Chapter 2

j-connectedness and j-disconnectedness

2.1 Introduction

In this Chapter, a new space called j-connectedness in topological space is introduced with the help of j-open sets and j-separated sets. The properties of j-separated sets, jconnectedness were examined by suitable examples and theorems. The notion of half j-separated sets and half j-connected sets were investigated. Also, we discuss the interrelation between half j-connectedness and j-connectedness. Finally, j-disconnectedness and extremally j-disconnectedness are proposed and their characteristics are studied with relevant theorems and examples.

2.2 j-separated sets

Definition 2.2.1. Let R and S be two non-empty subsets of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$. Then R and S in $(\mathcal{X}, \tau_{\mathcal{X}})$ are said to be j-separated if and only if $R \cap cl_j(S) = \emptyset$ and $cl_j(R) \cap S = \emptyset$.

Example 2.2.2. Let $\mathcal{X} = \{q, r, s, t\}$ and $\tau_{\mathcal{X}} = \{\emptyset, \mathcal{X}, \{q\}, \{t\}, \{q, t\}, \{q, r, s\}\}$ be the topology on \mathcal{X} . For this topology $\tau_{\mathcal{X}}, \emptyset, \mathcal{X}, \{q\}, \{t\}, \{q, r\}, \{q, s\}, \{q, t\}, \{q, r, s\}, \{q, r, t\}, \{q, s, t\}$ are the j-open sets of $(\mathcal{X}, \tau_{\mathcal{X}})$. Put $E = \{t\}$ and $F = \{q, r, s\}$. The sets E and F

are *j*-separated, since $E \cap cl_j(F) = \{t\} \cap \{q, r, s\} = \emptyset$ and $cl_j(E) \cap F = \{t\} \cap \{q, r, s\} = \emptyset$.

Theorem 2.2.3. Two subsets R and S of $(\mathcal{X}, \tau_{\mathcal{X}})$ are *j*-separated if and only if there exists a two *j*-open sets U and V such that $R \subset U$, $S \subset V$ and $R \cap V = \emptyset$, $S \cap U = \emptyset$.

Proof. Let R and S be j-separated sets and $V = \mathcal{X} - cl_j(R)$, $U = \mathcal{X} - cl_j(S)$. Then U and V are j-open sets in \mathcal{X} such that $R \subset U$ and $S \subset V$. Also $R \cap V = \emptyset$, $S \cap U = \emptyset$. Conversely, suppose U and $V \in JO(\mathcal{X})$ such that $R \subset U$, $S \subset V$ and $R \cap V = \emptyset$, $S \cap U = \emptyset$. Since $\mathcal{X} - U$ and $\mathcal{X} - V$ are j-closed, then $cl_j(R) \subset \mathcal{X} - V \subset \mathcal{X} - S$ and $cl_j(S) \subset \mathcal{X} - U \subset \mathcal{X} - R$. Therefore, $cl_j(R) \cap S = \emptyset$ and $cl_j(S) \cap R = \emptyset$. Hence R and S are j-separated.

Theorem 2.2.4. Let *R* and *S* be two non-empty subsets in a space $(\mathcal{X}, \tau_{\mathcal{X}})$. Then the following statements hold:

- (i) If $R \cap S = \emptyset$ such that R and S are both j-closed and j-open, then R and S are j-separated.
- (ii) Suppose R and S are j-separated sets, $R_1 \subseteq R$ and $S_1 \subseteq S$, then R_1 and S_1 are also j-separated sets.
- (iii) If each of these sets R and S are both *j*-closed(*j*-open) and if $G = R \cap (\mathcal{X} S)$ and $H = S \cap (\mathcal{X} - R)$, then G and H are *j*-separated sets.
- *Proof.* (i) Since R and S are both j-open and j-closed with $R \cap S = \emptyset$, then $R = cl_j(R)$ and $S = cl_j(S)$. This implies $R \cap cl_j(S) = \emptyset$ and $S \cap cl_j(R) = \emptyset$. Hence R and S are j-separated sets.
- (ii) Since R₁ ⊆ R, then cl_j(R₁) ⊂ cl_j(R). We have, R and S are j-separated sets, then R ∩ cl_j(S) = Ø and S ∩ cl_j(R) = Ø. This implies R₁ ∩ cl_j(S₁) = Ø and cl_j(R₁) ∩ S₁ = Ø. Hence R₁ and S₁ are j-separated sets.
- (iii) If R and S are j-open, then X − R and X − S are j-closed. Since G ⊂ X − S,
 cl_j(G) ⊂ cl_j(X − S) = X − S and so cl_j(G) ∩ S = Ø. cl_j(G) ∩ H = Ø. Similarly
 G ∩ cl_j(H) = Ø. Hence G and H are j-separated sets.

Theorem 2.2.5. Let *R* and *S* be two non-empty disjoint subsets of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ and $G = R \cup S$. Then *R* and *S* are *j*-separated if and only if *R* and *S* are both *j*-closed and *j*-open in *G*.

Proof. Let R and S be j-separated sets. Then, we have $cl_j(R) \cap S = \emptyset$ and $R \cap cl_j(S) = \emptyset$. Taking

$$cl_j(R) \cap G = cl_j(R) \cap [R \cup S]$$

= $R \cup \emptyset$
= R

Therefore, R is j-closed set in $G = R \cup S$. Similarly we obtain S is also j-closed set in G. Since $R \cap S = \emptyset$ and $R \cup S = G$. This implies R = G - S and S = G - R are j-open sets in G.

Conversely, let R and S be two disjoint sets and both are j-open and j-closed in G. We have $R \subseteq G$ and $S \subseteq G$. This implies $cl_j(R) \cap G = R$ and $cl_j(S) \cap G = S$. Thus

$$R \cap S = [cl_j(R) \cap G] \cap S$$
$$= cl_j(R) \cap (G \cap S)$$
$$= cl_j(R) \cap S$$
$$= \emptyset.$$

Similarly we obtain $R \cap cl_i(S) = \emptyset$. Hence R and S are j-separated sets in G.

Theorem 2.2.6. If R and S are j-separated sets of $(\mathcal{X}, \tau_{\mathcal{X}})$, then R and S are disjoint.

Proof. Let R and S are j-separated sets of $(\mathcal{X}, \tau_{\mathcal{X}})$, then $cl_j(R) \cap S = \emptyset$ and $R \cap cl_j(S) = \emptyset$. We know that $R \subseteq cl_j(R)$. Now, $R \cap S \subseteq cl_j(R) \cap S = \emptyset$. This implies $R \cap S = \emptyset$. Thus R and S are disjoint sets. **Remark 2.2.7.** The following example verified that disjoint sets need not be a *j*-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Example 2.2.8. Let $\mathcal{X} = \{q, r, s, t\}$ with $\tau_{\mathcal{X}} = \{\emptyset, X, \{q\}, \{t\}, \{q, t\}, \{r, s\}, \{q, r, s\}, \{r, s, t\}\}$. Here the subsets $\{s\}$ and $\{r, t\}$ are disjoint sets but not j-separated. Since $\{s\} \cap cl_j\{r, t\} = \{s\} \cap \{r, s, t\} \neq \emptyset$.

Proposition 2.2.9. Let *R* and *S* be *j*-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$, then the following statements hold:

(i) If $R \in JO(\mathcal{X})$, then $\bigcup_{i \in \lambda} R_i \in JO(\mathcal{X})$. (ii) If $R_1, R_2 \in JO(\mathcal{X})$, then $R_1 \cap R_2 \in JO(\mathcal{X})$.

Theorem 2.2.10. Let *R* and *S* be *j*-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$, then the following statements hold:

- (i) If $R \cup S$ is j-open, then R and S are j-open sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.
- (ii) If $R \cup S$ is j-closed, then R and S are j-closed sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.
- Proof. (i) Let $R \cup S$ be j-open set in $(\mathcal{X}, \tau_{\mathcal{X}})$. Since $cl_j(S)$ is j-closed set, we have $[cl_j(S)]^c$ is a j-open set which implies $(R \cup S) \cap [cl_j(S)]^c$ is j-open. Therefore, $[R \cap (cl_j(S))^c] \cup [S \cap (cl_j(S))^c]$ is j-open. We have $R \cap cl_j(S) = \emptyset$, $R \subseteq (cl_j(S))^c$ $\implies R \cap (cl_j(S))^c = R$. Now, $S \subseteq cl_j(S) \implies [cl_j(S)]^c \subseteq S^c \implies S \cap$ $(cl_j(S))^c \subseteq \emptyset \implies S \cap (cl_j(S))^c = \emptyset$. Therefore $[R \cap (cl_j(S))^c] \cup [S \cap (cl_j(S))^c]$ $= R \cup \emptyset = R$. Hence R is a j-open set. Similarly, we have S is also a j-open set in $(\mathcal{X}, \tau_{\mathcal{X}})$.
- (ii) Let $R \cup S$ be j-closed in $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $cl_j(R \cup S) = R \cup S \implies cl_j(R) \cup cl_j(S) = R \cup S \implies cl_j(R) \subseteq cl_j(R) \subseteq cl_j(R) \cup cl_j(S) = R \cup S \implies cl_j(R) \cap [R \cup S] = cl_j(R)$ $\implies [cl_j(R) \cap R] \cup [cl_j(R) \cap S] = cl_j(R)$. Therefore, $R = cl_j(R)$. Hence R is j-closed set in $(\mathcal{X}, \tau_{\mathcal{X}})$. Similarly, we have S is also a j-closed set in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Theorem 2.2.11. If R and S are j-open sets in $(\mathcal{X}, \tau_{\mathcal{X}})$, then $R \cap (\mathcal{X}-S)$ and $S \cap (\mathcal{X}-R)$ are j-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Proof. Let R and S be j-open sets in $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $\mathcal{X} - R$ and $\mathcal{X} - S$ are j-closed sets in $(\mathcal{X}, \tau_{\mathcal{X}})$. Hence $R \cap (\mathcal{X} - S)$ and $S \cap (\mathcal{X} - R)$ are j-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$. \Box

Theorem 2.2.12. Let R and S be j-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$ with $\mathcal{X} = R \cup S$, then R^c and S^c are also j-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Proof. Since R and S are j-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $cl_j(R) \cap S = \emptyset$ and $R \cap cl_j(S) = \emptyset$. We have $\mathcal{X} = R \cup S$ and $R \cap S = \emptyset$. Therefore, $R = S^c$ and $S = R^c$. Put $cl_j(R^c) \cap S^c = cl_j(R^c) \cap R = \emptyset$ and $R^c \cap cl_j(S^c) = S \cap cl_j(S^c) = \emptyset$. Hence R^c and S^c are j-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

2.3 j-connected spaces

Definition 2.3.1. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is said to be *j*-connected if \mathcal{X} cannot be written as a union of two non-empty *j*-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Example 2.3.2. Let $\mathcal{X} = \{q, r, s, t\}$ with $\tau_{\mathcal{X}} = \{\emptyset, \mathcal{X}, \{r\}\}$. For this $\tau_{\mathcal{X}}, \emptyset, \mathcal{X}, \{r\}, \{q, r\}, \{r, s\}, \{r, s\}, \{q, r, s\}, \{q, r, t\}, \{r, s, t\}$ are the collection of j-open sets. Here \mathcal{X} cannot be written as the union of two disjoint nonempty j-open sets. Therefore, $(\mathcal{X}, \tau_{\mathcal{X}})$ is j-connected.

Theorem 2.3.3. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is *j*-connected if and only if $\mathcal{X} \neq R \cup S$ such that *R* and *S* are disjoint nonempty *j*-open subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$.

Proof. Let $(\mathcal{X}, \tau_{\mathcal{X}})$ be j-connected space and $\mathcal{X} = R \cup S$ where R and S are disjoint non empty j-open subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. Then R and S are also j-closed subsets in $(\mathcal{X}, \tau_{\mathcal{X}})$. This implies $R \cap cl_j(S) = \emptyset$ and $cl_j(R) \cap S = \emptyset$ which forms a j-separation of \mathcal{X} . Therefore, $(\mathcal{X}, \tau_{\mathcal{X}})$ is not j-connected, which is a contradiction. Conversely, assume R and S forms a j-separation of \mathcal{X} . Therefore, $R = \emptyset$ and $S \neq \emptyset$, $R \cap S = \emptyset$, $cl_j(R) \cap S = \emptyset$ and $R \cap cl_j(S) = \emptyset$. This implies $cl_j(R) = R$ and $cl_j(S) = S$. Hence R and S are nonempty j-open subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$ and $\mathcal{X} = R \cup S$, which is a contradiction. Hence $(\mathcal{X}, \tau_{\mathcal{X}})$ is j-connected.

Theorem 2.3.4. If R is a *j*-connected set of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ and G, H are *j*-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$ such that $R \subseteq G \cup H$, then either $R \subseteq G$ or $R \subseteq H$.

Proof. Suppose G and H are j-separated. Since $R \subseteq G \cup H$ which implies $R = R \cap (G \cup H) = (R \cap G) \cup (R \cap H) = R_1 \cup R_2$ where $R_1 = R \cap G$ and $R_2 = R \cap H$. Now, we take $cl_j(R_1) \cap R_2 = cl_j(R \cap G) \cap (R \cap H) \subseteq cl_j(R) \cap cl_j(G) \cap (R \cap H) = \emptyset$. Similarly, $R_1 \cap cl_j(R_2) = \emptyset$. But we have R is a j-connected set. Therefore, either $R_1 = \emptyset$ or $R_2 = \emptyset$. If $R_1 = \emptyset$, then $R \cap G = \emptyset$ and $R \subseteq G \cup H$. This implies $R \subseteq H$. If $R_2 = \emptyset$, then $R \cap H = \emptyset$ and $R \subseteq G \cup H$. This implies $R \subseteq G$. Hence the proof. \Box

Theorem 2.3.5. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is *j*-connected then $(\mathcal{X}, \tau_{\mathcal{X}})$ is connected.

Proof. Let $(\mathcal{X}, \tau_{\mathcal{X}})$ be j-connected. Suppose $(\mathcal{X}, \tau_{\mathcal{X}})$ is disconnected. Then there exist a proper subset $\emptyset \neq R$ of $(\mathcal{X}, \tau_{\mathcal{X}})$ which is both open and closed set in $(\mathcal{X}, \tau_{\mathcal{X}})$. Since every closed set is j-closed, we have, R is a proper nonempty subset of $(\mathcal{X}, \tau_{\mathcal{X}})$ which is both j-open and j-closed in $(\mathcal{X}, \tau_{\mathcal{X}})$. This is a contradiction to $(\mathcal{X}, \tau_{\mathcal{X}})$ is j-connected. Hence, every j-connected space is connected.

Theorem 2.3.6. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is *j*-connected if and only if the null set and \mathcal{X} are the only *j*-open and *j*-closed in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Proof. Let $\emptyset \neq R$ be a proper subset of \mathcal{X} which is both j-open and j-closed in X. Then there exist a sets U = R and $V = \mathcal{X} - R$, which forms a j-separation of X. Thus $(\mathcal{X}, \tau_{\mathcal{X}})$ is not j-connected. Hence null set and \mathcal{X} are the only j-open and j-closed sets in $(\mathcal{X}, \tau_{\mathcal{X}})$. Conversely, assume that if U and V forms a j-separation of \mathcal{X} and $\mathcal{X} = U \cup V$. This implies U is non-empty and different from \mathcal{X} . Since $U \cap V = U \cap (cl_j(V)) = cl_j(U) \cap$ $V = \emptyset$. This implies U and V are j-open and j-closed in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Theorem 2.3.7. If a subset R of $(\mathcal{X}, \tau_{\mathcal{X}})$ is j-connected, then $cl_j(R)$ is also j-connected.

Proof. Assume R is j-connected set and $cl_j(R)$ is not j-connected. Then there exist two j-separated sets S and T such that $cl_j(R) = S \cup T$. But $R \subseteq cl_j(R)$. This implies $R \subseteq S \cup T$. Using theorem 2.3.4, we have $R \subseteq S$ or $R \subseteq T$.

- (i) If R ⊆ S, then cl_j(R) ⊆ cl_j(S). But we have cl_j(S) ∩ T = Ø. This implies cl_j(R) ∩ T = Ø. Since T ⊆ cl_j(R). Therefore, we have T = Ø which is a contradiction to T ≠ Ø.
- (ii) If R ⊆ T, then cl_j(R) ⊆ cl_j(T). But we have S ∩ cl_j(T) = Ø. This implies S ∩ cl_j(R) = Ø.. Since S ⊆ cl_j(R). Therefore, we have S = Ø which contradicts the fact that S ≠ Ø. Hence cl_j(R) is connected in (X, τ_X).

Theorem 2.3.8. Let R and S be the subsets of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$. If R is *j*-connected and $R \subseteq S \subseteq cl_j(R)$, then S is *j*-connected.

Proof. Suppose S is j-disconnected set. Then $S = E \cup F$, where $E \neq \emptyset$ and $F \neq \emptyset$ such that $cl_j(E) \cap (F) = \emptyset$ and $E \cap cl_j(F) = \emptyset$. As, we have $R \subseteq S \subseteq E \cup F$ where E and F are j-separated sets. Therefore, either $R \subseteq E$ or $R \subseteq F$. If $R \subseteq E$, then $cl_j(R) \subseteq cl_j(E)$ which implies $cl_j(R) \cap F \subseteq cl_j(E) \cap F = \emptyset \implies F \subseteq (cl_j(R))^c$. Since $F \subseteq S \subseteq cl_j(R)$, this implies $F = \emptyset$ which contradicts $F \neq \emptyset$. Equivalently, $R \subseteq F$. This implies $E = \emptyset$ which contradicts $E \neq \emptyset$. Therefore S is j-connected set in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Theorem 2.3.9. Let $R \subseteq S \cup T$ such that R be a non-empty *j*-connected set in \mathcal{X} and S, T are *j*-separated. Then only one of the following conditions hold: (*i*) $R \subseteq S$ and $R \cap T = \emptyset$ (*ii*) $R \subset T$ and $R \cap S = \emptyset$

Proof. Suppose $R \cap T = \emptyset$ implies $R \subseteq S$. If $R \cap S = \emptyset$, then $R \subseteq T$. Since $S \cap T \neq \emptyset$ then both $R \cap S = \emptyset$ and $R \cap T = \emptyset$ does not hold. Similarly, assume that $R \cap S \neq \emptyset$ and $R \cap T \neq \emptyset$. Then, by the theorem 2.2.4, $R \cap S$ and $R \cap T$ are j-separated such that $R = (R \cap S) \cup (R \cap T)$ which contradicts the fact as j-connectedness of R.

Theorem 2.3.10. Let R and S be two non-empty subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. If R and S are *j*-connected in $(\mathcal{X}, \tau_{\mathcal{X}})$, then $R \cup S$ is also *j*-connected.

Proof. Assume $R \cup S$ is not j-connected. Then there exist j-separated sets R and S such that $\mathcal{X} = R \cup S$. This implies $R \subset R \cup S$. Therefore, $R \subset R$ or $R \subset S$. Similarly, $S \subset R \cup S$ implies $S \subset R$ or $S \subset S$. Suppose $R \subset R$ and $S \subset R$ implies $R \cup S \subset R$ and $S = \emptyset$. This is a contradiction. Therefore, $R \subset R$ and $S \subset S$ or $R \subset S$ and $S \subset R$. In the first case, $cl_j(R) \cap S \subset cl_j(R) \cap S = \emptyset$ and $cl_j(S) \cap R \subset cl_j(S) \cap R = \emptyset$. In the second case, we obtain R = S. It contradicts our assumption, hence $R \cup S$ is j-connected.

Theorem 2.3.11. If $\{G_{\sigma} \setminus \sigma \in \tau_{\mathcal{X}}\}$ is a non-empty family of *j*-connected subset of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ such that $\bigcap_{\sigma \in \tau_{\mathcal{X}}} G_{\sigma} \neq \emptyset$ then $\bigcup_{\sigma \in \tau} G_{\sigma} \neq \emptyset$ is *j*-connected.

Proof. Assume that $H = \bigcup_{\sigma \in \tau_{\mathcal{X}}} G_{\sigma}$ and H is not j-connected. Then $H = R \cup S$, where R and S are j-separated sets in \mathcal{X} . Let $x \in \bigcap_{\sigma \in \tau} G_{\sigma}$. Therefore, $x \in \bigcup_{\sigma \in \tau} G_{\sigma} = H$. Since $H = R \cup S$ implies $x \in R$ or $x \in S$. Suppose that $x \in R$. Since $x \in G_{\sigma}$ for each $\sigma \in \tau_{\mathcal{X}}$. Therefore, G_{σ} and R intersect for each $\sigma \in \tau_{\mathcal{X}}$. This implies, $G_{\sigma} \subset R$ or $G_{\sigma} \subset S$. Since R and S are disjoint, $G_{\sigma} \subset R$ for all $\sigma \in \tau$ and hence $H \subset R$. Therefore we have $S = \emptyset$. This is a contradiction to our assumption. Hence $H = \bigcup_{\sigma \in \tau} G_{\sigma} \neq \emptyset$ is j-connected.

Theorem 2.3.12. Let $f : (\mathcal{X}, \tau_{\mathcal{X}}) \to (\mathcal{Y}, \tau_{\mathcal{Y}})$ be a *j*-irresolute surjective function from a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ into another topological space $(\mathcal{Y}, \tau_{\mathcal{Y}})$. If R is a *j*-connected subset of $(\mathcal{X}, \tau_{\mathcal{X}})$, then f(R) is also *j*-connected in $(\mathcal{Y}, \tau_{\mathcal{Y}})$.

Proof. Suppose f(R) is j-disconnected in $(\mathcal{Y}, \tau_{\mathcal{Y}})$. Then there exist a pair of subsets $\emptyset \neq R_1$ and $\emptyset \neq R_2$ of $(\mathcal{Y}, \tau_{\mathcal{Y}})$ such that $f(R) = R_1 \cup R_2$ and $R_1 \cap R_2 = \emptyset$. Since f is j-irresolute function, we obtain a pair of subsets $\emptyset \neq f^{-1}(R_1)$ and $\emptyset \neq f^{-1}(R_2)$ of $(\mathcal{X}, \tau_{\mathcal{X}})$ such that $f^{-1}(R_1) \cap f^{-1}(R_2) = f^{-1}(R_1 \cap R_2) = f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(R_1) \cup f^{-1}(R_2) = \mathcal{X}$. This implies $f^{-1}(R_1)$ and $f^{-1}(R_2)$ forms a j-separation in $(\mathcal{X}, \tau_{\mathcal{X}})$ which is a contradiction to a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is j-connected. Hence f(R) is j-connected in $(\mathcal{Y}, \tau_{\mathcal{Y}})$.

Definition 2.3.13. Let $(\mathcal{X}, \tau_{\mathcal{X}})$ be a topological space and $x \in \mathcal{X}$. The *j*-component of \mathcal{X} containing *x*, is the union of all *j*-connected subsets of \mathcal{X} containing *x*.

Definition 2.3.14. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is called as locally *j*-connected at $x \in X$ if for each *j*-neighbourhood U containing x, there is a *j*-connected neighborhood V of x contained in U i.e. $x \in V \subseteq U$. The space \mathcal{X} is locally *j*-connected if it is locally *j*-connected at each of its points.

Theorem 2.3.15. A space $(\mathcal{X}, \tau_{\mathcal{X}})$ is locally *j*-connected if and only if for each *j*-open set *U* of *X* and for each *j*-component of *U* is *j*-open in \mathcal{X} .

Proof. Suppose that \mathcal{X} is locally j-connected. Let U be j-open in \mathcal{X} . Let R be the jcomponent of U. If we take a point x in R, we select a neighborhood V of x such that $V \subset U$. Since V is j-connected, this implies V is entirely contained in the j-component R of U. Hence R is j-open in \mathcal{X} . Conversely, assume that $U \subseteq \mathcal{X}$ be a j-open and $x \in U$. By our hypothesis, the j-component V of U containing x is j-open. Hence \mathcal{X} is locally j-connected in $(\mathcal{X}, \tau_{\mathcal{X}})$.

2.4 $\frac{1}{2}$ **j**-separated sets

Definition 2.4.1. Two subsets R and S of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ are said to be $\frac{1}{2}$ *j-separated if and only if* $cl_j(R) \cap S = \emptyset$ or $R \cap cl_j(S) = \emptyset$.

Remark 2.4.2. We obtain the following implications from the above definitions of $\frac{1}{2}$ *j-separated, cl-cl-separated, j-separated and separated sets.*

The converse of the above implications need not be true as shown in the following examples.

Example 2.4.3. Let $X = \{p, q, r, s\}$ with a topology $\tau = \{\emptyset, X, \{p\}, \{p, q\}\},\$ $\tau^{c} = \{\emptyset, X, \{q, r, s\}, \{r, s\}\}.$ The *j*-open sets are $\emptyset, X, \{p\}, \{p, q\}, \{p, r\}, \{p, s\},\$ $\{p, q, r\}, \{p, q, s\}, \{p, r, s\}.$ The *j*-closed sets are $\emptyset, X, \{q, r, s\}, \{r, s\}, \{q, s\}, \{q, r\},\$ $\{s\}, \{r\}, \{q\}.$ Here $\{p\}$ and $\{q, r, s\}$ are $\frac{1}{2}$ *j*-separated sets as $\{p\} \cap cl_{j}\{q, r, s\} = \emptyset$ but

 $cl_{j}\{p\} \cap \{q, r, s\} \neq \emptyset$. Therefore the two sets $\{p\}$ and $\{q, r, s\}$ are not j-separated. Since $cl_{j}(R) \subset cl(R)$ for every subset R of \mathcal{X} , every cl-cl separated set is $\frac{1}{2}$ j-separated. The sets $\{p\}$ and $\{q, r, s\}$ are $\frac{1}{2}$ j-separated. But $cl\{p\} \cap cl\{q, r, s\} \neq \emptyset$. Therefore the sets $\{p\}$ and $\{q, r, s\}$ are not cl-cl separated.

2.5 $\frac{1}{2}$ **j**-connected sets

Definition 2.5.1. A subset R of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is said to be $\frac{1}{2}$ *j*-connected if $R \neq G \cup H$ such that G and H are non empty half *j*-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Definition 2.5.2. A subset *R* of a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is said to be cl-cl connected if $R \neq G \cup H$ such that *G* and *H* are non empty cl-cl separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Theorem 2.5.3. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is $\frac{1}{2}j$ -connected if and only if $\mathcal{X} \neq R \cup S$ and $R \cap S = \emptyset$ such that R and S are non empty *j*-open and *j*-closed sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Proof. Let \mathcal{X} be a $\frac{1}{2}$ j-connected space. Suppose that $\mathcal{X} = R \cup S$, where $R \cap S = \emptyset$. Also R be a non-empty j-open set and S be a non-empty j-closed set in \mathcal{X} . Then $R \cap cl_j(S) = \emptyset$ since S is j-closed set in \mathcal{X} . Therefore R and S are $\frac{1}{2}$ j-separated. This implies $(\mathcal{X}, \tau_{\mathcal{X}})$ is not a $\frac{1}{2}$ j-connected space. This is a contradiction.

Conversely, suppose that $(\mathcal{X}, \tau_{\mathcal{X}})$ is not a $\frac{1}{2}$ j-connected space, then there exist nonempty $\frac{1}{2}$ j-separated sets R and S such that $\mathcal{X} = R \cup S$. Let $R \cap cl_j(S) = \emptyset$, $R = \mathcal{X} - cl_j(S)$ and $S = \mathcal{X} - R$. Then $R \cup S = \mathcal{X}$ and $R \cap S = \emptyset$ where R and S are non-empty j-open set and j-closed set respectively. Similarly we have $cl_j(R) \cap S = \emptyset$ which contradicts the fact that $\mathcal{X} \neq R \cup S$. Hence $(\mathcal{X}, \tau_{\mathcal{X}})$ is $\frac{1}{2}$ j-connected. **Theorem 2.5.4.** Let $(\mathcal{X}, \tau_{\mathcal{X}})$ be a topological space if R is a $\frac{1}{2}j$ -connected subset of \mathcal{X} and R_1 , R_2 are the $\frac{1}{2}j$ -separated subsets of \mathcal{X} with $R \subset R_1 \cup R_2$ then either $R \subset R_1$ or $R \subset R_2$.

Proof. Let R be a ${}^{\frac{1}{2}}$ j-connected set. Take $R \subset R_1 \cup R_2$. Since R_1 and R_2 are ${}^{\frac{1}{2}}$ j-separated, $cl_j(R_1) \cap R_2 = \emptyset$ or $R_2 \cap cl_j(R_1) = \emptyset$. Consider $R_2 \cap cl_j(R_1) = \emptyset$. Therefore, $R = (R \cap R_1) \cup (R \cap R_2)$, then $(R \cap R_2) \cap cl_j(R \cap R_1) \subset R_2 \cap cl_j(R_1) = \emptyset$. Suppose $R \cap R_1$ and $R \cap R_2$ are non-empty sets. Then R is not ${}^{\frac{1}{2}}$ j-connected. This is a contradiction. Hence either $R \cap R_1 = \emptyset$ or $R \cap R_2 = \emptyset$ which implies $R \subset R_1$ or $R \subset R_2$. Similar argument is used for another case, $cl_j(R_2) \cap R_1 = \emptyset$.

Theorem 2.5.5. In a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$, *j*-irresolute image of a $\frac{1}{2}j$ -connected space is $\frac{1}{2}j$ -connected.

Proof. Let X be a $\frac{1}{2}$ j-connected space and $f : (\mathcal{X}, \tau_{\mathcal{X}}) \to (\mathcal{Y}, \tau_{\mathcal{Y}})$ be a j-irresolute function. Suppose f(x) is not a $\frac{1}{2}$ j-connected subset of $(\mathcal{Y}, \tau_{\mathcal{Y}})$ such that $f(x) = R \cup S$. Since R and S are $\frac{1}{2}$ j-separated i.e. $cl_j(R) \cap S = \emptyset$ or $R \cap cl_j(S) = \emptyset$. Since a function f is irresolute, therefore we have $cl_j(f^{-1}(R)) \cap f^{-1}(S) \subset f^{-1}(cl_j(R)) \cap f^{-1}(S) =$ $f^{-1}(cl_j(R) \cap (S)) = \emptyset$ or $f^{-1}(R) \cap cl_j(f^{-1}(S) \subset f^{-1}(R) \cap f^{-1}(cl_j(S)) = f^{-1}(R \cap$ $cl_j(S)) = \emptyset$. But $R \neq \emptyset$, there exist a point $r \in \mathcal{X}$ such that $f(r) \in R$ and hence $f^{-1}(R) \neq \emptyset$. Equivalently, we have $f^{-1}(S) \neq \emptyset$. Therefore, $f^{-1}(R)$ and $f^{-1}(S)$ are non-empty $\frac{1}{2}$ j-separated sets such that $\mathcal{X} = f^{-1}(R) \cup f^{-1}(S)$ which implies \mathcal{X} is not a $\frac{1}{2}$ j-connected space. This is a contradiction to our assumption that f(x) is not a $\frac{1}{2}$ j-connected subset of $(\mathcal{Y}, \tau_{\mathcal{Y}})$. Hence f(x) is a $\frac{1}{2}$ j-connected subset of $(\mathcal{Y}, \tau_{\mathcal{Y}})$.

Theorem 2.5.6. In a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$, the *j*-continuous image of a $\frac{1}{2}j$ -connected space is $\frac{1}{2}j$ -connected.

Proof. Let $f : (\mathcal{X}, \tau_{\mathcal{X}}) \to (\mathcal{Y}, \tau_{\mathcal{Y}})$ be a j-continuous function and $(\mathcal{X}, \tau_{\mathcal{X}})$ be $\frac{1}{2}$ jconnected space. Suppose that $f(\mathcal{X})$ is not $\frac{1}{2}$ j-connected subset of $(\mathcal{Y}, \tau_{\mathcal{Y}})$. Then there exists $\frac{1}{2}$ j-separated sets R and S in $(\mathcal{Y}, \tau_{\mathcal{Y}})$ such that $f(\mathcal{X}) = R \cup S$. Since Rand S are $\frac{1}{2}$ j-separated, Therefore $cl_j(R) \cap S = \emptyset$ or $R \cap cl_j(S) = \emptyset$. Since f is jcontinuous, $cl_j(f^{-1}(R) \cap f^{-1}(S)) \subset f^{-1}(cl_j(R) \cap f^{-1}(S)) = f^{-1}(cl_j(R) \cap S) = \emptyset$ or $f^{-1}(R) \cap cl_j(f^{-1}(S)) \subset f^{-1}(R) \cap f^{-1}(cl_j(S)) = f^{-1}(R \cap cl_j(S)) = \emptyset$. Since $R \neq S$, Then there exist a point $r \in \mathcal{X}$ such that $f(r) \in R$ and hence $f^{-1}(R) \neq \emptyset$. Similarly, $f^{-1}(S) \neq \emptyset$. This implies $f^{-1}(R)$ and $f^{-1}(S)$ are $\frac{1}{2}$ j-separated sets such that $\mathcal{X} = f^{-1}(R) \cup f^{-1}(S)$. Therefore, \mathcal{X} is not a $\frac{1}{2}$ j-connected space. This is a contradiction to the fact that \mathcal{X} is $\frac{1}{2}$ j-connected space. Hence $f(\mathcal{X})$ is $\frac{1}{2}$ j-connected in \mathcal{Y} .

Lemma 2.5.7. Let $f : (\mathcal{X}, \tau_{\mathcal{X}}) \to (\mathcal{Y}, \tau_{\mathcal{Y}})$ be a *j*-continuous function. Then $cl_j(f^{-1}(S) \subseteq f^{-1}(cl_j(S))$ for each $S \subseteq \mathcal{Y}$.

Theorem 2.5.8. If $f : (\mathcal{X}, \tau_{\mathcal{X}}) \to (\mathcal{Y}, \tau_{\mathcal{Y}})$ be a *j*-continuous function and T is $\frac{1}{2}j$ -connected set in a space $(\mathcal{X}, \tau_{\mathcal{X}})$, then f(T) is cl-cl connected in $(\mathcal{Y}, \tau_{\mathcal{Y}})$.

Proof. Suppose that f(T) is not cl-cl connected in $(\mathcal{Y}, \tau_{\mathcal{Y}})$. There exists two non-empty cl-cl separated sets R and S of $(\mathcal{Y}, \tau_{\mathcal{Y}})$ such that $f(T) = R \cup S$. Let us take a set $C = T \cap f^{-1}(R)$ and $D = T \cap f^{-1}(S)$. Since $f(T) \cap R \neq \emptyset$ then $T \cap f^{-1}(R) \neq \emptyset$ and also $C \neq \emptyset$. Similarly, $D \neq \emptyset$. Now we have $C \cup D = (T \cap f^{-1}(R)) \cup (T \cap f^{-1}(S)) = T \cap (f^{-1}(R) \cup f^{-1}(S)) = T \cap f^{-1}(R \cup S) = T \cap f^{-1}(f(T)) = T$. Since f is continuous, by lemma 2.5.7, $C \cap cl(D) \subset f^{-1}(R) \cap cl(f^{-1}(S)) \subset f^{-1}(cl(R)) \cap f^{-1}(cl(S)) = f^{-1}(cl(R) \cap cl(S)) = \emptyset$. This is a contradiction to our assumption that T is $\frac{1}{2}$ j-connected. Hence f(T) cl-cl connected in \mathcal{Y} . □

Theorem 2.5.9. If R is $\frac{1}{2}j$ -connected then $cl_j(R)$ is also $\frac{1}{2}j$ -connected.

Proof. Suppose that $cl_j(R)$ is not $\frac{1}{2}$ j-connected. Then there exist two $\frac{1}{2}$ j-separated sets R_1 and R_2 in $(\mathcal{X}, \tau_{\mathcal{X}})$ such that $cl_j(R) = R_1 \cup R_2$. Since $R = (R_1 \cap R) \cup (R_2 \cap R)$ and $cl_j(R_1) \cap R_2 = \emptyset$. Therefore, $cl_j(R_1 \cap R) \cap (R_2 \cap R) = \emptyset$. This implies R is not $\frac{1}{2}$ j-connected, contradiction. Hence $cl_j(R)$ is $\frac{1}{2}$ j-connected.

Theorem 2.5.10. If $f : (\mathcal{X}, \tau_{\mathcal{X}}) \to (\mathcal{Y}, \tau_{\mathcal{Y}})$ is bijective *j*-closed function and *T* is $\frac{1}{2}j$ connected in $(\mathcal{Y}, \tau_{\mathcal{Y}})$, then $f^{-1}(T)$ is cl-cl connected in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Proof. Let $f : (\mathcal{X}, \tau_{\mathcal{X}}) \to (\mathcal{Y}, \tau_{\mathcal{Y}})$ be a j-closed bijective i.,e one-one and onto, then $f^{-1} : (\mathcal{Y}, \tau_{\mathcal{Y}}) \to (\mathcal{X}, \tau_{\mathcal{X}})$ is a continuous bijection. Since T is $\frac{1}{2}$ j-connected in $(\mathcal{Y}, \tau_{\mathcal{Y}})$, by theorem 2.5.8, $f^{-1}(T)$ is cl-cl connected in \mathcal{X} .

2.6 j-disconnected spaces

Definition 2.6.1. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is said to be *j*-disconnected if \mathcal{X} can be expressed as a union of two non-empty *j*-separated sets in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Example 2.6.2. Consider $\mathcal{X} = \{q, r, s, t\}$ and $\tau_{\mathcal{X}} = \{\emptyset, \{q\}, \{r, s, t\}, \mathcal{X}\}$. For this topology, we have \emptyset , $\{q\}$, $\{r, s, t\}$ and \mathcal{X} are j-open sets. Then $\mathcal{X} = \{q\} \cup \{r, s, t\}$. Since $\{q\}$ and $\{r, s, t\}$ of $(\mathcal{X}, \tau_{\mathcal{X}})$ are j-separated sets. i.e., $\{q\} \cap cl_j\{r, s, t\} = cl_j\{q\} \cap \{r, s, t\} = \emptyset$. Thus $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ is a j-disconnected space.

Theorem 2.6.3. *Every disconnected space is j-disconnected space.*

Proof. Let us take a topological space $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ to be a disconnected space. Then $\mathcal{X} = R \cup S$, where $\emptyset \neq R$ and $\emptyset \neq S$, such that R and S are separated sets. This implies, $cl(R) \cap S = \emptyset$ and $R \cap cl(S) = \emptyset$. Also $clj(R) \subseteq cl(R)$, which implies, $clj(R) \cap S \subseteq cl(R) \cap S = \emptyset$. Correspondingly, $R \cap clj(S) \subseteq R \cap cl(S) = \emptyset$. Thus R and S are j-separated sets such that $\mathcal{X} = R \cup S$. Hence $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ is j-disconnected. \Box

Theorem 2.6.4. A topological space $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ is j-disconnected if and only if there exists a proper subset $\emptyset \neq R$ of \mathcal{X} is both j-closed and j-open.

Proof. Suppose $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ is j-disconnected space. Then $\mathcal{X} = R \cup S$ where $\emptyset \neq R$ and $\emptyset = S$ are j-separated sets. i.e., $cl_j(R) \cap S = R \cap cl_j(S) = \emptyset$. This implies $R \cap S = \emptyset$ and $\mathcal{X} = R \cup S$. Then $S = R^c$ and $R = S^c$. We have $cl_j(R) \cap S = \emptyset$ and $R \cap cl_j(S) = \emptyset \implies cl_j(R) \subseteq S^c = R$ and $cl_j(S) \subseteq R^c = S$. But we have, $R \subseteq cl_j(R)$ and $S \subseteq cl_j(S)$. Thus $R = cl_j(R)$ and $S = cl_j(S)$. Therefore, R and S are j-closed sets and also $R^c = S$, $S^c = R$ are j-open sets. Hence a non-empty proper subsets of \mathcal{X} are both j-open and j-closed. Conversely, assume $\emptyset \neq R$ be a proper subset of \mathcal{X} . Then there exist a subset S which is both j-open as well as j-closed and $R \cap S = \emptyset$. This implies $cl_j(R) = R$ and $cl_j(S) = S$. Now $cl_j(R) \cap S = R \cap cl_j(S) = \emptyset$. Thus R and Sare j-separated such that $\mathcal{X} = R \cup S$. Hence $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ is j-disconnected space. \Box

Remark 2.6.5. The following example shows that, every discrete space (\mathcal{X}, τ_j) is *j*-disconnected if the space contains atleast two elements.

Example 2.6.6. Let $\mathcal{X} = \{q, r\}$. Then $\tau = \{\emptyset, \{q\}, \{r\}, \mathcal{X}\}, \tau_j = \{\emptyset, \{q\}, \{r\}, \mathcal{X}\}$ and $\tau_j^c = \{\emptyset, \{q\}, \{r\}, \mathcal{X}\}$. Since $\emptyset \neq q$ is a proper subset of \mathcal{X} which is both j-open and j-closed. Therefore (\mathcal{X}, τ_j) is j-disconnected.

Theorem 2.6.7. If $\emptyset \neq R$ and $\emptyset \neq S$ are two *j*-separated subsets of a topological space (\mathcal{X}, τ_j) then $R \cup S$ is also *j*-disconnected in (\mathcal{X}, τ_j) .

Proof. Let R and S be the j-separated subsets of (\mathcal{X}, τ_j) . Then we have $\emptyset \neq R, \emptyset \neq S$, $R \cap cl_j(S) = \emptyset, cl_j(R) \cap S = \emptyset$ and $R \cap S = \emptyset$. Now, we consider $\mathcal{X} - cl_j(R) = M_j$ and $\mathcal{X} - cl_j(S) = N_j$. This implies $cl_j(R) \neq \emptyset$ and $cl_j(S) \neq \emptyset$, also $cl_j(R)$ and $cl_j(S)$ are j-closed subsets of $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$. Therefore M_j and N_j are non-null j-open subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. But

$$(R \cup S) \cap M_j = (R \cup S) \cap (\mathcal{X} - cl_j(R))$$
$$= [R \cap (\mathcal{X} - cl_j(R))] \cup [S \cap (\mathcal{X} - cl_j(R))]$$
$$= [R \cap R^c] \cup [S \cap S]$$
$$= \emptyset \cup S$$
$$= S$$

In the same way, we get $(R \cup S) \cap N_j = R$. It shows that, there exist a subsets M_j and N_j in τ_j such that $(R \cup S) \cap M_j$ and $(R \cup S) \cap N_j$ are non-empty. $[(R \cup S) \cap M_j] \cap [(R \cup S) \cap N_j] = \emptyset$ and $[(R \cup S) \cap M_j] \cap [(R \cup S) \cap N_j] = \emptyset = R \cup S = \mathcal{X}$. Then $M_j \cup N_j$ is the j-disconnectedness of $R \cup S$. Hence $R \cup S$ is j-disconnected.

Theorem 2.6.8. Let $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ and (\mathcal{X}, τ_j) be two topological spaces, R be non-empty subset of \mathcal{X} and $M_j \cup N_j$ be j-disconnection of R. Then $R \cap M_j$ and $R \cap N_j$ are j-separated subsets of (\mathcal{X}, τ_j) .

Proof. Let $M_j \cup N_j$ be j-disconnection of R. Using our assumption and the definition of j-disconnected, there exist M_j , $N_j \in \tau_j$ such that $R \cap M_j = \emptyset$ and $R \cap N_j = \emptyset$ which implies $(R \cap M_j) \cap (R \cap N_j) = \emptyset$ and $(R \cap M_j) \cup (R \cap N_j) = R \cap [M_j \cup N_j] = R \cap R = R$. Now we prove, $cl_j(R \cap M_j) \cap (R \cap N_j) = \emptyset$ and $[R \cap M_j] \cap cl_j(R \cap N_j) = \emptyset$. Assume the contrary $cl_j(R \cap M_j) \cap (R \cap N_j) \neq \emptyset$. This implies $x \in cl_j(R \cap M_j)$, $x \in R$ and $x \in N_j \implies (R \cap M_j) \cap N_j \neq \emptyset$. $\implies (R \cap M_j) \cap (R \cap N_j) \neq \emptyset$ which contradicts $(R \cap M_j) \cap (R \cap N_j) = \emptyset$. Thus $cl_j(R \cap M_j) \cap (R \cap N_j) = \emptyset$. Similarly $(R \cap M_j) \cap cl(R \cap N_j) = \emptyset$. Hence $R \cap M_j$ and $R \cap N_j$ are j-separated sets in $[\mathcal{X}, \tau_j]$. \Box

Theorem 2.6.9. Let S be a subset of a topological space $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ and $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ be *j*-disconnected if and only if $S = R \cup S$ where R and S are *j*-separated sets.

Proof. Assume $S = R \cup S$ where R and S are j-separated sets in $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$. Therefore, $R \cup S$ is j-disconnected. Hence S is also j-disconnected.

Conversely, let S be j-disconnected. To prove R and S are two j separated subsets of \mathcal{X} such that $S = R \cup S$. By the definition of j-disconnected there exists a subsets M_j and N_j in τ_j such that $S \cap M_j \neq \emptyset$ and $S \cap N_j \neq \emptyset$. $(S \cap M_j) \cap (S \cap N_j) = \emptyset$ and $(S \cap M_j) \cup (S \cap N_j) = S$. Put $S \cap M_j = R$ and $S \cap N_j = S$. Hence R and S are two j-separated subsets of $\mathcal{N}(\mathcal{X}, \tau_{\mathcal{X}})$ such that $S = R \cup S$.

2.7 Extremally j-disconnected Spaces

Definition 2.7.1. A topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is called extremally j-disconnected if $cl_j(R)$ is j-open for all $R \in JO(\mathcal{X})$.

Example 2.7.2. Let $\mathcal{X} = \{q, r, s, t\}$ with $\tau_{\mathcal{X}} = \{\emptyset, \{q\}, \{q, t\}, \{r, s\}, \{q, r, s\}, \mathcal{X}\}$. Then $\tau_{\mathcal{X}}^c = \{\emptyset, \{r, s, t\}, \{r, s\}, \{q, t\}, \{t\}, \emptyset\}$. For this topology, \emptyset , \mathcal{X} , $\{q\}, \{r\}, \{s\}, \{q, r\}, \{q, s\}, \{q, t\}, \{r, s\}, \{q, r, s\}, \{q, r, t\}, \{q, s, t\}$ are the collection of pre-open sets. Therefore we have \emptyset , $\mathcal{X}, \{q\}, \{q, t\}, \{r, s\}, \{r, st\}$ are the family of *j*-open sets. Here $cl_j\{q\} = \{q, t\}, cl_j\{q, t\} = \{q, t\}, cl_j\{r, s\} = \{r, s\}$ and $cl_j\{q, r, s\} = \mathcal{X}$. Therefore *j*-closure of every *j*-open set is *j*-open. Hence $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally *j*-disconnected.

Theorem 2.7.3. In general, the following statements are equivalent for any topological space (\mathcal{X}, τ_x) .

- (i) $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally j-disconnected.
- (ii) $int_j(R_a)$ is j-closed for all j-closed set R_a in \mathcal{X} .

(iii) $cl_j(R_a) \cup cl[\mathcal{X} - cl_j(R_a)] = \mathcal{X}$ for all j-closed set R_a in \mathcal{X} .

(iv) $cl_j(R_a) \cup cl_j(R_b) = \mathcal{X}$ for every pair of j-open sets R_a and R_b in $(\mathcal{X}, \tau_{\mathcal{X}})$ with $cl_j(R_a) \cup R_b = \mathcal{X}$.

Proof. (i) \implies (ii)

Let R be a j-closed subset of (\mathcal{X}, τ_x) . To prove $int_j(R_a)$ is j-closed.

Put \mathcal{X} - $int_j(R_a) = cl_j(\mathcal{X} - R_a)$. Since R_a is j-closed and (\mathcal{X}, τ_x) is extremally jdisconnected. Then $(\mathcal{X} - R_a)$ is j-open and $cl_j(\mathcal{X} - R_a)$ is j-open. This implies $(\mathcal{X} - int_j(R_a))$ is j-open and $int_j(R_a)$ is j-closed.

$$(ii) \implies (iii)$$

Assume R_a is j-open subset of (\mathcal{X}, τ_x) . Put

$$\begin{aligned} \mathcal{X} - cl_j(R_a) &= int_j(\mathcal{X} - R_a). \end{aligned}$$

Then $cl_j(R_a) \cup cl_j(\mathcal{X} - cl_j(R_a)) = cl_j(R) \cup cl_j(int_j(\mathcal{X} - R_a)) \\ &= cl_j(R_a) \cup int_j(\mathcal{X} - R_a) \\ &= cl_j(R) \cup (\mathcal{X} - cl_j(R)) = \mathcal{X} \end{aligned}$

(iii) \implies (iv)

Let R_a and R_b be two j-open subsets of (\mathcal{X}, τ_x) such that

$$cl_j(R_a) \cup R_b = \mathcal{X}.$$
 (2.1)

Using (iii)
$$cl_j(R_a) \cup cl_j(\mathcal{X} - cl_j(R_a)) = cl_j(R_a) \cup R_b$$
 (2.2)

$$\implies R_b = cl_j(\mathcal{X} - cl_j(R_a)). \tag{2.3}$$

From (2.3), $R_b = \mathcal{X} - cl_j(R_a)$. From (2.3) and (2.5),

$$\mathcal{X} - cl_j(R_a) = cl_j(\mathcal{X} - cl_j(R_a))$$
$$\implies cl_j(R_b) = cl_j(\mathcal{X} - cl_jR_a)$$
$$\implies cl_j(R_a) = \mathcal{X} - cl_j(R_a).$$
$$cl_j(R_b) \cup cl_j(R_a) = \mathcal{X} - cl_j(R_a) \cup cl_j(R_a)$$
$$= \mathcal{X}$$

 $(iv) \implies (i)$

Let R_a be any j-open subset of (\mathcal{X}, τ_x) .

Take $R_b = \mathcal{X} - cl_j(R_a) \implies cl_j(R_a) \cup R_b = \mathcal{X}$.

Using (iv) we have $cl_i(R_a) \cup cl_i(R_b) = \mathcal{X}$ and $cl_i(R_a)$ is j-open in (\mathcal{X}, τ_x) .

Hence (\mathcal{X}, τ_x) is extremally j-disconnected.

Theorem 2.7.4. Let R_a and R_b be any two non-empty j-open subsets of (\mathcal{X}, τ_x) and $R_a \cap R_b = \emptyset$. Then a topological space $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally j-disconnected if and only if $cl_j(R_a) \cap cl_j(R_b) = \emptyset$ for every R_a , $R_b \in \mathcal{X}$ such that $R_a \cap R_b = \emptyset$.

Proof. Let $\emptyset \neq R_a$ and $\emptyset \neq R_b$ be two j-open subsets of extremally j-disconnected space (\mathcal{X}, τ_x) with $R_a \cap R_b = \emptyset$. $cl_j(R_a) \cap int_j(R_b) = cl_j(R_a) \cap R_b = \emptyset$. $int_j(cl_j(R_a)) \cap int_j(cl_j(R_b)) = \emptyset \implies cl_j(R_a) \cap cl_j(R_b) = \emptyset$.

Conversely, take G be an arbitrary j-open subset in $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $\mathcal{X} - G$ is j-closed set. This implies $int_j(\mathcal{X} - G)$ is j-open set such that $G \cap int_j(\mathcal{X} - G) = \emptyset$. By hypothesis,

$$cl_{j}(G) \cap cl_{j}(int_{j}(\mathcal{X} - G)) = \emptyset$$

$$\implies cl_{j}(G) \cap cl_{j}(\mathcal{X} - cl_{j}(G)) = \emptyset$$

$$\implies cl_{j}(G) \cap cl_{j}(\mathcal{X} - cl_{j}(G)) = \emptyset$$

$$\implies cl_{j}(G) \subseteq int_{j}cl_{j}(G) \subseteq cl_{j}(G).$$

$$\implies cl_{j}(G) \cap [\mathcal{X} - int_{j}[cl_{j}(G)] = \emptyset.$$

$$cl_j(G) \subseteq int_j[cl_j(G)]$$
 (2.4)

In general,
$$int_j(cl_j(G)) \subseteq cl_j(G)$$
 (2.5)

From (2.6) and (2.7), $cl_j(G) = int_jcl_j(G)$. Thus $cl_j(G)$ is j-open set in $(\mathcal{X}, \tau_{\mathcal{X}})$. Also G is arbitrary j-open set. Hence $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally disconnected.

Theorem 2.7.5. In a topological space (\mathcal{X}, τ_x) the following relations are equivalent.

- (i) $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally j-disconnected.
- (ii) For every *j*-open subsets of R_a and R_b in \mathcal{X} such that $cl_j(R_a) \cap cl_j(R_b) = cl_j(R_a \cap R_b).$

(iii) For every j-closed subsets of S_a and S_b of \mathcal{X} , $int_j(S_a) \cup int_j(S_b) = int_j(S_a \cup S_b)$.

Proof. (i) \implies (ii)

Taking R_a and R_b as two non-empty j-open subsets of extremally j-disconnected space $(\mathcal{X}, \tau_{\mathcal{X}})$. We have $cl_j(R_a) \cap cl_j(R_b) = cl_j(R_a \cap R_b)$. (ii) \Longrightarrow (iii)

Take S_a and S_b are two j-closed subset of extremally j-disconnected space $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $(\mathcal{X} - S_a)$ and $(\mathcal{X} - S_b)$ are j-open subsets. Therefore, we have

$$cl_{j}(\mathcal{X} - S_{a}) \cap cl_{j}(\mathcal{X} - S_{b}) = cl_{j}[(\mathcal{X} - S_{a}) \cap (\mathcal{X} - S_{b})].$$
$$(\mathcal{X} - int_{j}(S_{a})) \cap (\mathcal{X} - int_{j}(S_{b})) = cl_{j}[\mathcal{X} - (S_{a} \cup S_{b})]$$
$$\mathcal{X} - [int_{j}(S_{a}) \cup int_{j}(S_{b})] = \mathcal{X} - int_{j}(S_{a} \cup S_{b}).$$
Therefore, $int_{j}(S_{a}) \cup int_{j}(S_{b}) = int_{j}(S_{a} \cup S_{b}).$

 $(iii) \implies (ii)$

Proof is similar to (ii) \implies (iii).

(ii) \implies (i)

Let R_a be arbitrary j-open subsets of (\mathcal{X}, τ_x) . Then $\mathcal{X} - R_a$ is j-closed. $cl_j(R_a) = int_j(cl_j(R_a))$. By lemma, we have $cl_j(R_a)$ is arbitrary j-open set in (\mathcal{X}, τ_x) . Hence (\mathcal{X}, τ_x) is extremally j-disconnected.

Theorem 2.7.6. If R_a and R_b are any two non-null j-open subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally j-disconnected if and only if $int_i(cl_i(R_a)) \cup int_i(cl_i(R_a)) = int_i(cl_i(R_a \cup R_b))$ for all R_a and R_b in \mathcal{X} .

Proof. Let (\mathcal{X}, τ_x) be extremally j-disconnected space, R_a and R_b be arbitrary j-open subsets of (\mathcal{X}, τ_x) . Therefore $cl_j(R_a)$ and $cl_j(R_b)$ are j-closed subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. Therefore, $int_j(cl_j(R_a)) \cup int_j(cl_j(R_b)) = int_j(cl_j(R_a) \cup cl_j(R_b)) = int_j(cl_j(R_a \cup R_b))$. Conversely, Let M_a and M_b are two j-closed subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $int_j(M_a)$ and $int_j(M_b)$ are j-open subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. By our assumption, $int_j(cl_j(int_j(M_a))) \cup$ $int_j(cl_j(int_j(M_b))) = int_j(cl_j[int_j(M_a) \cup int_j(M_b)])$, since M_a and M_b are j-closed subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. Therefore, we have

$$int_j[cl_j[int_j[cl_j(m_a)] \cup int_j[cl_j(m_b)]]] = int_jcl_j[int_jcl_j[M_a \cup M_b]]$$
$$= int_jcl_j[M_a \cup M_b]$$

Hence $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally j-disconnected.

Theorem 2.7.7. If S_a and S_b are any two non null j-closed subsets of $(\mathcal{X}, \tau_{\mathcal{X}})$. Then $(\mathcal{X}, \tau_{\mathcal{X}})$ is extremally j-disconnected if and only if $cl_j(int_j(S_a)) \cap cl_j(int_j(S_b)) = cl_j(int_j(S_a \cap S_b))$ for all S_a and S_b in $(\mathcal{X}, \tau_{\mathcal{X}})$.

Proof. Assume (X, τ_X) is extremally j-disconnected and S_a, S_b are any two j-closed subsets of (X, τ_X). Then $int_j(S_a)$ and $int_j(S_b)$ are j-open subsets of (X, τ_X). Therefore, $cl_j(int_j(S_a)) \cap cl_j(int_j(S_b)) = cl_j(int_j(S_a) \cap int_j(S_b)) = cl_jint_j(S_a \cap S_b)$. Conversely, let N_a and N_b be any two j-open subsets of (X, τ_X). Then $cl_j(N_a)$, $cl_j(N_b)$ are j-closed subsets of (X, τ_X). Now $cl_j(int_j(cl_j(N_a))) \cap cl_j(int_j(cl_j(N_b)))$ $= cl_jint_j[cl_j(int_j(N_a))] \cap cl_jint_j[cl_j(int_j(N_b))]$ $= cl_jint_j(N_a) \cap cl_jint_j(N_b)$ $= cl_jint_j(N_a \cap N_b) = cl_j(N_a \cap N_b)$. Hence (X, τ_X) is extremally j-disconnected.

2.8 Conclusion

In this chapter, the researcher studied j-separated sets, j-connectedness, half j-separated sets, half j-connectedness, j-disconnectedness and extremally j-disconnectedness in topological spaces. We have plotted the work in subsequent chapters which gives more insight about connectedness in topological spaces.