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CHAPTER - 2

FINITE-TIME STABILITY OF MULTI-TERM NONLINEAR
FRACTIONAL-ORDER SYSTEMS

2.1 INTRODUCTION

This chapter discusses the system of multi-term fractional-order nonlinear problem
defined over the finite interval of time. Multi-term fractional-order differential sys-
tems are most important topic and it is one of the type of fractional differential
equations. It is a system of mixed ordinary and fractional differential equations and
having more than one fractional derivative. The FTS of nonlinear systems with single
Caputo fractional derivative have been analyzed in [104]. In [59], the authors investi-
gated the F'TS for the system of fractional-order with delay equation by utilizing the
Mittag-LefHer delay type matrix. Hei and Wu [39] analyzed the FTS for the impulsive
fractional delay system by proposed some sufficient conditions. By utilizing general-
ized Gronwall inequality, F'T'S for the time delayed systems with fractional-order have
been proposed in [50], also the concept of FTS has been analyzed for nonlinear delay
system of fractional-order in [80]. In [93], the authors studied the FTS results for
nonlinear fractional-order systems with discrete time delay. In above literatures, re-
searchers investigated the F'T'S of fractional systems involving single Caputo fractional
derivative. Motivated from the above, this work concentrated on the study of FTS
of fractional systems involving multiple Caputo fractional derivative. In this chapter,
the F'TS of the considered multi-term fractional-order nonlinear system is analyzed
by using generalized Gronwall inequality. The multi-term nonlinear fractional-order

problem described by
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§DMy(t) — A§Diy(t) = f(t,y(t), t € L,
y(0) = yo, ¥'(0) = y1, } (2.1.1)

where 0 < ap < 1 < a; <2, L =[0,T)and A € R f:LxR*"— R"is a
continuous nonlinear function.

(H1) : The function f(¢,y(t)) satisfies the following Lipschitz condition for M > 0,
such that || f(¢,y(1)|| < M|ly(t)|], Vte L, y € R™.

2.2 PRELIMINARIES

Definition 2.2.1. [81] Ezponential function for fractional-order with parameter a;

is defined as

2.2.1
giglp k111-+ 1 ( )

with oy >0, Re(ay) >0 and z € C.

For parameters aq and as

oo
Zk

By n(2) = kz% Fhar o7’ (2.2.2)

with oy, a9 € C, Re(ay) > 0, Re(ag) > 0, z € C. By choosing as = 1, E, 1(2) =
E,, (2).

Definition 2.2.2. [81] The Laplace transform for fractional derivative of h(t) interms
of Caputo is given by

m—1
L{SDMh(t)} = s* L (h s )

r=0
Furthermore, the Laplace transforms of Mittag-Leffler functions (2.2.1) and (2.2.2)

is given by
3041*1
L [qu,l(:l:)\tal)] (S) - ﬁ? Re<a1) > 07
L [t%77 By oy (£X9)] (5) = S‘Zl — Re(@) > 0, Re(az) > 0.

Definition 2.2.3. [60] System (2.1.1) is finite-time stable with respect to {to, L, 0, €},
iff v < implies ||y(t)|| < € for allt € L, where v = max{||y(0)], |y (0)||} is the

initial time of observation of system. Also, € and 0 are belongs to R*.



CHAPTER 2 15

Lemma 2.2.1. [25]
(1) There exist My and My which are greater than or equal to one such that for
any oy — as(€ RY) < 1,

1B —aza (AL 72| < My [|le]

Y

| By —ana1—as (AL 702)|| < My ||e]

here A indicates the matrix.

(2) Suppose oy — az(€ RY) > 1, then for vy =1,2,

HEal—Oéz,'y(Atal_OQ)H S He.Ato‘l*az

In addition, if A is a stability matriz, then 3 a constant N > 1 such thatt > 0
| Eay—ag (At 72)|[| < Ne ™ for 0 < oy — g < 1,
| Eay—ag (At 72| < e for 1 < a; —ap < 2,

where n be the greatest eigenvalue of A.
2.3 MAIN RESULTS

In this section, the FTS problem has been established for multi-term nonlinear
fractional system and multi-term fractional integrodifferential system for both cases

O<ar—as<landl<a;—ay <2.

2.3.1 FINITE-TIME STABILITY OF NONLINEAR FRACTIONAL
SYSTEM

Theorem 2.3.1. Choose 0 < a; —as < 1 with the assumption (H1), then fractional-
order system (2.1.1) is finite-time stable provided that

New [14 LA 97 4 1] oy oy (NM Ty — )=o) < 5. (2.3.1)

Proof. The solution of the considered system (2.1.1) attained with the help of Laplace

and inverse Laplace transform
y<t> = Z/OEaraz (.Atoqfaz) _ AyotalioQEalfag,alfaerl(AtalioQ)

t
+ty1Ea1—o¢272(AtOé1—a2) + / (t _ e)al_a2_1Eo¢1—a2,a1 (.A(t _ 9)041—042)
0
X £(6,4(60))a0. 23.2)
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Applying norm on the both sides of (2.3.2),
Iyl < ol || Bay—as (At =2) | + LAl g0l 217 || By —as,01-as+1 (At 72 |
A A P AR
([ B (A(E — 87| 1 £(6, 5(0)) ] 6. (2:33)
From Lemma 2.2.1, (2.3.3) becomes
ly@®I < llyoll Ne™™ + ||l lyoll %~ Ne™ + ||y [| tNe™
+ /t(t — gy 2Nt | £(9 4(6))]| d6. (2.3.4)
Using the hypothesis 0(Hl) in (2.3.4),
[yl < llyoll Ne™™ + [|A] lyol| t** 2> Ne™™
+ ||| tNe™™ + /t(t — )2 INe MM ||y(6) || do.
Now, e is multiplied both sides of 0the above inequality
"yl < N [llyoll + Al lyoll t7°2 + [l ¢]
+/zt — )1 2N e N ||y(0)]| d6. (2.3.5)
Now let 0
h(t) = e"[ly@ll,
v(t) = N [lyoll + Al llyoll e~ + [lyall¢] .
r(t) = NM.
On [0,7), v(t) is nondecreasing function. Hence utilizing the Lemma 1.6.2 to (2.3.5),
h(t) < 0(t)Ea—ay(r(t)T(aq — ag)t@1792)
< N [llyoll + AN lyoll 27 + [ly |1 ¢]
B\ —ay(NM T(ay — ag)t@1792),

Now from the h(t), which imply that

ly@I < Ne ™ [yl + Al llyoll 472 + ||ya || ¢]
B, —ay(NM Ty — ay)t@1792),

Then from the FTS condition

Iyl < Noe™™ [1+ A 172 4+ 1] Ea, 0, (NM T(aq — ag)t®722)).
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From (2.3.1), the above inequality becomes
ly(t)|| <€, VteL.

Hence, the system (2.1.1) is finite-time stable for 0 < a; — ay < 1. O

Theorem 2.3.2. If 1 < a; — as < 2 with (H1) holds. Then the system (2.1.1) is
finite-time stable provided that

e M1+ || Al 1272 + t] Egy—ay (M T(ar — ag)t™ ) < —, (2.3.6)

[STRNe)

for any t € [0,T).
Proof. From (2.3.3),
Iyl < yoll | Bar—a (At =2) || + [|AI| g0l 217 | By —a,01-ase1 (At 72 |
1 ol + [ (6= oy
(| B (AL = 872 [[£(6.(6))] 6. (237)
Now from Lemma 2.2.1 and hypothesis (H1), the inequality (2.3.7) becomes
WO < lyoll e + [LA] lgoll 21722~ + ]| £~
+/t(t — g)r—e2 Lm0 Nr14(9)]| d6. (2.3.8)
Now e is multiplied Oon each side of the above inequality

eyl < lwoll + 1A lyoll 27 + llunll¢

¢
—|—/(t — 0)6”70‘2*16’79]\4 ly(0)|| d6. (2.3.9)
0
Now let
ht) = ey,
o(t) = lyoll + Al llyoll £~ + [lya || ¢,
r(t) = M,

here v(t) is a nondecreasing function.

Using the above assumptions, (2.3.9) becomes
t

Wt < o(t) + () / (t — )21 [y(0) | .
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By utilizing the Lemma 1.6.2,

h(t) < 0(t)Eu, oy (r(t)(oq — ag)t@1722)

< [llyoll + 1Al ol %172 + llya |1 ¢]

Eoy—ay (M T(aq — ag)t®1792)),
Now utilizing the conditions of FTS,

ly@)|] < de ™ [1 + || At + t] Eo —oy(M T'(a; — ag)t(o‘l_o"")).
From the condition (2.3.6),

ly)|| <e V telL.

This is our required result. O

Corollary 2.3.1. The multi-term fractional linear equation,

y(O) = Yo, y,<0) =Y,
15 finite-time stable for 0 < a; — g < 1, 1f
Ne ™ [1+4 ||A[[ 172 +t] Eay—ay (IB| N T(og — ag)t®~2) < ¢ (2.3.11)

67
holds.
Proof. The solution y(t) of the system (2.3.10) as follows
y<t> = yOEal—a2(Atal_a2) _ Ayotal_azEal—ag,al—ag—i-l(Atal_a2)
t
By g (A7) 4 [ (= 0 B (Al 0))
0
xBy(0)do. (2.3.12)
Applying norm and Lemma 2.2.1 to (2.3.12),
WL < ol Ne™ + JA] [l #5722 Ne + [y | eNe ™
t
+/ (t = O) 12" Ne =D || B[ [ly(6)]| 6. (2.3.13)
0
Now each side of the above inequality is multiplied with e, then it becomes
t
eﬂt ”y(t)H < N [HyOH + ||AH ||y0]| T2 Hy1|| t] + N ||BH/O (t _ 6)a1—a2—1

xe™ ||y (6)| db. (2.3.14)
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Let h(t) = ™ [ly(®)l, v(t) = N {llyoll + Al lyoll %17 + flya |l 2
and 7(t) = N || B||, where v(t) is a nondecreasing function and hence from the Lemma

1.6.2,

h(t)

IN

() Bay—ao (1) (1 — ag)t@1702))
N {llyoll + 1Al lyoll £72 + [y |1 ¢]
Eu\—ay(N || B]| T — ap)tl@r=o2), (2.3.15)

N

Using the above, (2.3.14) becomes

Iy < e ™N [llyoll + I ANl [lyoll == + [lya | ¢]
By —ap (N ||B|| T(aq — ap)t@1722)), (2.3.16)

Utilizing the condition of FTS and (2.3.11)
ly(@)l <e Vel

Hence proved. O]
Corollary 2.3.2. System (2.3.10) is finite-time stable for 1 < ay — ay < 2, if

e [14 |A|[ 72 + ] Eay—a, (|1B]] T(r — ag)t™ ™) < (2.3.17)

€
57
holds.

Proof. Applying norm and Lemma 2.2.1 to (2.3.12),

t
WO < lolle™™ + A ol =26 4l 27+ [ (¢~ e
0
e "B ly(6)]| 6. (2.3.18)
Now, multiply €” on each sides of (2.3.18),
t
67775 ”y(t)” S [HyOH + H.AH Hy0|| T2 —+ ||y1|| t} + HB” /0 (t _ 0)041—042—1
e” |y ()] db. (2.3.19)

Consider, h(t) = e™ ly(t)|l, v(t) = [llyoll + Al llgoll %2 + [lya ]I 2]
and r(t) = || B]].

From the above notations, (2.3.19) becomes

h(t) < u(t)+r(t)/0t(t—9)“1a21e"9 |(6)|| 6. (2.3.20)
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Here, v(t) is a nondecreasing function. Hence from the Lemma 1.6.2,

h(t)

IN

V() Eay—a, (r(t)T(aq — ag)t(al_”))
< [lwoll + 1Al woll £ + [l |l ¢]
By (IB]| Ty — a)t*172)). (2.3.21)

N

From the condition (2.3.17), the required result is obtained and it is given by
WOl <e Vel

Hence proved. O

2.3.2 FINITE-TIME STABILITY OF FRACTIONAL INTEGROD-
IFFERENTIAL SYSTEM

Consider the multi-term fractional-order integrodifferential system

t
FDE) — AGDY0) = f(tyte) [ Hesyas. re L0
y(0) =y, y'(0) =,
where 0 < ay <1< oy <2, L=[0,a] and A € R*". Also, f € C[L x R" x R",R"|
and H € C[L x L x R" R"| satisfy

1ftz )l < Cillall+Caollyll, vt e L, z,y € R,
[H(t s, y(s)ll < Tilly@)l, s €[0.1]. (2.3.23)

Where 4, Cy and T7 are positive real constants.

Theorem 2.3.3. If 0 < a1 — ay < 1, then the multi-term fractional-order integrodif-
ferential system (2.3.22) is finite-time stable, if

Ne ™ [1+ [l A][ £ 4+ 1] Ba,—ay (NT T(on — a2)t™ ™) < =, (2.3.24)

SETING)

holds. Here T' = Cy + aC5T].
Proof. The solution for (2.3.22) is given by
Y(t) = YoFay—ay (A" ™) — Ayot™ ™ Eoy —ay.01—ap+1 (A7)

t
+ty1Eal_a2’2(‘Atalia2> T / <t - 9)a17a271Ea1—a2,a1 (A(t — 0>a17a2)
0

x f(6,y(0), /Ot H(0,s,y(s))ds)d6. (2.3.25)
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The norm applied for each side of (2.3.25)
Hy(t)H < HyOH HECV1—062(Ata1_a2)H + HAH ||y0|| A HEa1—a2,a1—a2+1(“4tal_a2>H

B t
+||y1||t||Ea1_a272(“4t0<1—a2)H+/ (t—@)al_a2_1
0

o ([ B (At — 022 wa,y(e), [ 0.5 as
(2.3.26)
From (2.3.23),
Hf(zf,yu), / Hit,s,y(s)ds)| < @l +aCoTi y)],
< Tyl (2.3.27)

Using the above inequality (2.3.26) becomes
@I < 190l | Bay—as (AL 22| + 1A 190l £ 7% || Bay —az.01 -a 41 (AL 72) |
gl ][ By (A7) | £ / (¢ — gym—ent
X || Bay-azan (At = 0)*72)[| T [[y(9)]| 6. (2.3.28)

Applying Lemma 2.2.1 and Multiplying ™ on each sides of (2.3.28),
t

eyt < v(t)+r(t)/0(t—9)a1“216"9Hy(9)ud9, (2.3.29)

where v(t) = N [||voll + [|All lyoll t** =% + ||y1| t], 7(t) = NT. Here v(t) is a nonde-

creasing function. Hence from the Lemma 1.6.2,
"yl < 0(t)Eay—an (r(T (ar — ag)t®1722))
< N [llyoll + I[Nl yoll 217 + [ly: |1 £]
Eu\—ay(NT T(ay — ap)t@1792), (2.3.30)

Now using the conditions of FTS and from (2.3.24),
ly()l <e VteL

Hence proved. O

Theorem 2.3.4. If 1 < oy — ay < 2 with (2.3.23), then multi-term fractional-order
system (2.3.22) is finite-time stable, if

e [14 ||t + ] Eay—a, (T T — ag)t™ ™) < (2.3.31)

€
57
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holds. Here T' = Cy + aC5T.

Proof. The solution of (2.3.22) is given by
y(t) = yOEal—az(AtOQ—az) _ Ayotal_azEal—ag,al—ag-i-l(Atal_(m)

t
Y1 By —ap 2( AL ) + / (t = )" 7" By g0 (A(t = 0)77%)
0

< F(0,y(0), /0 CH(O. 5. y(s))ds) 6. (2.3.32)

Applying the norm for (2.3.32),
Iyl < ol || Bay—as (At =2) | + 1A g0l 217 || By —as,01-as+1 (At 72 |

i t
+ ||y1|| t ||Ea1_a272(“4t0¢1—a2)H + / (t _ 0)&1—042—1
0

([ B —ams (At — 022 wa,y(e), [ 050919 as
(2.3.33)
From (2.3.23),
Hf(t,y<t>, / Hit,s,y(s)ds)| < O lwt)]l +aCoTi ()]
< Tyl (2.3.31)

Using the above inequality in (2.3.33),
@ < 190l | Bay—as (AL 22| + 1A 190l £ 7% || Bay 3,01 a1 (AL 72) |
gl € || Eay—ag 2 (AL~ || + /Ot(t — g)n—ea-l
X || Bar-azan (At = 0)*72) || T [[y(9)]| 6. (2.3.35)

Using Lemma 2.2.1 and multiplying each sides of (2.3.35) by e,
t

eyl < () +7”(t)/(t — 0y ||y(6)] do, (2.3.36)
0
where v(t) = [||lvoll + [|Al| llyol| 2= + ||ly1|| t], () = T. Here v(¢) is a nondecreasing
function. By using the Lemma 1.6.2 to (2.3.36),
"yl < 0(t)Eay—an (r(T (an — ag)t®1722))
< [llwoll + 14N lyoll %1742 + [|3 ]| £]
B —ao(T T(0q — ag)t@1702)), (2.3.37)
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Now using the conditions of FTS and from (2.3.31),
ly(t)|| <€, VteL.

Hence proved. O
2.4 NUMERICAL EXAMPLES

Example 2.4.1. Consider the system (2.1.1) of nonlinear multi-term fractional-order

system

§ Dy (t) — A § D2y (t) = f(t,y(t)), }
y(0) = v0,9'(0) = y1,

where iy = 1.25 and ay = 0.75. Let A = [ é 095 } and f(t,y(t)):{ y%%) +9 }

FEvidently, the hypothesis (H1) is satisfied for M = 1. Now using the above
considerations one can calculate n = 1 and || A|| = 1. Let us choose § = 0.05, N =
1.5,¢ =1, then from the condition (2.3.1) of the Theorem 2.3.1, the estimated time is

T ~ 0.2301.

Example 2.4.2. Consider the system (2.3.10) with a; = 1.25, g = 0.75,

A:{; g] andB:{g _01} Let us choose N =2, ¢ =1, § = 0.05. Now to

validate the FTS condition (2.3.11) with respect to n = 3, || A|| = 3.6503 and || B|| = 2.
Hence the inequality (2.3.11) implies

2714 1+ 3.650310% By s (7.001°7) < 20,
From Corollary 2.3.1, the attained estimated time is T ~ 0.502.

Example 2.4.3. Consider the integrodifferential fractional-order system

t
CDIZy(t) — A SDIToy(t) = y(t) + / 2 cos y(s)ds,
0
y(0) =0, ¢'(0) = 0.

1 -1 0
Now, consider the parameter A= | 0 0.5 2
0 1 3

From this parameter, || A|| = 3.7858, n = 3.6375 and T = 3. Let us choose 6 =
0.01, N = 1,e = 1, then from inequality (2.3.24), the estimated time of FTS is T =
0.122.



