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Abstract
This work is mainly concentrated on finite-time stability of multiterm fractional
system for 0 < α2 ≤ 1 < α1 ≤ 2 with multistate time delay. Considering the Caputo
derivative and generalized Gronwall inequality, we formulate the novel sufficient
conditions such that the multiterm nonlinear fractional system is finite time stable.
Further, we extend the result of stability in the finite range of time to the multiterm
fractional integro-differential system with multistate time delay for the same order by
obtaining some inequality using the Gronwall approach. Finally, from the examples,
the advantage of presented scheme can guarantee the stability in the finite range of
time of considered systems.
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1 Introduction
Fractional calculus has been utilized as a key to the description of discontinuity and sin-
gularity formation. After several years of development, it has gained a lot of attention
from physicists and mathematicians. We notice that fractional derivatives can be com-
posite in perspective of pure mathematics and attract increasing interest in establishing
the theoretical results and numerical approaches. Since the analysis and synthesis of frac-
tional derivatives have been recognized in a wide-ranging field of practical applications
in various applied sciences and have produced tremendous results. The core advantage
of fractional derivatives is that numerous interdisciplinary practical applications can be
easily formulated [1, 16, 25, 31].

Finite-time stability (FTS) is a more practical idea which is valuable to analyze the na-
ture of a system within a finite interval of time and it is an essential part in the study of
transient behavior of systems. Thus, it was extensively studied in both integer and frac-
tional differential systems. Time delay can occur in input, output, or the state variable.
The delay of state has appeared several times in physical systems and control problems
[15, 24, 29, 32, 34, 35, 40]. On the other hand, in a multistate system the conversion be-
tween the behaviors in each state will depend on the passage of time and on inputs of
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Abstract
This paper concentrates with the problem of stability in the finite range of time for nonlinear system with multi
term fractional-order and damping behavior. Utilizing the Mittag Leffler functions and generalized Gronwall
inequality (GI), a sufficient criteria that ensure the finite time stability (FTS) for both condition 0 < α1−α2 < 1 and
1≤ α1−α2 < 2. Finally, two numerical examples are carried out to verify the obtained results.
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1. Introduction
Calculus of fractional order (FO) is an extension for a

traditional calculus which deals with functionals containing
integer-order differentiation and integration. This notion has
been developed by Leibniz and L’Hopital in 1695 where frac-
tional derivatives was described. In recent years, FO systems
have considerable attraction due to their capability to model
complex phenomena. By using fractional derivative formu-
lations, physical systems can be modeled more accurately.
Also, fractional derivative can be used to modeling the struc-
tures in mathematical biology, several chemical processes
and problems related to engineering. In real situations, the
models generated by FO are more suitable rather than integer
order. Since it is possible to model a higher order system by
low order system by using FO derivatives. Application of
fractional calculus established in stochastic dynamical sys-
tems, controlled thermonuclear fusion and plasma physics,

image processing, nonlinear control theory [1, 7, 12, 19]. In
[2, 3, 5, 13, 17], one can refer the potential applications of
FO systems in physical problems description and control,
complex practical systems, etc.

The traditional stability concepts like asymptotic stabil-
ity, Lyapunov stability have been widely studied and these
are deals with the problem whose operations described over
the infinite interval of time [4, 10, 11, 18]. The concept of
asymptotic and exponential stability imply the convergence
of system’s state to an equilibrium position over the infinite
period. Most of the aforementioned results in many fields
consider the problems correlate to the performance of con-
vergency described over an interval of infinite period. But in
practical process, the predominant analysis is that the charac-
teristic of system in an interval of finite period, since it is too
many phyiscally usable than concerning infinite time. In such
case, the traditional methods are not appropriate. For such
kind, the FTS method is proposed in 1950s. There are two
kinds of stability concept over the interval of finite time. One
is FTS i.e., the system’s state of an asymptotic system reach
the equilibrium position in a finite period and another one is
fixed-time stability, that means the convergence time inter-
vals have an identical upper-bounds in domain. FTS method
is more practical and less conservative than the traditional
stability methods. Also, this method is more applicable for
analyzing the path of a system’s state remains within the pre-
scribed bounds over a finite interval of time. In comparison
with asymptotic and other type of stability, the FTS has been
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