (Y , τY) such that f(x) = R∪S.

Since R and S are
1
2 j-separated i.e. clj(R) ∩ S = ∅ or R ∩ clj(S) = ∅. Since a function

f is irresolute, therefore we have clj(f−1(R)) ∩ f−1(S) ⊂ f−1(clj(R)) ∩ f−1(S) =

f−1(clj(R) ∩ (S)) = ∅ or f−1(R) ∩ clj(f−1(S) ⊂ f−1(R) ∩ f−1(clj(S)) = f−1(R ∩

clj(S)) = ∅. But R ̸= ∅, there exist a point r ∈ X such that f(r) ∈ R and hence

f−1(R) ̸= ∅. Equivalently, we have f−1(S) ̸= ∅. Therefore, f−1(R) and f−1(S)

are non-empty
1
2 j-separated sets such that X = f−1(R) ∪ f−1(S) which implies X is

not a
1
2 j-connected space. This is a contradiction to our assumption that f(x) is not a

1
2 j-connected subset of (Y , τY). Hence f(x) is a

1
2 j-connected subset of (Y , τY).

Theorem 2.5.6. In a topological space (X , τX ), the j-continuous image of a
1
2 j-connected

space is
1
2 j-connected.

Proof. Let f : (X , τX ) → (Y , τY) be a j-continuous function and (X , τX ) be
1
2 j-

connected space. Suppose that f(X ) is not
1
2 j-connected subset of (Y , τY). Then

there exists
1
2 j-separated sets R and S in (Y , τY) such that f(X ) = R ∪ S. Since R

and S are
1
2 j-separated, Therefore clj(R) ∩ S = ∅ or R ∩ clj(S) = ∅. Since f is j-

continuous, clj(f−1(R) ∩ f−1(S)) ⊂ f−1(clj(R) ∩ f−1(S)) = f−1(clj(R) ∩ S) = ∅
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or f−1(R) ∩ clj(f
−1(S)) ⊂ f−1(R) ∩ f−1(clj(S)) = f−1(R ∩ clj(S)) = ∅. Since

R ̸= S, Then there exist a point r ∈ X such that f(r) ∈ R and hence f−1(R) ̸= ∅.

Similarly, f−1(S) ̸= ∅. This implies f−1(R) and f−1(S) are
1
2 j-separated sets such that

X = f−1(R)∪f−1(S). Therefore, X is not a
1
2 j-connected space. This is a contradiction

to the fact that X is
1
2 j-connected space. Hence f(X ) is

1
2 j-connected in Y .

Lemma 2.5.7. Let f : (X , τX ) → (Y , τY) be a j-continuous function. Then clj(f−1(S) ⊆

f−1(clj(S)) for each S ⊆ Y .

Theorem 2.5.8. If f : (X , τX ) → (Y , τY) be a j-continuous function and T is
1
2 j-

connected set in a space (X , τX ), then f(T ) is cl-cl connected in (Y , τY).

Proof. Suppose that f(T ) is not cl-cl connected in (Y , τY). There exists two non-empty

cl-cl separated sets R and S of (Y , τY) such that f(T ) = R ∪ S. Let us take a set

C = T ∩ f−1(R) and D = T ∩ f−1(S). Since f(T )∩R ̸= ∅ then T ∩ f−1(R) ̸= ∅ and

also C ̸= ∅. Similarly, D ̸= ∅. Now we have C ∪D = (T ∩ f−1(R))∪ (T ∩ f−1(S)) =

T ∩(f−1(R)∪f−1(S)) = T ∩f−1(R∪S) = T ∩f−1(f(T )) = T . Since f is continuous,

by lemma 2.5.7, C ∩ cl(D) ⊂ f−1(R) ∩ cl(f−1(S)) ⊂ f−1(cl(R)) ∩ f−1(cl(S)) =

f−1(cl(R)∩cl(S)) = ∅. This is a contradiction to our assumption that T is
1
2 j-connected.

Hence f(T ) cl-cl connected in Y .

Theorem 2.5.9. If R is
1
2 j-connected then clj(R) is also

1
2 j-connected.

Proof. Suppose that clj(R) is not
1
2 j-connected. Then there exist two

1
2 j-separated sets

R1 and R2 in (X , τX ) such that clj(R) = R1 ∪ R2. Since R = (R1 ∩ R) ∪ (R2 ∩ R)

and clj(R1) ∩ R2 = ∅. Therefore, clj(R1 ∩ R) ∩ (R2 ∩ R) = ∅. This implies R is not
1
2 j-connected, contradiction. Hence clj(R) is

1
2 j-connected.

Theorem 2.5.10. If f : (X , τX ) → (Y , τY) is bijective j-closed function and T is
1
2 j-

connected in (Y , τY), then f−1(T ) is cl-cl connected in (X , τX ).

Proof. Let f : (X , τX ) → (Y , τY) be a j-closed bijective i.,e one-one and onto, then

f−1 : (Y , τY) → (X , τX ) is a continuous bijection. Since T is
1
2 j-connected in (Y , τY),

by theorem 2.5.8, f−1(T ) is cl-cl connected in X .
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2.6 j-disconnected spaces

Definition 2.6.1. A topological space (X , τX ) is said to be j-disconnected if X can be

expressed as a union of two non-empty j-separated sets in (X , τX ).

Example 2.6.2. Consider X = {q, r, s, t} and τX = {∅, {q}, {r, s, t},X}. For this

topology, we have ∅, {q}, {r, s, t} and X are j-open sets. Then X = {q} ∪ {r, s, t}.

Since {q} and {r, s, t} of (X , τX ) are j-separated sets. i.e., {q}∩ clj{r, s, t} = clj{q}∩

{r, s, t} = ∅. Thus N (X , τX ) is a j-disconnected space.

Theorem 2.6.3. Every disconnected space is j-disconnected space.

Proof. Let us take a topological space N (X , τX ) to be a disconnected space. Then

X = R ∪ S, where ∅ ̸= R and ∅ ̸= S, such that R and S are separated sets. This

implies, cl(R) ∩ S = ∅ and R ∩ cl(S) = ∅. Also clj(R) ⊆ cl(R), which implies,

clj(R) ∩ S ⊆ cl(R) ∩ S = ∅. Correspondingly, R ∩ clj(S) ⊆ R ∩ cl(S) = ∅. Thus R

and S are j-separated sets such that X = R∪S. Hence N (X , τX ) is j-disconnected.

Theorem 2.6.4. A topological space N (X , τX ) is j-disconnected if and only if there

exists a proper subset ∅ ≠ R of X is both j-closed and j-open.

Proof. Suppose N (X , τX ) is j-disconnected space. Then X = R ∪ S where ∅ ̸= R

and ∅ = S are j-separated sets. i.e., clj(R) ∩ S = R ∩ clj(S) = ∅. This implies

R ∩ S = ∅ and X = R ∪ S. Then S = Rc and R = Sc. We have clj(R) ∩ S = ∅ and

R∩clj(S) = ∅ =⇒ clj(R) ⊆ Sc = R and clj(S) ⊆ Rc = S. But we have,R ⊆ clj(R)

and S ⊆ clj(S). Thus R = clj(R) and S = clj(S). Therefore, R and S are j-closed

sets and also Rc = S, Sc = R are j-open sets. Hence a non-empty proper subsets of

X are both j-open and j-closed. Conversely, assume ∅ ≠ R be a proper subset of X .

Then there exist a subset S which is both j-open as well as j-closed and R∩S = ∅. This

implies clj(R) = R and clj(S) = S. Now clj(R)∩ S = R∩ clj(S) = ∅. Thus R and S

are j-separated such that X = R ∪ S. Hence N (X , τX ) is j-disconnected space.

Remark 2.6.5. The following example shows that, every discrete space (X , τj) is j-

disconnected if the space contains atleast two elements.
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Example 2.6.6. Let X = {q, r}. Then τ = {∅, {q}, {r},X}, τj = {∅, {q}, {r},X} and

τ cj = {∅, {q}, {r},X}. Since ∅ ̸= q is a proper subset of X which is both j-open and

j-closed.Therefore (X , τj) is j-disconnected.

Theorem 2.6.7. If ∅ ≠ R and ∅ ≠ S are two j-separated subsets of a topological space

(X , τj) then R ∪ S is also j-disconnected in (X , τj).

Proof. Let R and S be the j-separated subsets of (X , τj). Then we have ∅ ̸= R, ∅ ̸= S,

R ∩ clj(S) = ∅, clj(R) ∩ S = ∅ and R ∩ S = ∅. Now, we consider X − clj(R) = Mj

and X − clj(S) = Nj . This implies clj(R) ̸= ∅ and clj(S) ̸= ∅, also clj(R) and clj(S)

are j-closed subsets of N (X , τX ). Therefore Mj and Nj are non-null j-open subsets of

(X , τX ). But

(R ∪ S) ∩Mj = (R ∪ S) ∩ (X − clj(R))

= [R ∩ (X − clj(R))] ∪ [S ∩ (X − clj(R))]

= [R ∩Rc] ∪ [S ∩ S]

= ∅ ∪ S

= S

In the same way, we get (R ∪ S) ∩Nj = R. It shows that, there exist a subsets Mj and

Nj in τj such that (R ∪ S) ∩Mj and (R ∪ S) ∩ Nj are non-empty. [(R ∪ S) ∩Mj] ∩

[(R ∪ S) ∩ Nj] = ∅ and [(R ∪ S) ∩Mj] ∩ [(R ∪ S) ∩ Nj] = ∅ = R ∪ S = X . Then

Mj ∪Nj is the j-disconnectedness of R ∪ S. Hence R ∪ S is j-disconnected.

Theorem 2.6.8. Let N (X , τX ) and (X , τj) be two topological spaces, R be non-empty

subset of X and Mj ∪ Nj be j-disconnection of R. Then R ∩ Mj and R ∩ Nj are

j-separated subsets of (X , τj).

Proof. Let Mj ∪ Nj be j-disconnection of R. Using our assumption and the definition

of j-disconnected, there exist Mj , Nj ∈ τj such that R∩Mj = ∅ and R∩Nj = ∅ which

implies (R∩Mj)∩(R∩Nj) = ∅ and (R∩Mj)∪(R∩Nj) = R∩[Mj∪Nj] = R∩R = R.

Now we prove, clj(R∩Mj)∩ (R∩Nj) = ∅ and [R∩Mj]∩ clj(R∩Nj) = ∅. Assume

the contrary clj(R ∩ Mj) ∩ (R ∩ Nj) ̸= ∅. This implies x ∈ clj(R ∩ Mj), x ∈ R
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and x ∈ Nj =⇒ (R ∩ Mj) ∩ Nj ̸= ∅. =⇒ (R ∩ Mj) ∩ (R ∩ Nj) ̸= ∅ which

contradicts (R ∩Mj) ∩ (R ∩ Nj) = ∅. Thus clj(R ∩Mj) ∩ (R ∩ Nj) = ∅. Similarly

(R∩Mj)∩cl(R∩Nj) = ∅. HenceR∩Mj andR∩Nj are j-separated sets in [X , τj].

Theorem 2.6.9. Let S be a subset of a topological space N (X , τX ) and N (X , τX ) be

j-disconnected if and only if S = R ∪ S where R and S are j-separated sets.

Proof. Assume S = R∪S where R and S are j-separated sets in N (X , τX ). Therefore,

R ∪ S is j-disconnected. Hence S is also j-disconnected.

Conversely, let S be j-disconnected. To prove R and S are two j separated subsets of

X such that S = R ∪ S. By the definition of j-disconnected there exists a subsets Mj

and Nj in τj such that S ∩Mj ̸= ∅ and S ∩ Nj ̸= ∅. (S ∩Mj) ∩ (S ∩ Nj) = ∅ and

(S ∩Mj) ∪ (S ∩Nj) = S. Put S ∩Mj = R and S ∩Nj = S. Hence R and S are two

j-separated subsets of N (X , τX ) such that S = R ∪ S.

2.7 Extremally j-disconnected Spaces

Definition 2.7.1. A topological space (X , τX ) is called extremally j-disconnected if

clj(R) is j-open for all R ∈ JO(X ).

Example 2.7.2. Let X = {q, r, s, t} with τX = {∅, {q}, {q, t}, {r, s},

{q, r, s},X}. Then τ cX = {∅, {r, s, t}, {r, s}, {q, t}, {t}, ∅}. For this topology, ∅, X ,

{q}, {r}, {s}, {q, r}, {q, s}, {q, t}, {r, s}, {q, r, s}, {q, r, t}, {q, s, t} are the collection

of pre-open sets . Therefore we have ∅, X , {q}, {q, t}, {r, s}, {r, st} are the family of j-

open sets. Here clj{q} = {q, t}, clj{q, t} = {q, t}, clj{r, s} = {r, s} and clj{q, r, s} =

X . Therefore j-closure of every j-open set is j-open. Hence (X , τX ) is extremally j-

disconnected.

Theorem 2.7.3. In general, the following statements are equivalent for any topological

space (X , τx).

(i) (X , τX ) is extremally j-disconnected.

(ii) intj(Ra) is j-closed for all j-closed set Ra in X .
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(iii) clj(Ra) ∪ cl[X − clj(Ra)] = X for all j-closed set Ra in X .

(iv) clj(Ra) ∪ clj(Rb) = X for every pair of j-open sets Ra and Rb in (X , τX ) with

clj(Ra) ∪Rb = X .

Proof. (i) =⇒ (ii)

Let R be a j-closed subset of (X , τx). To prove intj(Ra) is j-closed.

Put X -intj(Ra) = clj(X − Ra). Since Ra is j-closed and (X , τx) is extremally j-

disconnected. Then (X − Ra) is j-open and clj(X − Ra) is j-open. This implies (X −

intj(Ra)) is j-open and intj(Ra) is j-closed.

(ii) =⇒ (iii)

Assume Ra is j-open subset of (X , τx). Put

X − clj(Ra) = intj(X −Ra).

Then clj(Ra) ∪ clj(X − clj(Ra)) = clj(R) ∪ clj(intj(X −Ra))

= clj(Ra) ∪ intj(X −Ra)

= clj(R) ∪ (X − clj(R)) = X

(iii) =⇒ (iv)

Let Ra and Rb be two j-open subsets of (X , τx) such that

clj(Ra) ∪Rb = X . (2.1)

Using (iii) clj(Ra) ∪ clj(X − clj(Ra)) = clj(Ra) ∪Rb (2.2)

=⇒ Rb = clj(X − clj(Ra)). (2.3)

From (2.3) , Rb = X − clj(Ra).

From (2.3) and (2.5),

X − clj(Ra) = clj(X − clj(Ra))

=⇒ clj(Rb) = clj(X − cljRa)

=⇒ clj(Ra) = X − clj(Ra).

clj(Rb) ∪ clj(Ra) = X − clj(Ra) ∪ clj(Ra)

= X
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(iv) =⇒ (i)

Let Ra be any j-open subset of (X , τx).

Take Rb = X − clj(Ra) =⇒ clj(Ra) ∪Rb = X .

Using (iv) we have clj(Ra) ∪ clj(Rb) = X and clj(Ra) is j-open in (X , τx).

Hence (X , τx) is extremally j-disconnected.

Theorem 2.7.4. Let Ra and Rb be any two non-empty j-open subsets of (X , τx) and

Ra ∩Rb = ∅. Then a topological space (X , τX ) is extremally j-disconnected if and only

if clj(Ra) ∩ clj(Rb) = ∅ for every Ra, Rb ∈ X such that Ra ∩Rb = ∅.

Proof. Let ∅ ≠ Ra and ∅ ≠ Rb be two j-open subsets of extremally j-disconnected space

(X , τx) with Ra ∩ Rb = ∅. clj(Ra) ∩ intj(Rb) = clj(Ra) ∩ Rb = ∅. intj(clj(Ra)) ∩

intj(clj(Rb)) = ∅ =⇒ clj(Ra) ∩ clj(Rb) = ∅.

Conversely, take G be an arbitrary j-open subset in (X , τX ). Then X −G is j-closed set.

This implies intj(X −G) is j-open set such that G∩ intj(X −G) = ∅. By hypothesis,

clj(G) ∩ clj(intj(X −G)) = ∅

=⇒ clj(G) ∩ clj(X − clj(G)) = ∅

=⇒ clj(G) ∩ clj(X − clj(G)) = ∅

=⇒ clj(G) ⊆ intjclj(G) ⊆ clj(G).

=⇒ clj(G) ∩ [X − intj[clj(G)] = ∅.

clj(G) ⊆ intj[clj(G)] (2.4)

In general, intj(clj(G)) ⊆ clj(G) (2.5)

From (2.6) and (2.7), clj(G) = intjclj(G).Thus clj(G) is j-open set in (X , τX ). Also

G is arbitrary j-open set. Hence (X , τX ) is extremally disconnected.

Theorem 2.7.5. In a topological space (X , τx) the following relations are equivalent.

(i) (X , τX ) is extremally j-disconnected.

(ii) For every j-open subsets of Ra and Rb in X such that

clj(Ra) ∩ clj(Rb) = clj(Ra ∩Rb).
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(iii) For every j-closed subsets of Sa and Sb of X , intj(Sa)∪ intj(Sb) = intj(Sa∪Sb).

Proof. (i) =⇒ (ii)

Taking Ra and Rb as two non-empty j-open subsets of extremally j-disconnected space

(X , τX ). We have clj(Ra) ∩ clj(Rb) = clj(Ra ∩Rb).

(ii) =⇒ (iii)

Take Sa and Sb are two j-closed subset of extremally j-disconnected space (X , τX ).

Then (X − Sa) and (X − Sb) are j-open subsets. Therefore, we have

clj(X − Sa) ∩ clj(X − Sb) = clj[(X − Sa) ∩ (X − Sb)].

(X − intj(Sa)) ∩ (X − intj(Sb)) = clj[X − (Sa ∪ Sb)]

X − [intj(Sa) ∪ intj(Sb)] = X − intj(Sa ∪ Sb).

Therefore, intj(Sa) ∪ intj(Sb) = intj(Sa ∪ Sb).

(iii) =⇒ (ii)

Proof is similar to (ii) =⇒ (iii).

(ii) =⇒ (i)

Let Ra be arbitrary j-open subsets of (X , τx). Then X − Ra is j-closed. clj(Ra) =

intj(clj(Ra)). By lemma, we have clj(Ra) is arbitrary j-open set in (X , τx). Hence

(X , τx) is extremally j-disconnected.

Theorem 2.7.6. If Ra and Rb are any two non-null j-open subsets of (X , τX ). Then

(X , τX ) is extremally j-disconnected if and only if

intj(clj(Ra)) ∪ intj(clj(Ra)) = intj(clj(Ra ∪Rb)) for all Ra and Rb in X .

Proof. Let (X , τx) be extremally j-disconnected space, Ra and Rb be arbitrary j-open

subsets of (X , τx). Therefore clj(Ra) and clj(Rb) are j-closed subsets of (X , τX ).

Therefore, intj(clj(Ra))∪intj(clj(Rb)) = intj(clj(Ra)∪clj(Rb)) = intj(clj(Ra∪Rb)).

Conversely, Let Ma and Mb are two j-closed subsets of (X , τX ). Then intj(Ma) and

intj(Mb) are j-open subsets of (X , τX ). By our assumption, intj(clj(intj(Ma))) ∪

intj(clj(intj(Mb))) = intj(clj[intj(Ma) ∪ intj(Mb)]), since Ma and Mb are j-closed
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subsets of (X , τX ). Therefore, we have

intj[clj[intj[clj(ma)] ∪ intj[clj(mb)]]] = intjclj[intjclj[Ma ∪Mb]]

= intjclj[Ma ∪Mb]

Hence (X , τX ) is extremally j-disconnected.

Theorem 2.7.7. If Sa and Sb are any two non null j-closed subsets of (X , τX ). Then

(X , τX ) is extremally j-disconnected if and only if

clj(intj(Sa)) ∩ clj(intj(Sb)) = clj(intj(Sa ∩ Sb)) for all Sa and Sb in (X , τX ).

Proof. Assume (X , τX ) is extremally j-disconnected and Sa, Sb are any two j-closed

subsets of (X , τX ). Then intj(Sa) and intj(Sb) are j-open subsets of (X , τX ). There-

fore, clj(intj(Sa)) ∩ clj(intj(Sb)) = clj(intj(Sa) ∩ intj(Sb)) = cljintj(Sa ∩ Sb).

Conversely, let Na and Nb be any two j-open subsets of (X , τX ).

Then clj(Na), clj(Nb) are j-closed subsets of (X , τX ).

Now clj(intj(clj(Na))) ∩ clj(intj(clj(Nb)))

= cljintj[clj(intj(Na))] ∩ cljintj[clj(intj(Nb))]

= cljintj(Na) ∩ cljintj(Nb)

= cljintj(Na ∩Nb) = clj(Na ∩Nb).

Hence (X , τX ) is extremally j-disconnected.

2.8 Conclusion

In this chapter, the researcher studied j-separated sets, j-connectedness, half j-separated

sets, half j-connectedness, j-disconnectedness and extremally j-disconnectedness in topo-

logical spaces. We have plotted the work in subsequent chapters which gives more

insight about connectedness in topological spaces.
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