
Chapter 3

Semi j-hyperconnected Spaces

3.1 Introduction

This chaper begins with the new class of sets called semi j-open set and semi j-closed set

and
1
2 semi j-separated sets in topological spaces exercised with theorems and suitable

examples. We established the relationship between these sets and some existing sets

like semi open, pre open, alpha open, j-open etc. Semi j-continuous function, semi j-

open function and semi j-closed function are defined and analysed with some theorems

and examples. Consequently, we proposed the novel spaces namely semi j-connected

spaces,
1
2 semi j-connected and semi j-hyperconnected spaces with the help of semi

j-open sets. We also attempted to explore the characteristics of these spaces.

3.2 Semi j-open sets

Definition 3.2.1. A subset R of a topological space (X , τX ) is called semi j-open if

there exist a j-open set J in (X , τX ) such that J ⊂ R ⊂ cl(J) or equivalently R ⊆

cl(int(pcl(R))). The family of all semi j-open sets of (X , τX ) is denoted by SJO(X ).

Example 3.2.2. Let X = {q, r, s, t} with τX = {∅, {q, r}, {q, r, s},X}.

For this topology, we obtain the semi j-open sets : ∅, {q, r}, {q, r, s}, {q, r, t} and X .

Theorem 3.2.3. Let R be a subset of a topological space (X , τX ). If R is a open set in
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(X , τX ), then R is a semi j-open set in (X , τX ).

Proof. Since R is open in (X , τX ), then int(R) = R, we have R ⊆ pcl(R) ⊆ cl(R).

Now R ⊆ pcl(R) =⇒ int(R) ⊆ int(pcl(R)) =⇒ R ⊆ int(pcl(R)) =⇒ cl(R) ⊆

cl(int(pcl(R))) =⇒ R ⊆ cl(int(pcl(R))). Hence R is semi j-open set in (X , τX ).

Remark 3.2.4. The reverse of the previous theorem need not be true as seen in the

following example.

Example 3.2.5. Let X = {q, r, s, t} with τX = {∅, {q}, {r}, {q, r}, {q, s}, {q, r, s},X}.

For this topology, we have semi j-open sets: ∅, {q}, {r}, {q, r}, {q, s}, {q, t}, {r, t},

{q, r, s}, {q, s, t}, {q, r, t} and X . Clearly {q, t}, {r, t}, {q, s, t}, {q, r, t} are open in

(X , τX ).

Theorem 3.2.6. In a topological space (X , τX ), R is semi j-open if and only if R is semi

open.

Proof. Let R be a semi open set in (X , τX ). ThenR ⊆ cl(int(R)). SinceR ⊆ pcl(R) ⊆

cl(R). Therefore, R ⊆ cl(int(pcl(R))). Thus R is semi j-open set in (X , τX ).

Conversely, suppose R is semi j-open set in (X , τX ).

Then R ⊆ cl(int(pcl(R))). By lemma 1.1.17, R ⊆ cl(int[R ∪ (cl(int(R)))]) ⊆

cl(int(R))∪cl(int(cl(int(R)))) ⊆ cl(int(R))∪cl(int(R)) = cl(int(R)) which implies

R ⊆ cl(int(R)). Hence R is semi open set in (X , τX ).

Remark 3.2.7. In general, semi j-open sets and pre open sets are independent i.,e every

preopen sets need not be semi j-open and every semi j-open sets need not be preopen in

(X , τX ).

Example 3.2.8. Consider X1 = {u, v, w} with the topology τX1 = {∅, {u}, {v}, {u, v},X}.

For this τX1 , we have the collection of preopen sets are ∅, {u}, {v}, {u, v} and X . The

collection of semi j-open sets are ∅, {u}, {v}, {u, v}, {u,w}, {v, w} and X . Hence, ev-

ery semi j-open sets need not be preopen.

Also, we take X2 = {u, v, w} with τX2 = {∅, {u, v},X}. For this τX2 , ∅,X , {u}, {v},

{u, v}, {u,w}, {v, w} are the collection of preopen sets and ∅,X , {u, v} are the semi

j-open sets. Therefore, every preopen sets need not be semi j-open.
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Theorem 3.2.9. In a topological space (X , τX ), every j-open sets are semi j-open.

Proof. Let R be a j-open set in (X , τX ). Then R ⊆ int(pcl(R)). Therefore, cl(R) ⊆

cl(int(pcl(R))). This implies R ⊆ cl(int(pcl(R))). Thus R is semi j-open set in

(X , τX ). Hence every j-open sets are semi j-open.

Remark 3.2.10. The reverse of the above theorem need not be true as seen in the

following example.

Example 3.2.11. Let X = {q, r, s, t} with τX = {∅, {q}, {r}, {q, r}, {q, r, s},X}.

For τX , we obtain the j-open sets are ∅, {q}, {r}, {q, r}, {q, r, s}, {q, r, t} and X .

Also, we get ∅, {q}, {r}, {q, r}, {q, s}, {q, t}, {r, s}, {r, t}, {q, r, s}, {q, r, t},

{q, s, t}, {r, s, t} and X are semi j-open sets. Clearly {q, s}, {q, t}, {r, s}, {r, t},

{q, s, t}, {r, s, t} are semi j-open sets but not j-open sets.

Theorem 3.2.12. In a topological space (X , τX ), every semi j-open sets are semi pre-

open.

Proof. Let R be a semi j-open set in (X , τX ). Then R ⊆ cl(int(pcl(R))), we have

pcl(R) ⊆ cl(R). This implies R ⊆ cl(int(pcl(R))) ⊆ cl(int(cl(R))). Therefore, R is

semi pre open in (X , τX ). Hence every semi j-open sets are semi preopen in (X , τX ).

Remark 3.2.13. The following example shows that every semi preopen sets need not be

semi j-open sets in (X , τX ).

Example 3.2.14. Let X = {q, r, s, t} with τX = {∅, {q, t}, {r, s},X}. For this τX ,

∅, {q, t}, {r, s} and X are the semi j-open sets. ∅, {q}, {r}, {s}, {t}, {q, r}, {q, s}, {q, t},

{r, s}, {r, t}, {s, t}, {q, r, s}, {q, r, t}, {q, s, t}, {r, s, t} are semi pre open sets.

Theorem 3.2.15. In a topological space (X , τX ), arbitrary union of semi j-open set is

also semi j-open.

Proof. Let {Ri}i∈∆ be a family of semi j-open sets in (X , τX ). Since Ri is semi j-open.

Then Ri ⊆ cl(int(pcl(Ri))). Now, ∪i∈∆Ri ⊆ ∪i∈∆cl(int(pcl(Ri))) ⊆ cl(∪i∈∆int
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(pcl(Ri))) ⊆ cl(int(∪i∈∆pcl(Ri))) ⊆ cl(int(pcl(∪i∈∆Ri))). Hence ∪i∈∆Ri is semi

j-open set in (X , τX ).

Remark 3.2.16. In general, the intersection of any two semi j-open sets are not semi

j-open. The following example verifies this statement.

Example 3.2.17. Let X = {r, s, t} with τX = {∅, {r}, {s}, {r, s},X}. Here ∅, {r}, {s},

{r, s}, {r, t}, {s, t} and X are the collection of semi j-open sets. Clearly, {r, t} ∩

{s, t} = {t}, which is not semi j-open in (X , τX ).

Theorem 3.2.18. In a topological space (X , τX ), if Q is open and R is semi j-open, then

Q ∩R is semi j-open.

Proof. Since R is semi j-open in (X , τX ). Then R ⊆ cl(int(pcl(R))). Now, we take

Q ∩ R ⊆ Q ∩ cl(int(pcl(R))) ⊆ cl(Q ∩ int(pcl(R))) ⊆ cl(int(Q ∩ pcl(R))) ⊆

cl(int(pcl(Q ∩R))). Hence Q ∩R is semi j-open set in (X , τX ).

Theorem 3.2.19. Let (X , τX ) be a topological space. If S is any subset of X and R is

j-open set in X such that R ⊆ S ⊆ cl(R), then S is semi j-open in (X , τX ).

Proof. Since R is a j-open set in (X , τX ). then R ⊆ int(pcl(R)). Now, we take S ⊆

cl(R). Hence S ⊆ cl(int(pcl(R))) ⊆ cl(int(pcl(S))). Hence S is semi j-open in

(X , τX ).

The following diagram indicates the above theorems and examples.

3.3 Semi j-closed sets

Definition 3.3.1. A subset S of a topological space (X , τX ) is semi j-closed if X − S is

semi j-open or equivalently int(cl(pint(S))) ⊆ S. The family of all semi j-closed sets

of (X , τX ) is denoted by SJC(X ).

Example 3.3.2. Let X = {3, 4, 5, 6} with τX = {∅, {3}, {3, 4, 5}, {3, 6},X}. In this

space τX , the semi j-closed sets are ∅, {4, 5, 6}, {5, 6}, {4, 6}, {4, 5}, {6}, {5}, {4} and

X .
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Theorem 3.3.3. Let S be any subset of a topological space (X , τX ). Then S is a semi

j-closed set if and only if X − S is semi j-open.

Proof. Assume S is a semi j-closed subset of (X , τX ). Then, we have int(cl(pint(S))) ⊆

S. Now, we taking the complements on both sides, we have (X − S) ⊆ X − [int(cl

(pint(S)))] = cl(int(pcl(X − S))). Hence X − S is semi j-open in (X , τX ).

Conversely, Suppose X−S is semi j-open in (X , τX ). Therefore, X−S ⊆ cl(int(pcl(X−

S))).Taking the complements on both sides, we have X − (cl(int(pcl(X − S)))) ⊆

(X − S) =⇒ int(cl(pint(X − (X − S)))) ⊆ S =⇒ int(cl(pint(S))) ⊆ S. Hence

S is semi j-closed set in (X , τX ).

Theorem 3.3.4. In a topological space (X , τX ), every closed sets are semi j-closed.

Proof. Let S be a closed subset of (X , τX ). Then cl(S) = S. We have intS ⊆

pint(S) ⊆ S ⊆ pcl(S) ⊆ cl(S). Now we take the relation pint(S) ⊆ S =⇒

cl(pint(S)) ⊆ cl(S) = S =⇒ int(cl(pint(S))) ⊆ int(S) ⊆ S. Hence every

closed sets are semi j-closed in (X , τX ).

Remark 3.3.5. The reverse of the above theorem need not be true as verified by the

following example.
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Example 3.3.6. From example 3.3.2, clearly {4}, {5}, {4, 6}, {5, 6} are semi j-closed

sets but not closed in (X , τX )

Theorem 3.3.7. In a topological space (X , τX ), every j-closed sets are semi j-closed.

Proof. Let S be a j-closed set in (X , τX ). Therefore cl(pint(S)) ⊆ S. This implies

int(cl(pint(S))) ⊆ int(S) ⊆ S. Thus S is semi j-closed set in (X , τX ). Hence every

j-closed sets are semi j-closed.

Remark 3.3.8. The reverse of the previous theorem may not be true as seen in the

following example.

Example 3.3.9. Consider X = {3, 4, 5, 6} with the topology τX = {∅, {3}, {4}, {3, 4},

X}. For τX , ∅, {4, 5, 6}, {3, 5, 6}, {5, 6}, {5}, {6},X are j-closed sets and

∅, {4, 5, 6}, {3, 5, 6}, {5, 6}, {4, 6}, {4, 5}, {3, 6}, {3, 5}, {6}, {5}, {4}, {3},X are semi

j-closed sets. Clearly, {3}, {4}, {3, 5}, {3, 6}, {4, 5}, {4, 6} are semi j-closed sets but

not j-closed in (X , τX ).

Theorem 3.3.10. If {Si}i∈∆ is the family of semi j-closed sets in a topological space

(X , τX ), then the arbitrary intersection of semi j-closed sets is also semi j-closed.

Proof. Let {Si}i∈∆ be the family of semi j-closed sets in (X , τX ), We haveRi = X−Si.

Therefore, {Ri}i∈∆ is the family of semi j-open sets in (X , τX ). Using (3.2.15), ∪i∈∆Ri

is semi j-open. Therefore, X − ∪i∈∆Ri is semi j-closed. This implies ∩i∈∆[X − {Ri}]

is semi j-closed. Hence ∩i∈∆Si is semi j-closed in (X , τX ).

Definition 3.3.11. The union of all semi j-open sets in a topological space (X , τX )

contained in R is called as semi j-interior of R and is denoted by intsj(R). Equivalently,

intsj(R) = ∪{S : S ⊆ R, S is a semi j-open set}.

Definition 3.3.12. The intersection of all semi j-closed sets in a topological space

(X , τX ) containing R is called as semi j-closure of R and is denoted by clsj(R). Equiv-

alently, clsj(R) = ∩{S : R ⊆ S, S is a semi j-closed set}.

Proposition 3.3.13. Let R be any subset of a topological space (X , τX ), then the

following statements hold:
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(i) intsj(R) = R iff R is a semi j-open set.

(ii) clsj(R) = R iff R is a semi j-closed set.

(iii) intsj(R) is the biggest semi j-open set contained in R.

(iv) clsj(R) is the smallest semi j-closed set containing R.

Proof. Proof is obvious.

Proposition 3.3.14. Let R be any subset of a topological space (X , τX ), then the

following statements are true.

(i) intsj(X −R) = X − clsj(R).

(ii) clsj(X −R) = X − intsj(R).

Proof. (i) We have, clsj(R) = ∩{S : R ⊆ S, S is a semi j-closed set} X − clsj(R) =

X − ∩{S : R ⊆ S, S is a semi j-closed set} = ∪{X − S : R ⊆ S, S is a semi closed

set. = ∪{X − S : X − S ⊆ X −R,X − S is a semi j-open} = intsj(X −R)

(ii) We have, intsj(R) = ∪{S : S ⊆ R, S is a semi j-open set} X − intsj(R) =

X −∪{S : S ⊆ R, S is a semi j-open set} = ∩{X −S : S ⊆ R, S is a semi j-open set}

= ∩{X − S : X −R ⊆ X − S,X − S is a semi j-closed set} = clsj(X −R).

Theorem 3.3.15. Let R and S be any two subsets of a topological space (X , τX ), then

the following conditions hold:

(i) intsj(∅) = ∅, intsj(X ) = X .

(ii) intsj(R) ⊆ R

(iii) R ⊆ S implies intsj(R) ⊆ intsj(S)

(iv) intsj(intsj(R)) = intsj(R)

(v) intsj(R ∩ S) ⊆ intsj(R) ∩ intsj(S)

(vi) intsj(R ∪ S) ⊇ intsj(R) ∪ intsj(S)

Proof. It is evident.
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Remark 3.3.16. In general, the equality of (v) and (vi) is not true. It is verified by the

following example.

Example 3.3.17. For (iv), let X = {3, 4, 5, 6} with τX = {∅, {3}, {4}, {3, 4}, {3, 4, 5},

X}. For τX , we have the collection ∅, {3}, {4}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6},

{3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6} and X are semi j-open sets. Let R = {3, 6} and

S = {4, 5, 6}. Then R ∩ S = {6}, intsj(R) = {3, 6}, intsj(S) = {4, 5, 6}. Now

intsj(R∩S) = ∅ and intsj(R)∩ intsj(S) = {3, 6}∩{4, 5, 6} = {6}. Clearly {6} ̸⊆ ∅.

Therefore intsj(R) ∩ intsj(S) ̸⊆ intsj(R ∩ S).

For (v), Taking R = {3, 4} and S = {5}. Then R ∪ S = {3, 4, 5}, intsj(R) =

{3, 4}, intsj(S) = ∅. Therefore, intsj(R ∪ S) = {3, 4, 5} and intsj(R) ∪ intsj(S) =

{3, 4}. Clearly, intsj(R ∪ S) ̸⊆ intsj(R) ∪ intsj(S).

Theorem 3.3.18. Let R and S be any two subsets in a topological space (X , τX ). Then

the following properties hold:

(i) clsj(∅) = ∅ and clsj(X ) = X

(ii) R ⊆ clsj(R)

(iii) R ⊆ S implies clsj(R) ⊆ clsj(S)

(iv) clsj(clsj(R)) = clsj(R)

(v) clsj(R ∩ S) ⊆ clsj(R) ∩ clsj(S)

(vi) clsj(R) ∪ clsj(S) ⊆ clsj(R ∪ S)

Proof. (i) and (ii) are clear.

(iii) Let S ⊆ clsj(S) and R ⊆ S. This implies R ⊆ clsj(S). Since clsj(R) is the

smallest semi j-closed set containing R. Therefore, clsj(R) ⊆ clsj(S). Hence R ⊆ S

implies clsj(R) ⊆ clsj(S).

(iv) Since clsj(R) is semi j-closed. Hence, clsj(clsj(R)) = clsj(R).

(v) We know that R ∩ S ⊆ R and R ∩ S ⊆ S. By (iii) clsj(R ∩ S) ⊆ clsj(R) and

clsj(R ∩ S) ⊆ clsj(S). This implies clsj(R ∩ S) ⊆ clsj(R) ∩ clsj(S).

(vi) Since, R ⊆ R ∪ S and S ⊆ R ∪ S. By (iii)clsj(R) ⊆ clsj(R ∪ S) and clsj(S) ⊆

clsj(R ∪ S). Hence, clsj(R) ∪ clsj(S) ⊆ clsj(R ∪ S).
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Remark 3.3.19. In general the equality (iv) and (v) may not be true as verified by the

following example.

Example 3.3.20. Using 3.3.17, Take R = {3, 6} and S = {3, 4, 5}. Then R∩S = {3},

clsj(R) = {3, 6}, clsj(S) = X . Now clsj(R ∩ S) = {3} and clsj(R) ∩ clsj(S) =

{3, 6} ∩ X = {3, 6}. Clearly clsj(R) ∩ clsj(S) ̸⊆ clsj(R ∩ S).

For (v), let R = {3} and S = {4, 5}. Then R ∪ S = {3, 4, 5}, clsj(R) = {3} and

clsj(S) = {4, 5}. Now clsj(R∪S) = X and clsj(R)∪clsj(S) = {3}∪{4, 5} = {3, 4, 5}.

Clearly, clsj(R ∪ S) ̸⊆ clsj(R) ∪ clsj(S).

Definition 3.3.21. A function f : (X , τX ) → (Y , τY) is called as semi j-continuous if

f−1(R) is semi j-open in (X , τX ) for every open set in (Y , τY).

Remark 3.3.22. In general, every continuous function is semi j-continuous function but

the reverse need not be true as verified by the following example.

Example 3.3.23. Let X = {r, s, t} with τX = {∅, {r}, {s}, {r, s},X} and Y = {3, 4, 5, 6}

and τY = {∅, {3}, {4, 5}, {3, 4, 5},Y}. A mapping f : (X , τX ) → (Y , τY) is defined by

f(r) = 3, f(s) = 5, f(t) = 4. For τX , ∅, {r}, {s}, {r, s}, {r, t}, {s, t} are semi j-open

sets. Here we have f−1(3) = {r}, f−1(4, 5) = {s, t}, f−1{3, 4, 5} = {r, s, t}. This

implies {r}, {s, t}, {r, s, t} are semi j-open sets. Therefore, f is semi j-continuous. But f

is not continuous because the set f−1{4, 5} = {s, t} is not open set in τX .

Theorem 3.3.24. Let f : (X , τX ) → (Y , τY) be a single valued function from a

topological space (X , τX ) into the another topological space (Y , τY). Then f is semi

j-continuous if and only if, for each point r ∈ X and for each open set R in Y with

f(r) ∈ R, there exist a semi j-open set S in X such that r ∈ S and f(S) ⊆ R.

Proof. Suppose f : (X , τX ) → (Y , τY) is semi j-continuous. Take f(r) ∈ R and

R ⊂ Y , where R is a open set, then r ∈ f−1(R) ∈ SJO(X ). Since f is semi j-

continuous. Put S = f−1(R), therefore r ∈ S and f(r) ⊆ R.

Conversely, let R be a open set in Y and r ∈ f−1(R). Then f(r) ∈ R, there exist a

neighborhood Sr ∈ SJO(X ) such that r ∈ Sr and f(Sr) ⊂ R. Therefore, r ∈ Sr ⊂

f−1(R) and f−1(R) = ∪Sr. Thus f−1(R) = SJO(X ). Hence f is semi j-continuous

function.
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Theorem 3.3.25. Let f : (X , τX ) → (Y , τY) be a single valued function, then f is semi

j-continuous iff f−1(S) is semi j-closed set in (X , τX ) for every closed set S in (Y , τY).

Proof. Suppose f is a semi j-continuous function and let S be a closed subset of (Y , τY).

Then Y−S is open in (Y , τY) and f−1(Y−S) = X−f−1(S) ∈ SJO(X . Hence f−1(S)

is semi j-closed in (X , τX ).

Conversely, let R be an arbitrary open set in (Y , τY), then (Y−R) is closed set in (Y , τY).

Therefore f−1(Y −R) = X − f−1(R). Thus f−1(R) is semi j-open in (X , τX ). Hence

f is semi j-continuous.

Theorem 3.3.26. Let f : (X , τX ) → (Y , τY) be a single valued function. Then the

following properties are equivalent.

(i) f−1(S) is semi j-closed for each closed set S in (Y , τY)

(ii) f [clsj(S)] ⊆ cl[f(S)] for each subset S of (X , τX ).

Proof. If (i) is true. Let S be a subset of (X , τX ). Since S ⊂ f−1[f(S)], we have

S ⊂ f−1[cl(f(S))], cl[f(S)] is a closed set in (Y , τY). Hence f−1[cl(f(S))] is semi

j-closed set containing S.

Conversely, let S be an arbitrary closed subset of (Y , τY). Then f [clsj(f
−1(S))] ⊂

cl[f(f−1(S)] ⊂ clsj(S) = S. Therefore, clsj[f−1(S)] ⊆ f−1(S). This implies f−1(S)

is semi j-closed for each closed set S in (Y , τY).

Theorem 3.3.27. For the function f : (X , τX ) → (Y , τY) the following statements are

equivalent:

(i) f : (X , τX ) → (Y , τY) is semi j-continuous.

(ii) f−1(int(R)) ⊂ intsj(f
−1(R)) for every subset R in (Y , τY)

Proof. Let R be any subset of (Y , τY). Then intR is an open set in (Y , τY) and f−1(intR)

is a semi j-open set in (X , τX ). Therefore, f is semi j-continuous.

Conversely, suppose f is semi j-continuous. Then f−1(intR) is semi j-open and

f−1(intR) ⊂ f−1(R). Hence f−1(intR) ⊆ intsj[f
−1(R)].
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Theorem 3.3.28. Let R ⊂ X0 ⊂ X and X0 ∈ SJO(X ). Then R ∈ SJO(X0).

Proof. Suppose R ∈ SJO(X ), then there is a j-open set J ⊂ X such that J ⊂ R ⊂

cl(J). Let clX be a closure operator in X and clX0 be a closure operator in X0. Therefore,

J ⊂ X0 as X0 ⊂ X . Then J = J ∩ X0 ⊂ R ∩ X0 ⊂ X0 ∩ clX (J) or J ⊂ R ⊂ clX0(J).

Thus J is j-open in X0. Hence R ∈ SJO(X0).

Conversely, R ∈ SJO(X0), then there exist a j-open set J such that J = J ∩ X0 ⊂

R ∩ X0 ⊂ R ∩ X ⊂ X ∩ clX (J) or J ⊂ R ⊂ clX (J). Hence R ∈ SJO(X ).

Theorem 3.3.29. If f : (X , τX ) → (Y , τY) is a semi j-continuous function and R is an

open set in (X , τX ), then f/R : R → Y is semi j-continuous function.

Proof. Let f : (X , τX ) → (Y , τY) is semi j-continuous. Then f−1(w) is a semi j-open

set in (X , τX ) for each open set w in (Y , τY). Using theorem 3.2.18, R∩f−1(w) is semi

j-open set in (X , τX ). Also, (f/R)−1(w) = f−1(w)∩R is a semi j-open set in R. Hence

f/R is semi j-continuous.

Definition 3.3.30. A function f : (X , τX ) → (Y , τY) is called semi j-open if f(R) is

semi j-open set in (Y , τY) for every open set R in (X , τX ).

Remark 3.3.31. In general, every open function is semi j-open function. But the reverse

need not be true as seen in the following example.

Example 3.3.32. Consider X = {q, r, s} with τX = {∅, {q}, {q, r},X} and

Y = {4, 5, 6} with τY = {∅, {4}, {4, 6},Y}.

A mapping f : (X , τX ) → (Y , τY) is defined as f(q) = 4, f(r) = 5, f(s) = 6.

For τY , ∅, {4}, {4, 5}, {4, 6} and X are the collection of semi j-open sets. Clearly f is

semi j-open function but not open function. Since f(q, r) = {4, 5} is not open in τY .

Theorem 3.3.33. Let (X , τX ), (YτY) and (Z, τZ) be three topological spaces and f :

(X , τX ) → (Y , τY), g : (Y , τY) → (Z, τZ) be the function and g ◦ f : (X , τX ) →

(Z, τZ) is semi j-open function, then the following statements are true:

(i) If f is continuous and onto then g is semi j-open function.
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(ii) If g is j-open, j-irresolute and one-to-one then f is semi j-open function.

Proof. (i) Let R be an open set in (Y , τY). Since g ◦ f is semi j-open function and f

is onto, then g(R) = (g ◦ f){f−1(R)} is semi j-open set in (Z, τZ). This implies

g is semi j-open function.

(ii) Since g is one-to-one and for every subset S of (X , τX ), we have f(S) = g−1{g

(f(S)}. Let w be an open set in (X , τX ), then (g ◦ f)(w) is semi j-open set in

(Z, τZ). f(w) = g−1(g ◦ f)(w) ∈ SJO(Y). This implies f(w) is semi j-open set

in (Y , τY). Hence f is semi j-open function.

Definition 3.3.34. A function f : (X , τX ) → (Y , τY) is called semi j-closed if f(S) is

semi j-closed set in (Y , τY) for every closed set S in (X , τX ).

Remark 3.3.35. In general, every closed function is semi j-closed function. But the

converse may not be true as shown by the following example.

Example 3.3.36. Let X = {u, v, w} with τX1 = {∅, {u}, {u, v}, {u,w},X} and τX2 =

{∅, {u}, {u, v},X}. Define an identity function f : (X , τX1) → (X , τX2) as f(u) =

u, f(v) = v and f(w) = w. Then τ cX1
= {∅, {v, w}, {v}, {w},X} and

τ cX2
= {∅, {v, w}, {w},X}. Clearly f(v) = {v} is semi j-closed but not closed in τ cX2

.

Theorem 3.3.37. Let f : (X , τX ) → (Y , τY) be a function from a topological space

(X , τX ) into another topological space (Y , τY). Then f is semi j-closed function if and

only if clsj(f(R)) ⊂ f(clsj(R)) for each subset R of (X , τX ).

Proof. Let R be any subset of (X , τX ) and f be semi j-closed function. Then f(clsj(R)) ∈

SJC(Y). We know that f(R) ⊂ f(clsj(R)) which implies that clsj(f(R)) ⊂ f(clsj(R)).

Conversely, S ∈ SJC(X ). Then f(S) = f(clsj(S)) ⊃ clsj[f(S)]. Therefore, clsj[f(S)] =

f(S). Hence f is semi j-closed function.
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3.4 1
2 semi j-separated sets

Definition 3.4.1. Let H1 and H2 be any two nonempty subsets of a topological space

(X , τX ). Then H1 and H2 are called half semi j-separated if H1 ∩ clsj(H2) = ∅ or

clsj(H1 ∩H2) = ∅.

Example 3.4.2. Let X = {e, f, g} with τX = {∅, {e}, {f}, {e, f}, {f, g},X}. For τX ,

semi j-open sets are ∅, {e}, {f}, {e, f}, {f, g},X . Here, we obtain {f} and {g} are
1
2 semi j-separated sets. Since {f}∩ clsj{g} = ∅ and clsj{f}∩{g} = {f, g}∩{g} ≠ ∅.

Theorem 3.4.3. Let ∅ ≠ H1 and ∅ ≠ H2 be two subsets in (X , τX ). Then the following

properties hold:

(i) If H1 and H2 are half semi j-separated sets and G1 ⊆ H1 and G2 ⊆ H2, then G1

and G2 are also half semi j-separated sets.

(ii) If H1 ∩H2 = ∅ and either H1 is semi j-open or semi j-closed or H2 is semi j-open

or semi j-closed, then H1 and H2 are half semi j-separated sets.

(iii) If either one ofH1 andH2 is semi j-open or semi j-closed and if P = H1∩(X−H2)

and Q = H2 ∩ (X −H1), then P and Q are half semi j-separated.

Proof. (i) LetH1 andH2 are half semi j-separated sets. Then we haveH1∩clsj(H2) =

∅ or clsj(H1)∩H2 = ∅. SupposeH1∩clsj(H2) = ∅. SinceG1 ⊆ H1 andG2 ⊆ H2.

This implies G1 ∩ clsj(G2) ⊆ H1 ∩ clsj(H2) = ∅. Therefore, G1 ∩ clsj(G2) = ∅.

Hence G1 and G2 are half semi j-separated sets.

(ii) AssumeH1 is semi j-open andH1∩H2 = ∅. This impliesH1∩clsj(H2) = H1 = ∅.

In caseH1 is semi j-closed. This implies clsj(H1)∩H2 = H1∩H2 = ∅. Therefore,

H1 and H2 are half semi j-separated sets. If H2 is semi j-open or semi j-closed,

similarly we obtain H1 and H2 are half semi j-separated sets.

(iii) Case(i)

Let H1 be semi j-closed and P = H1 ∩ (X −H2). Now clsj(P )∩Q ⊂ clsj(H1)∩

H2 ∩ (X −H1) = H1 ∩H2 ∩ ((X −H1) = ∅. Thus clsj(P ) ∩ Q = ∅. Similarly

we obtain P ∩ clsj(Q) = ∅. Therefore P and Q are half semi j-separated sets.
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Case(ii)

Let H1 be semi j-open and Q = H2 ∩ (X − H1). Now P ∩ clsj(H2) ⊂ H1 ∩

(X −H2) ∩H2 = ∅. This implies P ∩ clsj(Q) = ∅. Hence P and Q are half semi

j-separated sets.

Theorem 3.4.4. In a topological space (X , τX ), the subsets H1 and H2 are half semi

j-separated if and only if there exist M ∈ SJO(X ) such that H1 ⊂M and H2∩M = ∅

or there exist N ∈ SJO(X ) such that H2 ⊂ N and H1 ∩N = ∅.

Proof. LetH1 andH2 be half semi j-separated sets. Therefore, we haveH1∩clsj(H2) =

∅ or clsj(H1) ∩H2 = ∅. Assume H1 ∩ clsj(H2) = ∅ and take M = X − clsj(H2). This

implies M ∈ SJO(X ), H1 ⊂ M and H2 ∩M = ∅. Suppose clsj(H1) ∩ H2 = ∅ and

take N = X − clsj(H1). This implies N ∈ SJO(X ), H2 ⊂ N and H1 ∩N = ∅.

Conversely, assume there exists M ∈ SJO(X ) such that H1 ⊂ M and H2 ∩M = ∅.

This implies clsj(H2) ∩M = ∅ and hence H1 ∩ clsj(H2) ⊂ M ∩ clsj(H2) = ∅. Thus

H1 and H2 are half semi j-separated sets. The proof is similar to the another case.

3.5 1
2 semi j-connected spaces

Definition 3.5.1. A subsetC of a topological space (X , τX ) is called as
1
2 semi j-connected

if C ̸= H1 ∪H2 such that H1 and H2 are non empty
1
2 semi j-separated sets in (X , τX ).

Theorem 3.5.2. A topological space (X , τX ) is
1
2 semi j-connected iff X ≠ H1 ∪ H2

and H1 ∩ H2 = ∅ such that H1 and H2 are non empty semi j-open and semi j-closed

sets in (X , τX ).

Proof. Let (X , τX ) be a
1
2 semi j-connected space. Assume X = H1∪H2 andH1∩H2 =

∅. Also ∅ = R and ∅ = S be a semi j-open set and semi j-closed sets in (X , τX )

respectively. Therefore, H1 ∩ clsj(H2) = ∅. This implies H1 and H2 are
1
2 semi j-

separated. Thus (X , τX ) is not a
1
2 semi j-connected, which is a contradiction. Hence

X ̸= H1 ∪H2.
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Conversely, assume (X , τX ) is not a
1
2 semi j-connected. Then we obtain X = H1 ∪H2,

where H1 and H2 are nonempty
1
2 semi j-separated sets. Therefore, H1 ∩ clsj(H2) = ∅

and clsj(H1)∩H2 = ∅. TakingH1∩clsj(H2) = ∅,H1 = X−clsj(H2) andH2 = X−H1.

This implies H1 ∪ H2 = X and H1 ∩ H2 = ∅ where H1 and H2 are semi j-open and

semi j-closed sets in (X , τX ) respectively, which is a contradiction to X ≠ H1 ∪ H2.

Similarly we have for clsj(H1) ∩H2 = ∅.

Theorem 3.5.3. If a subset C of a topological space (X , τX ) is
1
2 semi j-connected, then

clsj(C) is also
1
2 semi j-connected.

Proof. LetC is
1
2 semi j-connected in (X , τX ). Assume clsj(C) is not

1
2 semi j-connected,

then we have two
1
2 semi j-separated sets H1 and H2 in (X , τX ) such that clsj(C) =

H1 ∪ H2. Taking C = (H1 ∩ C) ∩ (H2 ∩ C) and clsj(H1) ∩ H2 = ∅. This implies

clsj(H1∩C)∩(H2∩C) = ∅. Thus C is not
1
2 semi j-connected, which is a contradiction.

Hence clsj(C) is
1
2 semi j-connected.

Theorem 3.5.4. If C is a
1
2 semi j-connected subset of a topological space (X , τX ) and

H1, H2 are the
1
2 semi j-separated subsets of (X , τX ) with C ⊂ H1 ∪ H2 then either

C ⊂ H1 or C ⊂ H2.

Proof. Let C be a
1
2 semi j-connected subset in (X , τX ). Taking C ⊂ H1∪H2, whereH1

and H2 are
1
2 semi j-separated. Therefore, we have clsj(H1) ∩ H2 = ∅. Put clsj(H1) ∩

H2 = ∅ and C = (C ∩ H1) ∪ (C ∩ H2). This implies (C ∩ H2) ∩ clsj(C ∩ H1) ⊂

H2 ∩ clsj(H1) = ∅. Suppose (C ∩ H1) ̸= ∅. and (C ∩ H2) = ∅. Therefore C is

not
1
2 semi j-connected, which contradicts our assumption. Thus either C ∩ H1 = ∅ or

C ∩ H2 = ∅, which implies C ⊂ H1 or C ⊂ H2. Similarly we obtain the result for

H1 ∩ clsj(H2) = ∅.

Theorem 3.5.5. Let f : (X , τX ) → (Y , τY) be a semi j-continuous function. If X is
1
2 semi j-connected, then continuous image f(X ) is also

1
2 semi j-connected.

Proof. Let f be a semi j-continuous function and X be
1
2 semi j-connected. Assume

f(X ) is not
1
2 semi j-connected subset of (Y , τY). Then, we obtain two

1
2 semi j-separated
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sets H1 and H2 in (Y , τY) such that f(X ) = H1 ∪ H2. Therefore, we have clsj(H1) ∩

H2 = ∅ or H1∩ clsj(H2)n = ∅. Since f is semi j-continuous, therefore clsj(f−1(H1))∩

f−1(H2) ⊂ f−1(clsj(H1)) ∩ f−1(H2) = f−1(clsj(H1) ∩ H2) = ∅. Also, f−1(H1) ∩

clsj(f
−1(H2)) ⊂ f−1(H1)∩f−1(clsj(H2)) = f−1(H1∩clsj(H2)) = ∅. SinceH1 ̸= H2,

then there exist a point h ∈ X such that f(h) ∈ H1 and f−1(H1) ̸= ∅. Equivalently,

f−1(H2) ̸= ∅. Therefore, f−1(H1) and f−1(H2) are
1
2 semi j-separated such that X =

f−1(H1)∪ f−1(H2). This implies X is not
1
2 semi j-connected, which is a contradiction.

Hence f(X ) is
1
2 semi j-connected in (Y , τY)

Theorem 3.5.6. If C1 and C2 are
1
2 semi j-connected subsets of a topological space

(X , τX ) and C1, C2 are not
1
2 semi j-separated, then C1 ∪ C2 is

1
2 semi j-connected in

(X , τX ).

Proof. Let C1 and C2 be
1
2 semi j-connected sets in (X , τX ).Assume C1 ∪ C2 is not

1
2 semi j-connected. Then, there exist two

1
2 semi j-separated sets H1 and H2 such that

C1 ∪ C2 = H1 ∪ H2 and clsj(H1) ∩ H2 = ∅ or H1 ∩ clsj(H2) = ∅. Taking H1 ∩

clsj(H2) = ∅. Since C1 and C2 are
1
2 semi j-connected sets, we have C1 ⊂ H1 and

C2 ⊂ H2 or C2 ⊂ H1 and C1 ⊂ H2. In the first case, C1 ⊂ H1 and C2 ⊂ H2, we have

C1 ∩ clsj(C2) ⊂ H1 ∩ clsj(H2) = ∅. This implies C1 and C2 are
1
2 semi j-separated,

which is a contradiction. Hence C1 ∪ C2 is
1
2 semi j-connected.

In the second case, if C2 ⊂ H1 and C1 ⊂ H2, then clsj(C1) ∩ C2 ⊂ clsj(H2) ∩H1 = ∅.

This implies C1 and C2 are
1
2 semi j-separated sets which contradicts assumption. Hence

C1 ∪ C2 is
1
2 semi j-sonnected. Similarly, we prove for clsj(H1) ∩H2 = ∅.

Theorem 3.5.7. Let {Cα : α ∈ ∆} be a non empty family of half semi j-connected

subsets in a topological space (X , τX ) and
⋃

α∈∆
Cα ̸= ∅, then

⋃
α∈∆

Cα is also half semi

j-connected.

Proof. Assume
⋃

α∈∆
Cα is not half semi j-connected. Then we obtain

⋃
α∈∆

Cα = H1 ∪

H2, where H1 and H2 are non-empty half semi j-separated sets in (X , τX ). Since⋂
α∈∆Cα ̸= ∅, there exists a point h ∈

⋂
α∈∆Cα. This implies h ∈

⋃
α∈∆

Cα, then

we have either h ∈ H1 or h ∈ H2. Suppose h ∈ H1. Since h ∈ Cα for each α ∈ ∆,
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then Cα and H1 intersect for each α ∈ ∆. By theorem 3.5.4, Cα ⊂ H1 or Cα ⊂ H2.

Since H1 ∩H2 = ∅, Cα ∈ H1 for all α ∈ ∆. Thus
⋃

α∈∆
Cα ⊂ H1. This implies H2 = ∅,

which is a contradiction. Suppose h ∈ H2, similarly we obtain H1 = ∅, which is a

contradiction. Thus
⋃

α∈∆
Cα is half semi j-connected.

Theorem 3.5.8. Let {Dα : α ∈ ∆} be a family of half semi j-connected sets and D be

a half semi j-connected set. If D ∩Dα ̸= ∅ for every α ∈ ∆ then D ∪ (
⋃

α∈∆
Dα) is half

semi j-connected.

Proof. Let D ∩ Dα ̸= ∅ for each α ∈ ∆. Using theorem 3.5.7, ∪Dα is half semi j-

connected for each α ∈ ∆. Now, D ∪ (∪Dα) = ∪(D ∪Dα) and ∩(D ∪Dα) ⊃ D ̸= ∅.

Hence D ∪ (∪Dα) is half semi j-connected.

3.6 Semi j-Connected Spaces

Definition 3.6.1. Let R and S be the semi j-open subsets of a topological space (X , τX ).

Then R and S are said to be semi j-separated if R ∩ clsj(S) = ∅ and clsj(R) ∩ S = ∅.

Theorem 3.6.2. If R and S are semi j-separated sets in (X , τX ), then R and S are dis-

joint.

Proof. Let R and S be semi j-separated sets in (X , τX ). Then clsj(R) ∩ S = ∅ and

R ∩ clsj(S) = ∅, we have R ⊆ clsj(R) ⊆ cl(R). Therefore R ∩ S ⊆ clsj(R) ∩ S = ∅.

Thus R ∩ S = ∅. Hence R and S are disjoint in (X , τX ).

Remark 3.6.3. The reverse of the previous theorem may not be true as verified by the

following example.

Example 3.6.4. Let X = {m,n, o, p} with τX = {∅, {m}, {n}, {m,n},X}. Here the

subsets {m,n} and {o, p} are disjoint sets but not j-separated. Since clsj{m,n} ∩

{o, p} = X ∩ {o, p} = {o, p} ≠ ∅.

Definition 3.6.5. Let (X , τX ) be the topological space. Then (X , τX ) is said to be semi

j-connected if there is no such pair R and S of non-empty disjoint semi j-open subsets of
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(X , τX ) such that X = R ∪ S, otherwise (X , τX ) is called as semi j-disconnected. In

this case, R and S is called as semi j-disconnection of X .

Theorem 3.6.6. For any topological space (X , τX ), the statements below are equiva-

lent:

(i) X is semi j-connected.

(ii) The only semi j-open and semi j-closed sets are ∅ and X .

(iii) X ̸= R ∪ S, for each non-empty disjoint semi j-open sets R and S.

(iv) X ̸= P ∪Q, for each non-empty disjoint semi j-closed sets P and Q.

(v) X ̸= R ∪ S, where R and S are the disjoint non-empty semi j-separated sets.

Proof. (i) =⇒ (ii)

Let ∅ ̸= R be a proper subset of (X , τX ), which is both semi j-open and semi j-closed

in (X , τX ). Then there exists a two sets M and N such that M = R and N = X − R,

which forms a semi j-separation of X . Therefore X and ∅ are the only semi j-open and

semi j-closed sets in (X , τX ).

(ii) =⇒ (iii)

Assume (iii) is not true. Then X = R ∪ S, R and S are disjoint non-empty semi j-open

sets. Since X − R = S and X − S = R. This implies R is both semi j-open and semi

j-closed set in (X , τX ) which contradicts (ii). Therefore, X ̸= R∪S for each nonempty

disjoint semi j-open sets R and S in (X , τX ).

(iii) =⇒ (ii)

Similar to (ii) =⇒ (iii).

(iv) =⇒ (v)

Suppose (v) is not true, then X = R∪ S, where R and S are nonempty semi j-separated

sets. Since R ∩ clsj(S) = ∅, we have clsj(S) ⊆ cl(S). This implies S is semi j-closed.

Similarly, R is also semi j-closed which contradicts (iv). Therefore, X ≠ R ∪ S, where

R and S are nonempty semi j-separated set in (X , τX ).

(v) =⇒ (i)

Assume the contrary, X is not semi j-connected. Then ∅ ≠ R is a proper semi j-open
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and semi j-closed subset of (X , τX ). Let S = X − R. Therefore, R forms a semi

j-separation of X which contradicts (v). Thus X is semi j-connected.

Theorem 3.6.7. If R is a semi j-connected set, D and E are the semi j-separated sets in

a topological space (X , τX ), such that R ⊆ D ∪ E. Then either R ⊆ D or R ⊆ E.

Proof. Let R = (R∩D)∪ (R∩E). This implies (R∩D)∩ clsj(R∩E) ⊆ (R∩D)∩

clsj(R)∩clsj(E) = ∅. Similarly, clsj(R∩D)∩(R∩E) ⊆ clsj(R)∩clsj(D)∩R∩E = ∅,

since D and E are separated sets. If R ∩ D = ∅ and R ∩ E = ∅, then R is not semi j-

connected sets which contradicts our assumption. Thus either R∩D = ∅ or R∩E = ∅,

which implies R ⊂ D or R ⊂ E.

Theorem 3.6.8. If R is semi j-connected subset of a topological space (X , τX ), then

clsj(R) is also semi j-connected set in (X , τX ).

Proof. Suppose clsj(R) is not semi j-connected in (X , τX ). Then, there exists the semi

j-separated sets D and E such that clsj(R) = D ∪ E, we have R ⊆ clsj(R). Taking

R = (R ∩D) ∪ (R ∩ E). Using 3.6.7, we have R ⊆ D or R ⊆ E.

(i) If R ⊆ D, then clsj(R) ⊆ clsj(D), we have clsj(D) ∩ E = ∅. This implies

clsj(R) ∩ E = ∅, since E ⊆ clsj(R). Therefore E = ∅, which is a contradiction.

(ii) If R ⊆ E, similarly we have D = ∅, which is a contradiction. Hence clsj(R) is

semi j-connected in (X , τX ).

Theorem 3.6.9. If R is semi j-connected in (X , τX ) such that R ⊆ S ⊆ clsj(R), then S

is also semi j-connected in (X , τX ).

Proof. Assume S is not semi j-connected, then there exist two sets D and E such that

clsj(D) ∩ E = ∅, D ∩ clsj(E) = ∅ and S = D ∪ E. Since, R ⊆ S, then R ⊆ D or

R ⊆ E. Suppose R ⊆ D, then clsj(R) ⊆ clsj(D) and E ∩ clsj(R) = ∅. By hypothesis,

E ⊆ S ⊆ clsj(R). This implies E = E ∩ clsj(R) = ∅. But E ̸= ∅. Similarly, we
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have D = ∅, E = E ∩ clsj(R) = ∅. But E ̸= ∅. Similarly, we have D = ∅, which is a

contradiction. Hence S is semi j-connected set in (X , τX ).

3.7 Semi j hyperconnected spaces

Definition 3.7.1. A topological space (X , τX ) is semi j hyperconnected if the intersec-

tion of any two non empty semi j open sets is non empty.Equivalently, clsj(R) = X for

every semi j-open sets in (X , τX ).

Example 3.7.2. Let X = {1, 2, 3, 4},τ = {∅, {2}, {2, 3, 4},X} be a topology on X .

SJO(X ) = {∅, {2}, {1, 2}, {2, 3}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4},X} is semi j hy-

perconnected.

Definition 3.7.3. A subset R of (X , τX ) is said to be

(i) semi j-regular open if A = intsj(clsj(R)).

(ii) semi j-regular closed if R = clsj(intsj(S)).

Definition 3.7.4. A subset R of topological space (X , τX ) is said to be semi j-boundary

of R [simply bdsj(R)] if bdsj(R) = clsj(R) ∩ clsj(X −R).

Definition 3.7.5. A topological space (X , τX ) is called semi j-extremally disconnected

iff semi j-closure of each semi j-open set is semi j-open in (X , τX ).

Theorem 3.7.6. Every semi j-hyperconnected space (X , τX ) is semi j-extremally dis-

connected space.

Proof. Assume (X , τX ) is semi j-hyperconnected space. Then for every open set R in

(X , τX ), we have clsj(R) = X . This implies that clsj(R) is semi j-open. Hence (X , τX )

is semi j-extremally disconnected spaces.

Remark 3.7.7. The reverse of the above theorem need not be true as seen in the follow-

ing example.
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Example 3.7.8. Let X = {r, s, t} with τX = {∅, {r}, {s}, {r, s},X}. For this τX , we

have the semi j-open sets are ∅, {r}, {s}, {r, s}, {r, t} and {s,t}. Clearly (X , τX ) is semi

j-extremally disconnected space but not semi j-hyperconnected space, since clsj{r} =

{r} ≠ X .

Definition 3.7.9. A subset R of a topological space (X , τX ) is said to be

(i) semi j-dense if clsj(R) = X .

(ii) semi j-nowhere dense if intsj(clsj(R)) = ∅.

Theorem 3.7.10. For any topological space (X , τX ), the following statements are equiv-

alent.

(i) (X , τX ) is semi j-hyperconnected space.

(ii) Each subset R of (X , τX ) is either semi j-dense or semi j-nowhere dense in (X , τX ).

Proof. (i) =⇒ (ii)

Let R be any subset of a semi j-hyperconnected space (X , τX ). Suppose R is not semi

j-nowhere dense set. Then intsj(clsj(R)) ̸= ∅. This implies clsj(intsj(clsj(R))) = X ⊆

clsj(R). Therefore, clsj(R) = X . Hence R is semi j-dense set.

(ii) =⇒ (i)

Let ∅ ≠ R be any semi j-open set in (X , τX ), we have R ⊆ intsj(clsj(R)). This implies

that R is not semi j-nowhere dense set. By hypothesis R is semi j-dense. Hence (X , τX )

is semi j-hyperconnected space.

Theorem 3.7.11. In a topological space (X , τX ), each of the following statements are

equivalent.

(i) (X , τX ) is semi j hyperconnected.

(ii) cl(R)=X for every non empty set R ∈ SJO(X ).

(iii) scl(R)=X for every non empty set R ∈ SJO(X ).

Proof. (i) =⇒ (ii)

Let ∅ ̸= R be any semi j open set in (X , τX ). Then R ⊆ cl(int(pcl(R))). This implies
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int(pcl(R)) ̸= ∅. Hence cl(int(pcl(R))) = X = cl(R). Since (X , τX ) is semi j

hyperconnected.

(ii) =⇒ (iii)

Let R be any non empty semi j open set in X . Then scl(R) = R ∪ int(cl(R)) =

R ∪ int(X ) = X . Since cl(R) = X for every non empty semi j open set in (X , τX ).

(iii) =⇒ (i)

For every non empty semi j open set R in (X , τX ) and scl(R) = X . Clearly (X , τX ) is

semi j hyperconnected.

Theorem 3.7.12. Let (X , τX ) be a topological space, then the following statements are

equivalent.

(i) (X , τX ) is semi j hyperconnected.

(ii) (X , τX ) does not have proper semi j regular open or proper semi j regular closed

subset in X .

(iii) (X , τX ) has no proper disjoint semi j open subsets E and F such that X = clsj(E)∪

F = E ∪ clsj(F ).

(iv) (X , τX ) does not have proper semi j closed subsets M and N such thatX =M∪N

and intsj(M) ∩N =M ∩ intsj(N) = ∅.

Proof. (i) =⇒ (ii)

Let ∅ ̸= R be any semi j regular open subset of (X , τX ). Then R = intsj(clsj(R)).

Since X is semi j hyperconnected. Therefore clsj(R) = X . This implies R = X .

Hence R cannot be a proper semi j regular open subset of (X , τX ). Clearly (X , τX )

cannot have a proper semi j regular closed subset.

(ii) =⇒ (iii)

Assume that there exist two disjoint proper semi j open subsets ∅ ̸= E and ∅ ̸= F

such that X = clsj(E) ∪ F = E ∪ clsj(F ). Then clsj(E) = clsj(intsj(E)) ̸= ∅ is the

semi j regular closed set in (X , τX ). Since E ∩ F = ∅ and clsj(E) ∩ F = ∅. This

implies clsj(E) ̸= X . Therefore X has a proper semi j regular closed subset E which is

a contradiction to (ii).
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(iii) =⇒ (iv)

Suppose there exist two proper non empty semi j closed subsets M and N in X such that

X =M ∪N , intsj(M) ∩N =M ∩ intsj(N) = ∅ then E = X −M and F = X −N

are two disjoint non empty semi j open sets such that X = clsj(E) ∪ F = E ∪ clsj(E)

which is prohibitive to (iii).

(iv) =⇒ (i)

Assume that there exist a proper semi j open subset ∅ ≠ R of X such that clsj(R) ̸= X .

Then intsj(clsj(R)) ̸= X . Put clsj(R) = M and N = X − intsj(clsj(R)). Thus X has

two proper semi j closed subsets M and N such that X = M ∪ N , intsj(M) ∩ N =

M ∩ intsj(N) ̸= ∅. This contradicts (iv).

Theorem 3.7.13. A topological space (X , τX ) is semi j-hyperconnected if and only if

the intersection of any two semi j open set is also semi j open and it is semi j connected.

Proof. In a semi j-hyperconnected space, we have cl(R∩S) = cl(R)∩ cl(S), where R

and S are semi j open sets. It follows that R∩S ⊆ cl(int(pcl(R)))∩ cl(int(pcl(S))) =

cl[int(pcl(R))∩ int(pcl(S))] = cl(int[pcl(R)∩pcl(S)]) = cl(int(pcl(R∩S))). Hence

R ∩ S is semi j open in (X , τX ).

Suppose X is not semi j-hyperconnected. Then there exist a proper semi j regular

closed subset R in (X , τX ) and take S = cl(X − R). This implies R and S are non

empty semi j open subset of (X , τX ). If R ∩ S = ∅, then R ∪ S = X implies R is a

proper semi j open, semi j closed in X . This is contradiction to X is semi j connected.

ThereforeR∩S ̸= ∅. HenceR∩S = R∩clsj(X −R) = R−intsj(R)=semi j boundary

of R. Therefore R ∩ S is not semi j open.

Definition 3.7.14. A subset S of X is said to be subspace of semi j-hyperconnected

space if S ⊆ X and S is semi j-hyperconnected on S.

Theorem 3.7.15. If R and S are semi j hyperconnected subsets of (X , τX ) and

intsj(R) ∩ S ̸= ∅ or R ∩ intsj(S) ̸= ∅ then R ∪ S is a semi j hyperconnected subset of

X .

Proof. Assume T = R∪S is not semi j hyperconnected set in (X , τX ). Then there exist

semi j open sets U and V in (X , τX ) such that T ∩U ̸= ∅, T ∩V ̸= ∅ and T ∩U ∩V = ∅.
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Since R and S are semi j hyper connected subsets of X . This implies R ∩ U ∩ V = ∅

and S ∩ U ∩ V = ∅. Without loss of generality, assume S ∩ U = ∅. Then R ∩ U ̸= ∅,

R ∩ V = ∅ and S ∩ V = ∅. If R ∩ int(S) ̸= ∅, then R ∩ intsj(S) and R ∩ U ̸= ∅

are disjoint semi j open sets in the subspace R of X which contradicts the hypothesis

that R is semi j hyperconnected. Similarly if intsj(R) ∩ S ̸= ∅, then S is not semi j

hyperconnected.

3.8 Conclusion

This chapter deals with the major findings and observations based on the semi j-open

sets, semi j-closed sets, semi j-continuous function, semi j-connectedness and semi j-

hyperconnectedness in topological spaces. We analyzed the characteristics of such sets

and spaces by theorems and examples. Thus the study has proved that these concepts

will be used in various areas of topological spaces.
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