
Chapter 4

Neutrosophic Hyperconnected Spaces

4.1 Introduction

Neutrosophic set is a generalization of fuzzy sets and intuitionistic fuzzy sets. It is char-

acterized by a true, indeterminate and falsity membership function respectively. This

chapter classifies a new class of sets namely neutrosophic semi j-open sets, neutrosophic

semi j- closed sets and neutrosophic semi j-separated sets in neutrosophic topological

space. Using these sets, we present the new spaces as neutrosophic semi j-connected,

neutrosophic hyperconnected and neutrosophic semi j-hyperconnected in neutrosophic

topological space. We analyze the essential characteristics of such sets and spaces by

the theorems and suitable examples. Also we examine the properties of neutrosophic

hyperconnected spaces with some existing continuous functions.

4.2 Neutrosophic semi j-open sets

Definition 4.2.1. A neutrosophic subset P of a neutrosophic topological space N (X , τX )

is said to be neutrosophic semi j-open set in N (X , τX ) if and only if P ≤ N cl[N int[Npcl[P ]]].

Example 4.2.2. Let X = {s, t, r} and the neutrosophic subsets P , Q, R and S in X as

follows,

P = {< s, 0.4, 0.3, 0.8 >,< t, 0.5, 0.2, 0.6 >,< r, 0.4, 0.2, 0.6 >; s, t, r ∈ X},
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Q = {< s, 0.3, 0.4, 0.5 >,< t, 0.6, 0.4, 0.6 >,< r, 0.3, 0.4, 0.6 >; s, t, r ∈ X},

R = {< s, 0.4, 0.4, 0.5 >,< t, 0.6, 0.4, 0.6 >,< r, 0.4, 0.4, 0.6 >; s, t, r ∈ X},

S = {< s, 0.3, 0.3, 0.8 >,< t, 0.5, 0.2, 0.6 >,< r, 0.3, 0.2, 0.6 >; s, t, r ∈ X}.

Then τX = {0N , P,Q,R, S, 1N} is a neutrosophic topological space on X .

Let E = {< s, 0.4, 0.4, 0.5 >,< t, 0.5, 0.4, 0.7 >,< r, 0.4, 0.4, 0.7 >; s, t, r ∈ X} be a

neutrosophic subset in N (X , τX ), then N cl[N int[Npcl[E]]] = {< s, 0.5, 0.6, 0.5 >,

< t, 0.6, 0.6, 0.6 >,< r, 0.6, 0.6, 0.4 >; s, t, r ∈ X}. ThereforeE ≤ N cl[N int[Npcl[E]]].

Hence E is a neutrosophic semi j-open set.

Theorem 4.2.3. Let {Pα : α ∈ ∆} be a collection of neutrosophic semi j-open sets

in neutrosophic topological space N (X , τX ). Then
⋃

α∈∆
Pα is also neutrosophic semi

j-open in N (X , τX ).

Proof. Since Pα is neutrosophic semi j-open set in N (X , τX ), we have Pα ≤ N cl[N int[Np

cl[Pα]]]. Therefore,
⋃

α∈∆
Pα ≤

⋃
α∈∆

N cl[N int[Npcl[Pα]]] ≤ N cl[N int[Npcl[
⋃

α∈∆
Pα]]].

Hence
⋃

α∈∆
Pα is also neutrosophic semi j-open set in N (X , τX ).

Remark 4.2.4. The intersection of any two neutrosophic semi j-open sets of a neu-

trosophic topological space N (X , τX ) need not be a neutrosophic semi j-open set as

verified by the following example.

Example 4.2.5. Let X = {s, t} and the neutrosophic subsets P ,Q,R and S in N (X , τX )

as follows,

P = {< s, 0.2, 0.1, 0.8 >,< t, 0.3, 0.1, 0.4 >; s, t ∈ X},

Q = {< s, 0.1, 0.2, 0.5 >,< t, 0.4, 0.3, 0.4 >; s, t ∈ X},

R = {< s, 0.2, 0.2, 0.5 >,< t, 0.4, 0.3, 0.4 >; s, t ∈ X},

S = {< s, 0.1, 0.1, 0.8 >,< t, 0.3, 0.1, 0.4 >; s, t ∈ X}.

Then τX = {0N , P,Q,R, S, 1N} is a neutrosophic topological space on X .

Let E = {< s, 0.9, 0.1, 0.6 >,< t, 0.3, 0.2, 0.6 >; s, t ∈ X} and

F = {< s, 0.6, 0.7, 0.3 >,< t, 0.5, 0.7, 0.4 >; s, t ∈ X} be the neutrosophic subsets

in N (X , τX ). Then N cl[N int[Npcl[E]]] = 1N and N cl[N int[Npcl[F ]]] = 1N . This

implies E ≤ N cl[N int[Npcl[E]]] and F ≤ N cl[N int[Npcl[F ]]].

Here E ∧ F = {< s, 0.6, 0.1, 0.6 >,< t, 0.3, 0.2, 0.6 >; s, t ∈ X}.
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Thus E ∧ F ̸≤ N cl[N int[Npcl(E ∧ F )]]. Therefore E and F are neutrosophic semi

j-open sets but E ∧ F is not a neutrosophic semi j-open set in N (X , τX ).

Theorem 4.2.6. In a neutrosophic topological space N (X , τX ), let P be a neutrosophic

semi j-open set and P ≤ Q ≤ N cl[P ]. Then Q is also a neutrosophic semi j-open set

in X .

Proof. Since P is neutrosophic semi j-open in X , we have

P ≤ N cl[N int[Npcl[P ]]]. Therefore, N cl[P ] ≤ N cl[N cl[N int[[Npcl[P ]]]].

This implies, N cl[P ] ≤ N cl[N int[Npcl[P ]]]. By hypothesis, P ≤ Q ≤ N cl[P ],

then Q ≤ N cl[N int[Npcl[P ]]]. We have P ≤ Q, therefore N cl[N int[Npcl[P ]]] ≤

N cl[N int[Npcl[Q]]], which implies Q ≤ N cl[N int[Npcl[Q]]]. Hence Q is a neutro-

sophic semi j-open set in N (X , τX ).

Theorem 4.2.7. In a neutrosophic topological space N (X , τX ), every neutrosophic j-

open set is neutrosophic semi j-open.

Proof. Let P be a neutrosophic j-open set in X . Then P ≤ N int[Npcl[P ]]. This

implies N cl[P ] ≤ N cl[N int[Npcl[P ]]]. We know that P ≤ N cl[P ]. Therefore P ≤

N cl[N int[Npcl[P ]]]. Hence P is a neutrosophic semi j-open set in N (X , τX ).

Remark 4.2.8. Converse of the above theorem need not be true as shown in the follow-

ing example.

Example 4.2.9. Let X = {s, t} and the neutrosophic subsets P and Q in X as follows,

P = {< s, 0.2, 0.2, 0.5 >,< t, 0.4, 0.3, 0.4 >; s, t ∈ X},

Q = {< s, 0.1, 0.1, 0.8 >,< t, 0.3, 0.1, 0.4 >; s, t ∈ X}.

Then τX = {0N , P,Q, 1N} is a neutrosophic topological space on X .

Let R = {< s, 0.2, 0.1, 0.6 >,< t, 0.4, 0.4, 0.5 >; s, t ∈ X} be a neutrosophic sub-

set in N (X , τX ). Then, we have N int[Npcl[R]] = P , this implies R ≰ P . and

N cl[N int[Npcl[R]]] = PC . Therefore R ≤ PC . Hence R is neutrosophic semi j-open

but not neutrosophic j-open.

Theorem 4.2.10. In a neutrosophic topological space N (X , τX ), every neutrosophic

open set is neutrosophic semi j-open.
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Proof. Let P be a neutrosophic open subset in N (X , τX ). Then P = N int[P ]. We

have, N int[P ] ≤ P ≤ Npcl[P ] ≤ N cl[P ]. This implies P ≤ Npcl[P ] ≤ N cl[P ].

Therefore, =⇒ N int[P ] ≤ N int[Npcl[P ]]

=⇒ N cl[N int[P ]] ≤ N cl[N int[Npcl[P ]]]

=⇒ N cl[P ] ≤ N cl[N int[Npcl[P ]]]

=⇒ P ≤ N cl[N int[Npcl[P ]]].

Hence P is a neutrospohic semi j-open set in N (X , τX ).

Remark 4.2.11. Reverse of the previous theorem need not be true as seen in the follow-

ing example.

Example 4.2.12. Consider X = {s} and the neutrosophic subsets P and Q as follows

P = {< s, 0.4, 0.5, 0.3 >; s ∈ X},

Q = {< s, 0.1, 0.5, 0.5 >; s ∈ X}.

Then τX = {0N , P,Q, 1N} is a neutrosophic topological space on X .

Let R = {< s, 0.3, 0.6, 0.5 >; s ∈ X} be a neutrosophic subset of N (X , τX ). We

obtain R ≤ N cl[N int[Npcl(R)]]. Therefore R is neutrosophic semi j-open but not

neutrosophic open.

4.3 Neutrosophic semi j-closed sets

Definition 4.3.1. A neutrosophic subset S of a neutrosophic topological space N (X , τX )

is said to be neutrosophic semi j-closed set if and only if N int[N cl[Npint[S]]] ≤ S.

Example 4.3.2. Let X = {s1, s2, s3} and the neutrosophic subsets Q1, Q2 and Q3 as

follows

Q1 = {< s1, 0.6, 0.5, 0.6 >,< s2, 0.7, 0.4, 0.4 >,< s3, 0.6, 0.4, 0.4 >; s1, s2, s3 ∈ X},

Q2 = {< s1, 0.7, 0.6, 0.3 >,< s2, 0.8, 0.6, 0.4 >,< s3, 0.6, 0.6, 0.4 >; s1, s2, s3 ∈ X},

Q3 = {< s1, 0.6, 0.5, 0.4 >,< s2, 0.7, 0.5, 0.4 >,< s3, 0.6, 0.5, 0.4 >; s1, s2, s3 ∈ X}.

Then τX = {0N , Q1, Q2, Q3, 1N} is a neutrosophic topological space on X . Put F =

{< s1, 0.5, 0.4, 0.5 >,< s2, 0.6, 0.5, 0.3 >,< s3, 0.4, 0.4, 0.3 >; s1, s2, s3 ∈ X} be a
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neutrosophic subset of N (X , τX ). We obtain N int[N cl[Npint[F ]]] ≤ F . Therefore F

is a neutrosophic semi j-closed set in N (X , τX ).

Definition 4.3.3. A neutrosophic subset P of N (X , τX ) is said to be neutrosophic semi

j-interior of P if the union of all neutrosophic semi j-open sets of N (X , τX ) contained

in P . It is denoted by N intsj[P ].

Definition 4.3.4. A neutrosophic subsetQ of X is said to be neutrosophic semi j-closure

of Q if the intersection of all neutrosophic semi j-closed sets of N (X , τX ) containing Q.

It is denoted by N clsj[Q].

Example 4.3.5. Consider X = {s1, s2, s3} and the neutrosophic subsets S1, S2, S3 in

X as follows,

S1 = {< s1, 0.3, 0.4, 0.3 >,< s2, 0.6, 0.2, 0.4 >,< s3, 0.5, 0.2, 0.3 >; s1, s2, s3 ∈ X},

S2 = {< s1, 0.2, 0.6, 0.5 >,< s2, 0.4, 0.2, 0.3 >,< s3, 0.2, 0.3, 0.1 >; s1, s2, s3 ∈ X},

S3 = {< s1, 0.3, 0.6, 0.3 >,< s2, 0.6, 0.2, 0.3 >,< s3, 0.5, 0.3, 0.1 >; s1, s2, s3 ∈ X}.

Then τX = {0N , S1, S2, S3, 1N} be the neutrosophic topological space on X . For this

τX , 0N , 1N , S1, S2, S1 ∨ S2, S1 ∨ S3, S2 ∨ S3 are the neutrosophic semi j-open sets and

0N , 1N , Sc
1, Sc

2, (S1∨S2)
c, (S1∨S3)

c, (S2∨S3)
c are the neutrosophic semi j-closed sets.

Put T = {< s1, 0.5, 0.6, 0.2 >,< s2, 0.7, 0.3, 0.3 >,< s3, 0.6, 0.4, 0.2; s1, s2, s3 ∈ X}

is a neutrosophic subset in X . Then we have N intsj(T ) = S1 and N clsj(T ) = 1N .

Definition 4.3.6. Let N (X , τX ) be a neutrosophic topological space and P be a neu-

trosophic semi j-open set of X . Then

(a) P is said to be neutrosophic semi j-regular open set if and only if

P = N intsj[N clsj[P ]].

(b) P is said to be neutrosophic semi j-regular closed set if and only if

N clsj[N intsj[P ]] = P .

Definition 4.3.7. A neutrosophic subset P of a neutrosophic topological space N (X , τX )

is called

(i) neutrosophic semi j-dense if N clsj(P ) = 1N
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(ii) neutrosophic semi j-nowhere dense if N intsj[N clsj(P )] = 0N .

Proposition 4.3.8. Let P be a neutrosophic subset of a neutrosophic topological space

N (X , τX ),then the following properties hold:

(i) N intsj(P ) = P iff P is a neutrosophic semi j-open set.

(ii) N intsj(P ) is the biggest neutrosophic semi j-open set contained in P .

(iii) N clsj(P ) = P iff P is a neutrosophic semi j-closed set.

(iv) N clsj(P ) is the smallest neutrosophic semi j-closed set containing P .

Proof. obvious.

Proposition 4.3.9. Let P be any neutrosophic subset of a neutrosophic topological

space N (X , τX ), then the following statements are true.

(i) N intsj(1N − P ) = 1N − [N clsj(P )]

(ii) N clsj(1N − P ) = 1N − [N intsj(P )]

Proof. obvious.

Theorem 4.3.10. If S is a neutrosophic subset of N (X , τX ), then S is neutrosophic

semi j-closed if and only if C(S) is neutrosophic semi j-open.

Proof. Assume S is neutrosophic semi j-closed set in N (X , τX ). Then N int[N cl[Npin

t[S]]] ≤ S. Thus C[S] ≤ C[N int[N cl[Npint[S]]]] = N cl[N int[Npcl[C[S]]]]. Hence

C[S] is neutrosophic semi j-open set in N (X , τX ).

Conversely assume C[S] is a neutrosophic semi j-open set in N (X , τX ). Then

C[S] ≤ N cl[N int[Npcl[C[S]]]]. We obtain C[N cl[N int[Npcl[C[S]]]]] ≤ C[C[S]].

Therefore N int[N cl[Npint[S]]] ≤ S. Hence S is a neutrosophic semi j-closed set in

N (X , τX ).

Theorem 4.3.11. Let {Sα : α ∈ ∆} be a family of neutrosophic semi j-closed sets

in N (X , τX ). Then arbitrary intersection of neutrosophic semi j-closed sets is also

neutrosophic semi j-closed.
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Proof. Let {Sα : α ∈ ∆} be the family of neutrosophic semi j-closed sets in N (X , τX )

and Pα = {Sα}c. Then {Pα : α ∈ ∆} is a family of neutrosophic semi j-open sets

in N (X , τX ).Therefore,
⋃

α∈∆
Pα is neutrosophic semi j-open. Then {

⋃
α∈∆

Pα}C is neu-

trosophic semi j-closed which implies
⋂

α∈∆
Pα

c is neutrosophic semi j-closed. Hence⋂
α∈∆

Sα is neutrosophic semi j-closed in N (X , τX ).

Theorem 4.3.12. In a neutrosophic topological space N (X , τX ), every neutrosophic

j-closed set is neutrosophic semi j-closed.

Proof. Let S be a neutrosophic j-closed set in N (X , τX ). Then N cl[Npint[S]] ≤ S.

N int[N cl[Npint[S]]] ≤ N int[S]. We know that N int[S] ≤ S. Therefore N int[N cl

[Npint[S]]] ≤ S. Hence S is neutrosophic semi j-closed.

Remark 4.3.13. Converse of the above theorem need not be true, as verified by the

following example.

Example 4.3.14. Let X = {t1, t2, t3} and the neutrosophic subsets Q1, Q2 as follows,

Q1 = {< t1, 0.2, 0.5, 0.4 >,< t2, 0.2, 0.4, 0.5 >,< t3, 0.1, 0.0, 0.5 >; t1, t2, t3 ∈ X},

Q2 = {< t1, 0.3, 0.4, 0.5 >,< t2, 0.4, 0.3, 0.2 >,< t3, 0.2, 0.3, 0.4 >; t1, t2, t3 ∈ X}.

Put τX = {0N , Q1, Q2, Q1∨Q2, 1N} is a neutrosophic topological space on N (X , τX ).

Let G = {< t1, 0.4, 0.5, 0.4 >,< t2, 0.3, 0.4, 0.2 >,< t3, 0.3, 0.4, 0.5 >; t1, t2, t3 ∈ X}

be a neutrosophic subset of N (X , τX ). Then G is a neutrosophic semi j-closed but not

neutrosophic j-closed. Since N int[N cl[Npint[G]]] = Q1 ≤ G, but N cl[Npint[G]] =

[Q1 ∨Q2]
c ⊈ G.

Theorem 4.3.15. In a neutrosophic topological space N (X , τX ), every neutrosophic

closed set is neutrosophic semi j-closed.

Proof. Let S be neutrosophic closed set in N (X , τX ). Then S = N cl[S]. We know

that N int[S] ≤ Npint[S]. N cl[N int[S]] ≤ N cl[Npint[S]] ≤ N cl[S]. It follows that

N int[N cl[N int[S]]] ≤ N int[N cl[Npint[S]]] ≤ S. Hence S is a semi j-closed set in

N (X , τX ).
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Remark 4.3.16. The converse of the above theorem may not be true, as shown by

the following example. In example 4.3.14, we have N int[N cl[Npint(G)]] ≤ G and

N cl(G) ̸= G. This implies G is neutrosophic semi j-closed set but not neutrosophic

closed set.

Example 4.3.17. Let X = {u1, u2, u3} and the neutrosophic subsets S1 and S2 defined

as follows,

S1 = {< u1, 0.4, 0.6, 0.2 >,< u2, 0.7, 0.4, 0.3 >,< u3, 0.4, 0.5, 0.2) >;u1, u2, u3 ∈

X}

S2 = {< u1, 0.4, 0.6, 0.5 >,< u2, 0.6, 0.5, 0.1 >,< u3, 0.6, 0.4, 0.1 >;u1, u2, u3 ∈ X}

Put τX = {0N , S1, S1 ∨ S2, 1N} be the neutrosophic topological space on X . Let H =

{< u, 0.2, 0.4, 0.4 >,< u2, 0.1, 0.5, 0.7 >,< u3, 0.1, 0.5, 0.4 >;u1, u2, u3 ∈ X}. Here

we obtain N int[N cl[Npint[H]]] ≤ H . Therefore H is neutrosophic semi j-closed set

but not neutrosophic closed, because N cl(H) ̸= H .

From the above results, we have the following indications:

But the converse of the above indications need not be true as shown by 4.3.14 and

4.3.16.

4.4 Neutrosophic Semi j-separated sets

Definition 4.4.1. Let P1 and P2 be any two subsets of a neutrosophic topological space

N (X , τX ). Then P1 and P2 are called neutrosophic semi j-separated if P1∧N clsj(P2) =

∅ and N clsj(P1) ∧ P2 = ∅.
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Theorem 4.4.2. In a neutrosophic topological space N (X , τX ), any two nonempty dis-

joint neutrosophic semi j-closed sets are semi j-separated.

Proof. Let Q1 and Q2 be two nonempty disjoint neutrosophic semi j-closed sets in

N (X , τX ). N clsj(Q1) ∧Q2 = Q1 ∧Q2 = 0N and Q1 ∧ N clsj(Q2) = Q1 ∧Q2 = 0N .

Hence Q1 and Q2 are neutrosophic semi j-separated sets in N (X , τX ).

Proposition 4.4.3. Every two neutrosophic semi j-separated sets are disjoint.

Proof. Let P1 and P2 be any two neutrosophic semi j-separated sets. Then, we have

P1∧N clsj(P2) = 0N and N clsj(P1)∧P2 = 0N . Now P1∧P2 ≤ P1∧N clsj(P2) = 0N .

Thus P1 ∧ P2 = 0N . Hence P1 and P2 are disjoint.

Remark 4.4.4. Every disjoint sets need not be neutrosophic semi j-separated sets as

shown below.

Example 4.4.5. Let X = {r, s} with τX = {0N , Q1, Q2, Q3, 1N}

where Q1 = {⟨r, 0.4, 0, 0.6⟩ , ⟨s, 0, 0.4, 1⟩ ; r, s ∈ X}

Q2 = {⟨r, 0, 0.5, 1⟩ , ⟨s, 0.7, 0, 0.9⟩ ; r, s ∈ X}

Q3 = {⟨r, 0.4, 0.5, 0.6⟩ , ⟨s, 0.7, 0.4, 0.9⟩ ; r, s ∈ X}

Now, Q1 ∧Q2 = {⟨r, 0, 0, 1⟩ , ⟨s, 0, 0, 1⟩ ; r, s ∈ X} = 0N

N clsj(Q1) = {⟨r, 0.6, 0.5, 0.4⟩ , ⟨s, 0.9, 0.6, 0.7⟩ ; r, s ∈ X} = 0N

N clsj(Q2) = {⟨r, 0.6, 0.5, 0.4⟩ , ⟨s, 0.9, 0.6, 0.7⟩ ; r, s ∈ X} = 0N

Therefore Q1 ∧N clsj(Q2) = Q1 ̸= 0N and

Q2 ∧N clsj(Q1) = Q2 ̸= 0N

Hence Q1 and Q2 are disjoint but not neutrosophic semi j-separated sets.

Theorem 4.4.6. In a neutrosophic topological space N (X , τX ), P1 and P2 are neutro-

sophic semi j-separated iff there exist neutrosophic semi j-open S1 and S2 in N (X , τX )

such that P1 ≤ S1 and P1 ∧ S2 = 0N , P2 ≤ S2 and P2 ∧ S1 = 0N .

Proof. Let P1 and P2 be neutrosophic semi j-separated sets. Then, we have P1 ∧

N clsj(P2) = 0N and N clsj(P1) ∧ P2 = 0N . Taking S2 = C[N clsj(P1)] and S1 =
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C[N clsj(P2)]. Then S1 and S2 are neutrosophic semi j-open sets such that P1 ≤ S1 and

P2 ≤ S2. Also, P1 ∧ S2 = 0N , P2 ∧ S1 = 0N .

Conversely, let S1 and S2 be neutrosophic semi j-open sets in N (X , τX ) such that

P1 ≤ S1, P2 ≤ S2 and P1 ∧ S2 = 0N , P2 ∧ S1 = 0N . This implies P1 ≤ C(S2)

and P2 ≤ C(S1). Therefore, C(S1) and C(S2) are neutrosophic semi j-closed sets.

Now N clsj(P1) ≤ N clsj[C(S2)] = C[S2] ≤ C[P2] and N clsj(P2) ≤ N clsj[C(S1)] =

C[S1] ≤ C[P1] i.,e N clsj(P1) ≤ C[P2] and N clsj(P2) ≤ C[P1]. Therefore, P1 ∧

N clsj(P2) = 0N and N clsj(P1) ∧ P2 = 0N . Hence P1 and P2 are neutrosophic semi

j-separated sets.

Theorem 4.4.7. In a neutrosophic topological space N (X , τX ), the following state-

ments hold:

(i) If P1 and P2 are neutrosophic semi j-separated in N (X , τX ) and Q1 < P1, Q2 <

P2, then Q1 and Q2 are also neutrosophic semi j-separated sets in N (X , τX ).

(ii) If P1 and P2 are neutrosophic semi j-open and if S = P1 ∧ C(P2) and T =

P2 ∧ C(P1), then S and T are neutrosophic semi j-separated.

Proof. (i) Let P1 and P2 be neutrosophic semi j-separated sets. Then N clsj(P1)∧P2 =

0N = P1 ∧ N clsj(P2). Since Q ≤ P1, Q2 ≤ P2, we have, N clsj(Q1) ≤ N clsj(P1) and

N clsj(Q2) ≤ N clsj(P2). Thus N clsj(Q1) ∧Q2 ≤ N clsj(P1) ∧ P2 = 0N . This implies

N clsj(Q1) ∧ Q2 = 0N . Similarly, N clsj(Q2) ∧ Q1 ≤ N clsj(P2) ∧ P1 = 0N . This

implies N clsj(Q2) ∧ Q1 = 0N . Hence Q1 and Q2 are neutrosophic semi j-separated

sets.

(ii) Let P1 and P2 be neutrosophic semi j-open sets in N (X , τX ).Then C[P1] and C[P2]

are neutrosophic semi j-closed sets. Since S ≤ C(P2), therefore N clsj(S) ≤ N clsj(C[P2])

= C[P2]. Thus N clsj(S)∧P2 = 0N . Since T ≤ P2, N clsj(S)∧ T ≤ N clsj(S)∧P2 =

0N . Thus N clsj(S) ∧ T = 0N . Similarly N clsj(T ) ∧ S = 0N . Hence S and T are

neutrosophic semi j-separated sets.

67



4.5 Neutrosophic semi j-connected spaces

Definition 4.5.1. A neutrosophic topological space N (X , τX ) is called neutrosophic

semi j-connected if X cannot be the union of two neutrosophic semi j-separated sets in

N (X , τX ).

Definition 4.5.2. A neutrosophic topological space N (X , τX ) is neutrosophic semi j-

disconnected if there is a two neutrosophic semi j-open sets 0N ̸= P and 0N ̸= Q in

N (X , τX ) such that P ∨Q = 1N and P ∧Q = 0N .

Example 4.5.3. Let X = {p, q} and the neutrosophic subsets M1 and M2 as

M1 = {< p, 0.6, 0.4, 0.5 >,< q, 0.5, 0.4, 0.4 >; p, q ∈ X}

M2 = {< p, 0.5, 0.3, 0.6 >,< q, 0.3, 0.2, 0.5 >; p, q ∈ X}

Then τX = {0N ,M1,M2, 1N} is a neutrosophic topological space on X . This implies

M1 ̸= 0N , M2 ̸= 0N , M1 ∨M2 = M1 ̸= 1N and M1 ∧M2 = M2 ̸= 0N where M1 and

M2 are neutrosophic open sets in N (X , τX ). Therefore M1 and M2 are neutrosophic

semi j-open sets. Hence N (X , τX ) is neutrosophic semi j-connected.

Example 4.5.4. Let X = {q, r} with τX = {0N , N1, N2, 1N} where

N1 = {< q, 0, 1, 1 >,< r, 1, 0, 0 >; q, r ∈ X}

N2 = {< q, 1, 0, 0 >,< r, 0, 1, 1 >; q, r ∈ X}.

Here we obtain N1 ∨ N2 = {< q, 1, 1, 0 >,< r, 1, 1, 0 >; q, r ∈ X} = 1N and N1 ∧

N2 = {< q, 0, 0, 1 >,< r, 0, 0, 1 >; q, r ∈ X} = 0N whereN1 andN2 are neutrosophic

open sets. Therefore, N1, N2 are neutrosophic semi j-open sets in N (X , τX ). Hence

N (X , τX ) is neutrosophic semi j-disconnected space.

Theorem 4.5.5. For a neutrosophic topological space N (X , τX ), the following state-

ments hold:

(i) N (X , τX ) is neutrosophic semi j-connected.

(ii) The only neutrosophic semi j-open and neutrosophic semi j-closed sets in N (X , τX )

are 0N and 1N .

Proof. (i) =⇒ (ii)

Assume (i). Let P be any neutrosophic subset in X , which is both neutrosophic semi j-
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open and neutrosophic semi j-closed. Then P and C(P ) are disjoint neutrosophic semi

j-open sets in N (X , τX ). Then, we have 1N = P ∨ C(P ). This implies P = 0N or

C(P ) = 0N . Hence either P = 0N or P = 1N .

(ii) =⇒ (i)

Assume N (X , τX ) is neutrosophic semi j-disconnected space. Then, we obtain 1N =

P1∨P2 and P1∧P2 = 0N , where P1 and P2 are nonempty neutrosophic semi j-open sets.

Since P1 = C(P2). Therefore, P1 is neutrosophic semi j-closed set which contradicts

(ii). Hence N (X , τX ) is neutrosophic semi j-connected.

Theorem 4.5.6. A neutrosophic subset P1 of a neutrosophic topological space N (X , τX )

is neutrosophic semi j-connected iff P1 is not the union of any two neutrosophic semi

j-separated sets.

Proof. Let S1 and S2 be neutrosophic semi j-separated sets such that P1 = S1 ∨ S2 and

N (X , τX ) be neutrosophic semi j-connected space. Therefore, N clsj(S1)∧S2 = 0N and

S1∧N clsj(S2) = 0N . Since S1 ≤ N clsj(S1), therefore S1∧S2 ≤ N clsj(S1)∧S2 = 0N .

Thus S1 ∧ S2 = 0N . Also, N clsj(S1) ≤ C(S1) = S1 and N clsj(S2) ≤ C(S2) =

S2.Hence NClsj(S1) = S1 and NClsj(S2) = S2. Therefore S1 and S2 are neutrosophic

semi j-closed sets. Thus S1 = C(S2) and S2 = C(S1) are disjoint neutrosophic semi

j-open sets. This implies P1 is not neutrosophic semi j-connected, which contradicts P1

is neutrosophic semi j-connected. Hence P1 is not the union of any two neutrosophic

semi j-separated sets.

Conversely, Assume P1 is not the union of any two neutrosophic semi j- separated

sets. Let (X , τX ) be neutrosophic semi j-disconnected space. Then, P1 = S1 ∨ S2,

where S1 and S2 are non-empty neutrosophic semi j-open sets in (X , τX ) such that

S1 ∧ S2 = 0N Since S1 ≤ C(S2) and S2 ≤ C(S1), NClsj(S1) ∧ S2 = C(S2) ∧

S1 = 0N . S1 ∧ N clsj ≤ S1 ∧ C(S1) = 0N . This implies S1 and S2 are neutrosophic

semi j-separated which contradicts our assumption. Hence P1 is neutrosophic semi j-

connected.

Theorem 4.5.7. In a neutrosophic topological space (X , τX ) if P is a neutrosophic semi

j-connected set, then N clsj(P ) is also neutrosophic semi j-connected.

69



Proof. Let P be a neutrosophic semi j-connected set. Assume N clsj(P ) is neutrosophic

semi j-disconnected. Then, we obtain N clsj(P ) = S1 ∨ S2, where S1 and S2 are neu-

trosophic semi j-separated sets in (X , τX ). Since P is neutrosophic semi j-connected

and P ≤ N clsj(P ) = S1 ∨ S2. We have P ≤ S1 or P ≤ S2. Since P ≤ S1, there-

fore N clsj(P ) ≤ N clsj(S1). This implies N clsj(P ) ∧ S2 ≤ N clsj(S1) ∧ S2 = 0N .

Therefore S2 ≤ C(N clsj(P )). Also S2 ≤ S1 ∨ S2 = N clsj(P ). This implies

S2 ≤ C(N clsj(P )) ∧ N clsj(P ) = 0N which contradicts S2 ̸= 0N . Similarly for

P ≤ S2, we get a contradiction to S1 ̸= 0N . Therefore N clsj(P ) is neutrosophic

semi-connected.

Theorem 4.5.8. If P is a neutrosophic semi j-connected set and S1, S2 are the neutro-

sophic semi j-separated sets in N (X , τX ) such that P ≤ S1 ∨ S2, then either P ≤ S1

or P ≤ S2.

Proof. Assume P ≰ S1 and P ≰ S2. Put P1 = S1∧P and P2 = S2∧P . Then P1 and P2

are non-empty neutrosophic subsets and P1∨P2 = (S1∧P )∨(S2∧P ) = (S1∨S2)∧P =

P , P ≤ S1 ∨ S2, since P1 ≤ S1, P2 ≤ S2, S1, S2 are neutrosophic semi j-separated sets,

N clsj(P1)∧ (P2) ≤ N clsj(S1)∧S2 = 0N and P1∧N clsj(P2) ≤ S1∧N clsj(S2) = 0N .

This implies P1 and P2 are neutrosophic semi j-separated sets such that P = P1 ∨ P2.

Therefore P is a neutrosophic semi j-disconnected set, which is a contradiction. Hence

either P ≤ S1 or P ≤ S2.

Theorem 4.5.9. Let P be a neutrosophic semi j-connected set in N (X , τX ). If P ≤

Q ≤ N clsj(P ), then Q is also neutrosophic semi j-connected.

Proof. Assume Q is neutrosophic semi j-disconnected in (X , τX ). Then we have Q =

S1 ∨ S2, where S1 ans S2 are non empty neutrosophic semi j-separated sets. Since

P ≤ Q = S1 ∨ S2. Therefore, by theorem 4.5.8, P ≤ S1 or P ≤ S2.

Let P ≤ S1, then N clsj(P ) ≤ N clsj(S1). Now N clsj(P )∧S2 ≤ N clsj(S1)∧S2 = 0N .

Thus, N clsj(P ) ∧ S2 = 0N . Also S1 ∨ S2 = Q also Q ≤ N clsj , S2 ≤ Q ≤ N clsj(P ).

Therefore, N clsj(P ) ∧ S2 = S2. Thus S2 = 0N which contradicts S2 ̸= 0N . Hence S2

is neutrosophic semi j-connected.
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Theorem 4.5.10. If P and Q are neutrosophic semi j-connected spaces in a neutrosophic

topological space N (X , τX ) with P ∧ Q ̸= 0N , then P ∨ Q is neutrosophic semi j-

connected space in N (X , τX ).

Proof. Let P∨Q be neutrosophic semi j-disconnected, then there exist two neutrosophic

semi j-separated sets S1 and S2 such that P ∨Q = S1∨S2. Now S1∧S2 ≤ NClsj(S1)∧

S2 = 0N . Since P ≤ P ∨Q = S1∨S2, Q ≤ P ∨Q = S1∨S2 and P, Q are neutrosophic

semi j-connected. Using theorem 4.5.8, P ≤ S1 or P ≤ S2 and Q ≤ S1 or Q ≤ S2.

(i) If P ≤ S1 and Q ≤ S1, then P ∨ Q ≤ S1. Thus P ∨ Q ≤ S1, since S1 ∧ S2 = 0N ,

we have S2 = 0N , which contradicts S2 ̸= 0N . Similarly, if P ≤ S2 and Q ≤ S2, we

get S1 = 0N which is a contradiction to S1 ̸= 0N .

(ii) If P ≤ S1 and Q ≤ S2, then P ∧Q ≤ S1∧S2 = 0N . Therefore P ∧Q = 0N , which

is a contradiction to P ∧ Q ̸= 0N . Similarly, we have a contradiction for P ≤ S2 and

Q ≤ S1. Hence P ∨Q is neutrosophic semi j-connected in (X , τX ).

4.6 Neutrosophic hyperconnected spaces

Definition 4.6.1. A neutrosophic topological space N (X , τX ), is said to be neutro-

sophic hyperconnected if for every non empty neutrosophic open subsets of N (X , τX )

is neutrosophic dense in X . Equivalently, N cl(P ) = 1N , for every neutrosophic open

set P in N (X , τX ).

Example 4.6.2. Consider X = {s1, s2} with τX = {0N , 1N , P1, P2, P3, P4}, where

P1 = {< s1, 0.2, 0.4, 0.3 >,< s2, 0.5, 0.1, 0.4 >, s1, s2 ∈ X},

P2 = {< s1, 0.1, 0.5, 0.6 >,< s2, 0.4, 0.2, 0.0 >, s1, s2 ∈ X},

P3 = {< s1, 0.2, 0.5, 0.3 >,< s2, 0.5, 0.2, 0.0 >, s1, s2 ∈ X},

P4 = {< s1, 0.1, 0.4, 0.6 >,< s2, 0.4, 0.1, 0.4 >, s1, s2 ∈ X}.

For this τX , we have N cl[P1] = 1N ,

N cl[P2] = 1N ,

N cl(P3) = 1N ,

N cl(P4) = 1N ,
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N cl(1N) = 1N .

Here every non empty neutrosophic open sets P1, P2, P3, P4, 1N are neutrosophic dense

in X . ie.,

Therefore N (X , τX ) is neutrosophic hyperconnected space.

Definition 4.6.3. A neutrosophic topological space N (X , τX ) is called as neutrosophic

extremally disconnected if the neutrosophic closure of each neutrosophic open set is

neutrosophic open in N (X , τX ).

Theorem 4.6.4. In a neutrosophic topological space N (X , τX ), every neutrosophic

hyperconnected space is neutrosophic extremally disconnected.

Proof. Let us take N (X , τX ) be neutrosophic hyperconnected space. Then for any neu-

trosophic open set P , we have N cl[P ] = 1N . This implies that N cl[P ] is neutrosophic

open, for every P in N (X , τX ). Therefore N (X , τX ) is neutrosophic extremally dis-

connected.

Remark 4.6.5. The following example shows that the converse of the above theorem

need not be true.

Example 4.6.6. Let X = {s} with τX = {0N , P1, P2, P3, P4, 1N}, where

P1 = {< s, 0.5, 0.3, 0.2 >; s ∈ X},

P2 = {< s, 0.2, 0.3, 0.5 >; s ∈ X},

P3 = {< s, 0.3, 0.3, 0.5 >; s ∈ X},

P4 = {< s, 0.5, 0.3, 0.5 >; s ∈ X}.

Here N cl[P1] = {< s, 0.5, 0.3, 0.2 >; s ∈ X},

N cl[P2] = {< s, 0.2, 0.3, 0.5 >; s ∈ X},

N cl(P3) = {< s, 0.5, 0.3, 0.5 >; s ∈ X},

N cl(P4) = {< s, 0.5, 0.3, 0.5 >; s ∈ X}.

Thus N cl[P1], N cl[P2], N cl(P3) and N cl(P4) are neutrosophic open but not neutro-

sophic dense, therefore N (X , τX ) is not neutrosophic hyperconnected.

Theorem 4.6.7. In a neutrosophic topological space N (X , τX ), the following proper-

ties are equivalent.
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(a) N (X , τX ) is neutrosophic hyperconnected.

(b) In N (X , τX ), the only neutrosophic regular open sets are 0N and 1N .

Proof. (a) =⇒ (b)

Let N (X , τX ) be a neutrosophic hyperconnected space. If P is a non-empty neu-

trosophic regular open set in N (X , τX ), then by the definition, P = N int[N cl[P ]].

This implies [N int[N cl[P ]]]C = [1N − N int[N cl[P ]]] = N cl[1N − N cl[P ]] =

N cl(C[P ]) = C[P ] ̸= 1N . Since P ̸= 0N . This is a contradiction to the assump-

tion. Hence, the only neutrosophic regular open sets in N (X , τX ) are 0N and 1N .

(b) =⇒ (a)

Assume that 0N and 1N are the only neutrosophic regular open subsets in N (X , τX ).

Suppose that N (X , τX ) is not neutrosophic hyperconnected. Then there exist a non

empty neutrosophic open subset P of X such that N cl[P ] ̸= 1N . This implies N cl[N int

[P ]] ̸= 1N . Therefore, we have N cl[N int[P ]] = 0N . This gives N cl[P ] = 0N . It con-

tradicts our assumption that N (X , τX ) is not neutrosophic hyperconnected . Hence

N (X , τX ) is neutrosophic hyperconnected space.,

Theorem 4.6.8. In a neutrosophic topological space N (X , τX ), Npcl(P ) = 1N for

every subset ∅ ≠ P ∈ NSO(X ).

Proof. Let P ∈ NSJO(X ). Then P contains a neutrosophic open set C. Therefore

C < P =⇒ N int(C) ≤ N int(P ) =⇒ N cl[N int(c)] ≤ N cl[N int(P )] since

N int(C) = C and N cl(C) = 1N . This implies N cl[N int(C)] = 1N . Therefore, IN ≤

N cl[N int(P )]. Thus N cl[N int(P )] = 1N . Hence Npcl[P ] = 1N in N (X , τX ).

Theorem 4.6.9. A neutrosophic topological space N (X , τX ) is neutrosophic hypercon-

nected if and only if for every neutrosophic subset of N (X , τX ) is either neutrosophic

dense or neutrosophic nowhere dense.

Proof. Suppose N (X , τX ) be a neutrosophic hyperconnected space and let P be any

neutrosophic subset of N (X , τX ) such that P ≤ 1N . Assume P is not neutrosophic

nowhere dense. This implies 1N − [N int[N cl[P ]]] ̸= 1N . Then N int[N cl[P ]] ̸= 0N .
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Therefore N cl[N int[N cl[P ]]] = 1N . Since N cl[N int[N cl[P ]]] = 1N ≤ N cl[P ].

Thus N cl[P ] = 1N . Hence P is neutrosophic dense set.

For the converse part, let 0N ̸= R be any neutrosophic open subset in N (X , τX ),

then P1 < N int[N cl[P1]] which implies that P1 is not neutrosophic nowhere dense set.

By hypothesis, P1 is neutrosophic dense.

Proposition 4.6.10. If N (X , τX ) is a neutrosophic hyperconnected space, then the in-

tersection of any two neutrosophic semi open sets is also neutrosophic semi open.

Proof. Let P1 and P2 be the two non empty neutrosophic semi open sets in a neu-

trosophic hyperconnected space N (X , τX ). Then, we have P1 ≤ N cl[N int[P1]] and

P2 ≤ N cl[N int[P2]]. It follows that, N cl[P1] = N cl[N int[P1]] = 1N & N cl[P2] =

N cl[N int[P2]] = 1N . Also we have P1 ∧ P2 ̸= 0N . Therefore, N cl[N int[P1 ∧ P2]] =

N cl[N int[P1]] ∧ N cl[N int[P2]] = 1N . This implies P1 ∧ P2 ≤ N cl[N int[P1]] ∧

N cl[N int[P2]] = N cl[N int[P1 ∧ P2]]. Hence P1 ∧ P2 is neutrosophic semi open

set.

Theorem 4.6.11. If N (X , τX ) is a neutrosophic hyperconnected space, then for any

neutrosophic subset P of N (X , τX ) is neutrosophic semi open if N int(P ) ̸= 0N .

Proof. Let N (X , τX ) be a neutrosophic hyperconnected space and P be any neutro-

sophic open subset of N (X , τX ), also N int(P ) ̸= 0N . This implies N cl[N int(P )] =

1N . Therefore, P ≤ N cl[N int(P )]. Hence every neutrosophic open subset P is neu-

trosophic semi open in N (X , τX ).

Theorem 4.6.12. For a neutrosophic topological space N (X , τX ), the following state-

ments are equivalent

(i) N (X , τX ) is neutrosophic hyperconnected space.

(ii) Each neutrosophic preopen set is neutrosophic dense set.

Proof. (i) =⇒ (ii)

Let 0N ̸= P be any neutrosophic pre open set in N (X , τX ). Then P ≤ N int[N cl(P )].
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We have N cl(P ) = N cl[N int(N cl(P ))] = 1N . This implies P is a neutrosophic

dense set.

(ii) =⇒ (i)

Let P be any neutrosophic preopen set and also neutrosophic dense set. Then N cl(P ) =

N cl[N int(N cl(P ))] = 1N . This implies that N (X , τX ) is neutrosophic hypercon-

nected.

Definition 4.6.13. A neutrosophic topological space N (X , τX ) is called as neutro-

sophic door space if and only if each subset of N (X , τX ) is either neutrosophic τX

open or neutrosophic τX closed.

Theorem 4.6.14. If a neutrosophic topological space N (X , τX ) is neutrosophic door

and neutrosophic hyperconnected, then the intersection of any two non empty neutro-

sophic semi open set P1 and P2 is also non empty (i.,e) P1 ∧ P2 ̸= 0N .

Proof. Let us take P1 and P2 be two non empty neutrosophic open subsets in N (X , τX ).

Assume that P1 ∧ P2 = 0N for some open sets P1 and P2. This implies that P1 ∧ P2 ∈

NSO(X ). Thus P1 ∧ P2 ̸= 0N , since N (X , τX ) is neutrosophic hyperconnected space.

Let P1 < P2 and P1 ∈ NSO(X ). If P2 ∈ NSO(X ), then N cl(P2) ∈ SO(X ),

since N (X , τX ) is neutrosophic door space. Thus P1 ∧ N cl(P2) = 0N which is a

contradiction. Hence P2 ∈ NSO(X ) and P1 ∧ P2 ̸= 0N .

Theorem 4.6.15. Let (X , τX ) is neutrosophic hyperconnected space. If f : N (X , τX ) →

N (Y , τY) is neutrosophic feebly continuous onto function then N (Y , τY) is neutro-

sophic hyperconnected.

Proof. Let f : N (X , τX ) → N (Y , τY) be a neutrosophic onto function and N (X , τX )

be a neutrosophic hyperconnected space. Assume that N (Y , τY) is not neutrosophic

hyperconnected space, then there exist two non empty disjoint neutrosophic open sets P1

and P2 such that P1∧P2 = 0N . This implies f−1(P1)∧f−1(P2) = 0N . Since f−1(P1) ̸=

0N and f−1(P2) ̸= 0N , then N int[f−1(P1)] ̸= 0N and N int[f−1(P2) ̸= 0N ]. We

have f−1(P1) ∧ f−1(P2) = 0N . This implies N int[f−1(P1)] ∧ N int[f−1(P2)] = 0N .
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Therefore N (X , τX ) is not neutrosophic hyperconnected which is prohibitive to our

assumption. Hence N (Y , τY) is neutrosophic hyperconnected.

Theorem 4.6.16. Let N (Y , τY) be a neutrosophic hyperconnected space. If f : N (X , τX )

→ N (Y , τY) is neutrosophic one-to-one function, then N (X , τX ) is neutrosophic hy-

perconnected.

Proof. Let P1 and P2 be the two non empty neutrosophic open subset of N (X , τX ).

Since f is neutrosophic open, then f(P1) and f(P2) are non empty neutrosophic open

sets in N (Y , τY). By hypothesis N (Y , τY) is neutrosophic hyperconnected space. There-

fore f−1(P1) ∧ f−1(P2) ̸= 0N . Since f is one-to-one, we have 0N ̸= f(P1) ∧ f(P2) =

f(P1∧P2). Therefore P1∧P2 ̸= 0N . Hence N (X , τX ) is neutrosophic hyperconnected

space.

Proposition 4.6.17. Let f : (X , τX ) → (Y , τY) be a neutrosophic semi continuous func-

tion from a neutrosophic topological space N (X , τX ) into neutrosophic hyperconnected

space N (Y , τY) . Then f is neutrosophic almost continuous function.

Proof. Let P be any neutrosophic open subset in N (Y , τY), then f−1(P ) is semi open

in N (X , τX ). By the hypothesis, N (Y , τY) is neutrosophic hyperconnected space. This

implies 0N and 1N are the only neutrosophic regular open sets in N (Y , τY). It gives

that f−1(1N) = 1N and f−1(0N) = 0N . Therefore, inverse image of every neutro-

sophic regular open set in N (Y , τY) is neutrosophic open set in N (X , τX ). Hence f is

neutrosophic almost continuous.

Theorem 4.6.18. Let f : N (X , τX ) → N (Y , τY) be a neutrosophic almost contin-

uous function from a neutrosophic hyperconnected space N (X , τX ) into neutrosophic

topological space N (Y , τY), N intf−1(Y) ̸= 0N for every neutrosophic open subset

0N ̸= P in N (Y , τY). Then f is neutrosophic semi continuous.

Proof. Since f is neutrosophic almost continuous function, then for each neutrosophic

regular open set P in N (Y , τY), there exists an inverse image f−1(P ) which is regular

open in N (X , τX ). By the hypothesis, N (X , τX ) is neutrosophic hyperconnected space
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with N intf−1(P ) ̸= 0N for any neutrosophic open set 0N ̸= P ∈ N (Y , τY). This

implies N cl[N intf−1(P )] = 1N . Therefore, we have f−1[P ] ≤ N cl[N int[f−1(P )]].

Thus f−1[P ] is neutrosophic semi open in N (X , τX ) for each neutrosophic open set P

in N (X , τX ).Hence f is neutrosophic semi continuous function.

Proposition 4.6.19. In a neutrosophic hyperconnected space N (X , τX ), if 0N ̸= P and

0N ̸= Q are any two neutrosophic open subsets of N (X , τX ), then P ∧ Q ̸= 0N for

every pair of neutrosophic open sets P and Q in N (X , τX ).

Proof. Suppose P ∧ Q = 0N , for any two neutrosophic open subsets P and Q in

N (X , τX ). This implies N cl(P )∧Q = 0N and N cl(P ) ̸= 1N . Since P is neutrosophic

open set in N (X , τX ). Therefore, P ≤ N cl(P ) =⇒ N int(P ) ≤ N int[N cl(P )] =⇒

P ≤ N int[N cl(P )] and P ̸= 0N , which implies N cl(P ) ̸= 1N . This contradicts our

assumption. Hence P ∧Q ̸= 0N .

Remark 4.6.20. The reverse of the above proposition need not be true as seen in the

following example.

Example 4.6.21. Let X = {s, t} and the neutrosophic subsets in X as follows,

S1 = {< s, 0.6, 0.4, 0.5 >,< t, 0.5, 0.3, 0.4 >, s, t ∈ X}

S2 = {< s, 0.3, 0.6, 0.5 >,< t, 0.4, 0.5, 0.6 >, s, t ∈ X}

S1 ∨ S2 = {< s, 0.6, 0.6, 0.5 >,< t, 0.5, 0.5, 0.4 >, s, t ∈ X}

S1 ∧ S2 = {< s, 0.3, 0.4, 0.5 >,< t, 0.4, 0.3, 0.6 >, s, t ∈ X}

Put τX = {0N , 1N , S1, S2, S1 ∨ S2, S1 ∧ S2} be a neutrosophic topological space on X .

Here we have N cl(S1 ∧ S2) = {< s, 0.4, 0.4, 0.5 >,< t, 0.5, 0.5, 0.6 >; s, t ∈ X} ̸=

1N . Clearly, N (X , τX ) is not neutrosophic hyperconnected space.

Proposition 4.6.22. Let 0N ̸= P and 0N ̸= Q be any two neutrosophic subsets in a

neutrosophic hyperconnected space N (X , τX ), then N cl[P ∧Q] = N cl[P ] ∧N cl[Q].

Proof. Since N (X , τX ) is neutrosophic hyperconnected space. Therefore, N cl[P ] =

1N and N cl[Q] = 1N . This implies N cl(P ) ∧N cl(Q) = 1N —— 1

Also, P ∧Q ̸= 0N implies N cl(P ∧Q) = 1N —–2

From 1 and 2, hence N cl(P ∧Q) = N cl(P ) ∧N cl(Q).
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Theorem 4.6.23. Neutrosophic feebly continuous function preserves neutrosophic hy-

perconnectedness.

Proof. Let f : N (X , τX ) → N (Y , τY) be a neutrosophic feebly continuous onto func-

tion. Take (X , τX ) as a neutrosophic hyperconnected space. Assume N (Y , τY) is not

neutrosophic hyperconnected space. Then, we obtain neutrosophic open sets 0N ̸= P1

and 0N ̸= P2 such that P1 ∧ P2 = 0N in N (Y , τY), which implies f−1(P1) ̸= 0N and

f−1(P2) ̸= 0N . This implies N int[f−1(P1)] ̸= 0N and N int[f−1(P2)] ̸= 0N . But we

obtain, f−1(P1) ∧ f−1(P2) = 0N and N int[f−1(P1)] ∧ N int[f−1(P2)] = 0N . This

implies N (X , τX ) is not neutrosophic hyperconnected. It contradicts our assumption.

Hence N (Y , τY) is neutrosophic hyperconnected space.

Proposition 4.6.24. If f : N (X , τX ) → N (Y , τY) is a neutrosophic feebly continu-

ous function from a neutrosophic hyperconnected space N (X , τX ) into neutrosophic

topological space N (Y , τY), then f is neutrosophic semi continuous function.

Proof. Let f be a neutrosophic feebly continuous function. Assume P is a neutrosophic

open subset in N (Y , τY) such that f−1(P ) ̸= 0N , which implies N int[f−1(P )] ̸= 0N .

Since N (X , τX ) is neutrosophic hyperconnected space, we have N cl[N int[f−1(P )] =

1N . This implies f−1(P ) ≤ N cl[N int[f−1(P )]]. Thus f−1(P ) is neutrosophic semi

j-open set in N (X , τX ) for each neutrosophic open set P in N (Y , τY). Hence f is

neutrosophic semi continuous function.

4.7 Neutrosophic semi j-hyperconnected spaces

Definition 4.7.1. A neutrosophic topological space N (X , τX ) is said to be neutrosophic

semi j-hyperconnected space if for each nonempty neutrosophic semi j-open subset P of

N (X , τX ) is neutrosophic semi j-dense in N (X , τX ). ie., N clsj(P ) = 1N for every P

in N (X , τX ).

Example 4.7.2. Let X = {s1, s2, s3} and the neutrosophic subsets P1, P2, P3 in X as

follows,
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P1 = {< s1, 0.1, 0.3, 0.2 >,< s2, 0.4, 0.1, 0.3 >,< s3, 0.3, 0.1, 0.2 >; s1, s2, s3 ∈ X},

P2 = {< s1, 0.1, 0.4, 0.5 >,< s2, 0.3, 0.1, 0.0 >,< s3, 0.2, 0.0, 0.1 >; s1, s2, s3 ∈ X},

P3 = {< s1, 0.2, 0.4, 0.2 >,< s2, 0.4, 0.1, 0.0 >,< s3, 0.3, 0.1, 0.0 >; s1, s2, s3 ∈ X}.

Put τX = {0N , P1, 1N}. Then the collection of neutrosophic semi j-open sets are 0N , 1N ,

P1∨P2 and P1∨P3. i.e.,P1 ≤ N cl[N int[Npcl[P1]]], P1∨P2 ≤ N cl[N int[Npcl[P1∨

P2]]] and P1 ∨ P3 ≤ N cl[N int[Npcl[P1 ∨ P2]]]. Here every non empty neutrosophic

semi j-open sets are neutrosophic semi j-dense in N (X , τX ). i.e., N clsj[P1] = 1N ,

N clsj[P1 ∨ P2] = 1N , N clsj[P1 ∨ P3] = 1N and N clsj[1N ] = 1N . Therefore a neu-

trosophic topological space τX = {0N , P1, 1N} is neutrosophic semi j-hyperconnected

space.

Theorem 4.7.3. In a neutrosophic topological space N (X , τX ), every neutrosophic

hyperconnected space is neutrosophic semi j-hyperconnected.

Proof. Let N (X , τX ) be a neutrosophic hyperconnected space and P be a neutrosophic

open subset of N (X , τX ). Then N cl[P ] = 1N . Since every neutrosophic open sets is

neutrosophic semi j-open set in N (X , τX ). This implies N clsj(P ) = 1N for each neu-

trosophic open set P in N (X , τX ). Hence N (X , τX ) is neutrosophic semi j-hyperconnected

space.

Theorem 4.7.4. Let N (X , τX ) be a neutrosophic topological space, then each of the

following statements are equivalent.

(a) N (X , τX ) is neutrosophic semi j-hyperconnected.

(b) N (X , τX ) has no two proper neutrosophic semi j-regular open or proper neutro-

sophic semi j-regular closed subset.

(c) N (X , τX ) has no proper disjoint neutrospohic semi j-open subsets P and Q such

that N clsj[P ] ∨Q = P ∨N clsj[Q] = 1N .

(d) N (X , τX ) has no proper neutrosophic semi j-closed subsets S and T such that

X = S ∨ T and N intsj[S] ∧ T = S ∧N intsj(T ) = 0N .

Proof. (a) =⇒ (b) Let 0N ̸= P be neutrosophic semi j-regular open subset in

N (X , τX ). Then P = N intsj[N clsj[P ]]. Since N (X , τX ) is a neutrosophic semi
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j-hyperconnected space. then N clsj[P ] = 1N . This implies P = N intsj[1N ] =

1N . Clearly P is not a proper neutrosophic semi j-regular open subset of X . Sim-

ilarly, N (X , τX ) cannot have a proper neutrosophic semi j-regular closed subset.

(b) =⇒ (c) Suppose P and Q are the neutrosophic subsets in N (X , τX ) and

P ∧ Q = 0N such that N clsj[P ] ∨Q = P ∨N clsj[Q] = 1N . This implies 0N ̸=

N clsj[P ] is the neutrosophic semi j-regular closed set in N (X , τX ). Since P∧Q =

0N and N clsj[P ] ∧Q = 0N =⇒ N clsj[P ] ̸= 1N which implies N (X , τX ) has a

proper neutrosophic semi j-regular closed subset P . This contradicts (b).

(c) =⇒ (d) Suppose, there exist two proper neutrosophic semi j-closed subset,

0N ̸= S and 0N ̸= T in X such that X = S∨T , N intsj(S)∧T = S∧N intsj(T ) =

0N . Then, we take P = 1N − S and Q = 1N − T are the two non-empty

neutrosophic semi j-open sets. Then N clsj[P ] ∨ Q = N clsj(1N − S) ∨ Q =

[1N −N intsj(S)] ∨Q = 1N . =⇒ N clsj[P ] ∨Q = 1N which contradicts (c).

(d) =⇒ (a) Suppose there exist a proper neutrosophic semi j-open set 0N ̸= P

of N (X , τX ) such that N clsj[P ] ̸= 1N . Then N intsj[N clsj[P ]] ̸= 1N . Take

S = N clsj[P ] and T = 1N −N intsj[N clsj[P ]]. This implies S∨T = N clsj[P ]∨

[1N −N intsj[N clsj[P ]]] = N clsj[P ] ∨ N clsj[1N −N clsj[P ]] =⇒ N clsj[P ] ∨

N clsj[C(S)] =⇒ S∨C(S) = 1N . Then N intsj[N clsj[P ]]∧[1N−N intsj[N clsj[P

]]] = 0N . =⇒ N clsj[P ]∧N intsj[1N−N intsj[N clsj[P ]]] = S∧N intsjN clsj[1N−

N clsj[P ]] = S ∧ N intsjN clsj [C(S)] = S ∧ C(S) = 0N . Since C(S) is neu-

trosophic semi j-open. Thus N (X , τX ) has two proper neutrosophic semi j-closed

sets S and T such that X = S ∨ T and N intsjS ∧ T = S ∧ N intsjC[T ] = 0N .

This is a contradiction to (d).

Theorem 4.7.5. In a neutrosophic semi j-hyperconnected space N (X , τX ). Let 0N ̸= P

and 0N ̸= Q be the two neutrosophic semi j-open subsets in X , then P ∧Q ̸= 0N .

Proof. Suppose P ∧ Q = 0N , for any neutrosophic semi j-open sets 0N ̸= P and

0N ̸= Q in X . Then N clsj[P ] ∧ Q = 0N . This implies P is not neutrosophic semi j-

dense. We have P is neutrosophic semi j-open then P ≤ N cl[N int[Npcl[P ]]] and
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P is not neutrosophic semi j-dense which is a contradiction to our assumption that

P ∧Q = 0N . Hence P ∧Q ̸= 0N .

Theorem 4.7.6. In a neutrosophic semi j-hyperconnected space N (X , τX ), intersection

of any two neutrosophic semi j-open sets are also neutrosophic semi j-open.

Proof. Let 0N ̸= P , 0N ̸= Q be the two neutrosophic semi j-open sets in a neutro-

sophic semi j-hyperconnected space N (X , τX ). Then P ≤ N cl[N int[Npcl[P ]]] and

Q ≤ N cl[N int[Npcl[Q]]]. We have N clsj[P ] = 1N and N clsj[Q] = 1N . This implies

N cl[N int[Npcl[P ]]] = N cl[N int[Npcl[Q]]] = 1N , also we have P ∧Q ̸= 0N . It fol-

lows that P∧Q ≤ N cl[N int[Npcl[P ]]]∧N cl[N int[Npcl[Q]]] = N cl[N int[Npcl[P∧

Q]]] = 1N . Therefore P ∧Q ≤ N cl[N int[Npcl[P ∧Q]]] = 1N . Hence P ∧Q is also

neutrosophic semi j-open.

Definition 4.7.7. A neutrosophic topological space N (X , τX ) is called as neutrosophic

extremally semi j-disconnected iff neutrosophic semi j-closure of every neutrosophic

semi j-open set is neutrosophic semi j-open set in N (X , τX ).

Theorem 4.7.8. In a neutrosophic topological space N (X , τX ), every neutrosophic

semi j-hyperconnected space is neutrosophic extremally semi j-disconnected.

Proof. Assume N (X , τX ) is a neutrosophic semi j-hyperconnected space. Then we

have, N clsj[P ] = 1N . This implies N clsj(P ) is neutrosophic semi j-open for every

P in N (X , τX ). Hence N (X , τX ) is a neutrosophic extremally semi j-disconnected

space.

Remark 4.7.9. The reverse of the above theorem may not be true as shown by the

following example.

Example 4.7.10. Let X = {s} and the neutrosophic subsets W1,W2 and W3 defined as

follows, W1 = {< s, 0.5, 0.4, 0.3 >, s ∈ X}

W2 = {< s, 0.5, 0.6, 0.7 >, s ∈ X}

W3 = {< s, 0.4, 0.4, 0.5 >, s ∈ X}

Taking τX = {0N , 1N ,W1,W2,W1∨W2} is a neutrosophic topological space on X . For

this τX , we have 0N , 1N ,W1,W2,W1∨W2,W1∨W3,W2∨W3 are the neutrosophic semi
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j-open sets. Here we obtain, N clsj(0N) = 0N , N clsj(1N) = 1N , N clsj(W1) = W1,

N clsj(W2) = W2,N clsj(W1 ∨W2) = 1N ,N clsj(W1 ∨W3) = W1 and N clsj(W2 ∨

W3) = 1N . Clearly N (X , τX ) is neutrosophic extremally semi j-disconnected but not

neutrosophic semi j-hyperconnected.

Theorem 4.7.11. In a neutrosophic topological space N (X , τX ), the following state-

ments are equivalent.

(i) N (X , τX ) is neutrosophic semi j-hyperconnected space.

(ii) For each neutrosophic subset P of N (X , τX ) is either neutrosophic semi j-dense or

neutrosophic semi j-nowhere dense set in N (X , τX ).

Proof. (i) =⇒ (ii)

Let N (X , τX ) be a neutrosophic semi j-hyperconnected space and P be any nonempty

neutrosophic subset such that P ≤ 1N . Assume P is not a neutrosophic semi j-nowhere

dense set. Then we have N intsj[N clsj(P )] ̸= 0N . This implies N clsj[N intsj[N clsj(P )]] =

1N . But we have N clsj[N intsj[N clsj(P )]] = 1N ≤ N clsj(P ). Thus N clsj(P ) = 1N .

Hence P is neutrosophic semi j-dense set.

(ii) =⇒ (i)

Let ∅ ≠ P1 be any neutrosophic semi j-open subset in N (X , τX ). Then we have

P1 ≤ N intsj(N clsj(P1)). Therefore, N intsj[N clsj(P1)] ̸= 0N . By hypothesis P1

is neutrosophic semi j-dense set. Thus N clsj(P1) = 1N for every P1 in N (X , τX ).

Hence N (X , τX ) is neutrosophic semi j-hyperconnected space.

4.8 Conclusion

This chapter conveyed the characteristics of neutrosophic semi j-open sets, neutro-

sophic semi j-closed sets, neutrosophic hyperconnectedness and neutrosophic semi j-

hyperconnectedness. Recently, neutrosophic sets have began to play a vital role by

helping in the analysis of real life situations. In future, neutrosophic hyperconnected

spaces will assist in determining solutions in each situations where indeterminancy oc-

curs as the main crisis.
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