
Chapter 7 



172 

CHAPTER 7 

PROPOSED MODEL: HYBRID ROUGH SET WITH 

INTUITIONISTIC FUZZY APPROXIMATION SPACE (RSF)- 

BASED DECISION SUPPORT SYSTEM FOR  

PESTICIDE RECOMMENDATION 

7.1 INTRODUCTION 

Incorrect use of pesticides for the treatment of leaf diseases and the elimination of 

pests in agricultural settings are discussed in this chapter. Among the numerous pesticide 

recommendation approaches described, the use of Rough Set (RS) inside an intuitionistic 

Fuzzy approximation space (RSF)-based decision support system with a Multi-Functional 

Logistic Neural Network (MFL-DCNN) model is discussed. At the end, it compares the 

suggested MFL-DCNN-RSF model to other popular models as CNN (Kosamkar et al. 2018), 

ANFIS (Kuzman et al. 2021), and NE protocol (Amgain et al. 2021). 

7.1.1 Techniques Used for Pesticide Recommendation 

Different techniques are used for pesticide recommendation. Some of the most 

common techniques include: 

 Pesticide recommendation systems are tools that provide personalized and

data-driven suggestions for selecting and applying pesticides to manage pests, and

diseases in agricultural and horticultural contexts. These systems leverage various

sources of information, including crop characteristics, pest identification, weather

conditions, and historical data, to help farmers make informed decisions about

pesticide use. However, there are currently no reliable pesticide prescription

methods available to farmers. This makes it difficult for them to effectively

combat pests and leaf diseases.

 Decision trees: These systems use a decision tree to determine which pesticide is

most appropriate (Teng & Savary 1992). The decision tree is a flowchart that

branches out based on the pest's characteristics and the crop being grown



173 

 Machine learning: Ip et al. (2018) found that ML may be used to create models that 

predict which insecticide would be most successful against a given pest. The models 

are educated using data that details the insect, the crop, and the chemical. 

 Rule-based systems: These systems use a set of rules to determine which pesticide is 

most appropriate for a particular pest. The rules are typically based on the pest's 

biology, the crop being grown, and the ecological conditions (Debaeke et al. 2009) 

7.1.2 Rule-based Decision Support Systems for Pesticide Recommendation 

Rule-based pesticide recommendation systems are relatively simple to develop and 

maintain. An example of a rule-based pesticide recommendation system is given below. 

IF pest = "aphid" AND crop = "tomato" THEN recommend pesticide "insecticide A" 

IF pest = "fungus" AND crop = "wheat" THEN recommend pesticide "fungicide B" 

This rule-based system would recommend insecticide A for aphids on tomatoes 

and fungicide B for fungi on wheat. Rule-based pesticide recommendation systems can 

be categorized into different types based on their underlying principles, methods of rule 

formulation, and complexity. Some common types are given below, 

7.1.2.1 Simple Threshold-based Systems 

These systems use fixed thresholds for pest population density, weather 

conditions, or other factors to trigger pesticide recommendations. For example, if pest 

population exceeds a predefined threshold, a recommendation for pesticide application is 

provided (Lynn 2019). 

7.1.2.2 Expert System-based Systems 

Expert systems rely on the knowledge and expertise of agronomists and 

entomologists to create rule sets. These rules often involve complex conditions and 

considerations, such as pest life cycles, crop growth stages, and weather interactions 

(Mansingh et al. 2007). 

7.1.2.3 Weather-Driven Systems 

These systems primarily base recommendations on weather conditions, as weather 

significantly influences pest development (Morin et al. 2018). Rules consider parameters like 

temperature, humidity, rainfall, and wind speed to determine appropriate pesticide actions. 
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7.1.2.4 Degree-Day Systems 

Degree-day systems calculate cumulative heat units (degree-days) to predict the 

development of pests and diseases. The accumulated degree-days are compared to critical 

thresholds to suggest the timing of pesticide applications (Chakravarty & Gautam 2004). 

7.1.2.5 GIS-Integrated Systems 

Geographic Information Systems (GIS) are used to integrate spatial data, such as 

soil types, topography, and land use, into recommendation systems. GIS-based systems 

provide location-specific recommendations based on spatial factors (Leh et al. 2013). 

7.1.2.6 Integrated Pest Management-IPM Systems 

IPM systems consider a holistic approach to pest management by combining 

multiple strategies, such as biological control, cultural practices, and pesticide use  

(Baker et al. 2020). Rules consider the hierarchy of interventions to determine the best 

course of action. 

7.1.2.7 Dynamic Systems with Learning 

These systems continuously update and refine rules based on user feedback and 

historical data. ML techniques may be used to adjust rule weights and improve 

recommendation accuracy over time (Kotsiantis et al. 2006). 

7.1.2.8 Sensor-Driven Systems 

Sensor-driven systems integrate data from IoT devices and sensors to provide 

real-time insights on pest populations and environmental conditions. Sensor data 

enhances the accuracy and responsiveness of recommendations (Mayton et al. 2017). 

7.1.2.9 Time-Series Analysis Systems 

These systems analyze historical time-series data, such as pest population trends, 

to make predictions and generate recommendations. Techniques like ARIMA  

(Auto-Regressive Integrated Moving Average) can be used to model temporal patterns 

(Khashei et al. 2009). 
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7.1.2.10 Fuzzy Logic Systems 

To deal with ambiguity and imprecision, fuzzy logic systems use  

linguistic variables and membership functions. Recommendations are made based on the 

evaluation of fuzzy inputs utilizing rules established using language words  

(for example, "low," "medium," and "high"). For instance, a system might use fuzzy logic 

to handle uncertainty while integrating weather data for accurate recommendations 

(Adriaenssens et al. 2004).  

Key components of a fuzzy logic decision systems include: 

 Input variables: Identify the relevant input variables that are important for the 

decision-making process. These variables can include weather factors  

(Some examples are temperature, humidity, rainfall), soil factors (Some examples 

are moisture content, nutrient levels), crop-specific parameters (Some examples 

are growth stage, pest/disease prevalence) and other relevant factors 

 Membership functions: Define linguistic terms and design membership functions 

for each input variable. Membership functions map the input values to their 

corresponding degrees of membership in the linguistic terms. These functions 

represent the fuzzy boundaries of the linguistic terms and capture the gradual 

transition from one term to another 

 Rule base: Develop a rule base that represents expert knowledge or  

decision-making guidelines. The building blocks of a fuzzy rule are an input 

condition and a subsequent outcome. These rules describe the relationships 

between the linguistic terms of the input variables and the desired output 

decisions. The rule base is typically constructed through expert consultations or 

by analyzing historical data 

 Fuzzy inference engine: Apply the fuzzy inference engine to process the input 

variables and fuzzy rules and determine the appropriate output decisions.  

The inference engine analyzes the input circumstances to determine the degrees of  
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truth of the fuzzy rules via the use of fuzzy logic operations including fuzzy 

AND, fuzzy OR, and fuzzy implication. Aggregation methods, such as max-min 

or max-product, are often used to combine the outputs of multiple rules 

 Output variables and defuzzification: Define the output variables that represent 

the decisions or actions to be taken based on the fuzzy inference. Assign linguistic 

terms to the output variables and design corresponding membership functions. 

The defuzzification process converts the fuzzy output into a crisp output value or 

decision that can be easily interpreted and implemented 

 Model evaluation and refinement: Assess the performance of the fuzzy intelligence 

decision system using appropriate evaluation metrics and real-world validation data. 

Refine the membership functions, rule base, or fuzzy inference engine based on the 

evaluation results to improve the system's accuracy and reliability 

 Decision implementation: Utilize the crisp output decisions obtained from the 

fuzzy intelligence decision system to guide agricultural management practices. 

These decisions can include irrigation scheduling, pest control measures, 

fertilization strategies, crop rotation plans, or other actions related to optimizing 

crop health, resource usage and yield 

The following are some of their key advantages: 

 Handling uncertainty and imprecision: Fuzzy logic-based approaches are well-

suited for managing uncertainty and imprecision inherent in agricultural data. 

Agricultural systems involve complex and uncertain variables, such as weather 

conditions, soil properties and crop health. It allows for the representation and 

processing of imprecise and vague information, enabling decision-making even 

when data is incomplete or uncertain 

 Incorporating expert knowledge: Fuzzy rule-based decision systems can 

effectively capture and utilize expert knowledge and experience. Agricultural 

experts possess valuable insights into crop management, pest control and other 

agricultural practices. Fuzzy systems provide a framework for encoding this 

knowledge into linguistic rules and membership functions, which can be applied 
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in decision-making processes. By incorporating expert knowledge, fuzzy systems 

enhance decision-making abilities and improve the accuracy of agricultural 

management practices 

 Flexibility and adaptability: Fuzzy rule-based decision systems offer flexibility 

and adaptability to changing agricultural conditions. The linguistic rules and 

membership functions can be easily modified or updated based on new data or 

evolving expert knowledge. This adaptability allows the system to respond to 

variations in crop growth, pest dynamics, climate patterns and other factors 

affecting agricultural operations 

 Transparency and interpretability: Fuzzy logic-based decision systems provide 

transparency and interpretability. The linguistic terms and fuzzy rules can be 

understood and interpreted by domain experts and stakeholders, making the 

decision-making process more transparent. The system's outputs, obtained 

through defuzzification, can be easily interpreted and explained, aiding in 

understanding the reasoning behind the decisions. This transparency enhances the 

stakeholders' trust and acceptance of the decision system 

 Integration of diverse variables: Fuzzy logic-based decision systems facilitate the 

integration of diverse variables in decision-making. Agricultural systems involve 

a wide range of interconnected factors, such as weather, soil conditions, crop 

health and management practices. Fuzzy systems can handle multiple input 

variables with linguistic terms, allowing for a holistic analysis and decision-

making process that considers the relationships between these variables 

 Optimization and resource efficiency: Fuzzy rule-based decision systems can 

optimize resource allocation and usage in agriculture. By considering multiple 

variables and their relationships, fuzzy systems can provide recommendations and 

decisions that minimize resource waste and maximize resource efficiency. It can 

be applied to irrigation management, fertilizer application, pest control strategies 

and other aspects of agricultural management, leading to improved productivity 

and sustainability 
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 Fuzzy logic-based decision systems in agriculture provide a framework to 

effectively manage agricultural uncertainties and incorporate expert knowledge into 

decision-making processes. By considering the imprecise and vague nature of agricultural 

data, these systems help farmers and stakeholders make more informed and optimized 

decisions, leading to improved agricultural productivity, resource efficiency and sustainability. 

However, these decision systems can be less accurate and robust in the pesticide 

recommendation using multidimensional features. A decision support system is developed 

using Rough Sets (RS) on intuitionistic Fuzzy approximation Space (RSF) to address this issue 

and aid in making well-informed judgements on the use of pesticides in agriculture. 

A. Rough Set on Intuitionistic Fuzzy Approximation Space-Based Decision  

Support System 

Fuzzification, training, and testing the RSF inference engine are the main 

responsibilities of this system. Initial steps include defining a fuzzy set, where each 

element's membership function may have values between 0,1  on a scale from most 

restrictive to most lenient. As can be seen in Fig. 7.1, fuzzy sets are a generalisation of 

crisp sets, which only allow for complete or complete non-membership. 

 

Fig. 7.1 Structure of RSF based Decision Support System 
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The fuzzy set was generated from the list of multi-dimensional data by 

𝑋 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, … , 𝑁, 𝑃, 𝐾,       (7.1) 

 Each input element is then mapped to a membership value (or membership 

degree) between 0 and 1 according to a membership function's specifications. Each 𝑋 

element is assigned a membership value between zero and one by the membership 

function, which is defined as: 

𝜇 𝑥 𝐻𝑖𝑔ℎ, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝐿𝑜𝑤       (7.2) 

(i) RSF System 

 Consider 𝑈 𝜑 is a quasi finite group of subjects known as space and 𝑥 is a 

particular component of 𝑈. For each given component 𝑋 of 𝑈, the Intuitionistic Fuzzy Set 

(ISF) 𝑥, 𝜇 𝑥 , 𝑣 𝑥 , where 𝜇 : 𝑈 → 0,1  and 𝑣 : 𝑈 → 0,1  are the levels of 

membership and non-membership, for all components 𝑥 ∈ 𝑈 such that 0 𝜇 𝑥

𝑣 𝑥 1. The spectrum of uncertainty, which might indicate membership or non-

membership, or both, is defined as 𝜋 𝑥 1 𝜇 𝑥 𝑣 𝑥 . Specifically, 

𝜇 𝑥 , 𝑣 𝑥  is utilized to define the ISF 𝑋. An intuitionistic fuzzy association 𝐼𝐴  on 

𝑈 is an ISF represented on 𝑈 𝑈  represented using the membership 𝜇  and the non-

membership 𝑣  in.Eq. (7.3). 

𝐼𝐴 𝜇 𝑥 , 𝑥 , 𝑣 𝑥 , 𝑥 𝑥 , 𝑥 ∈ 𝑈      (7.3) 

 Assuming the membership degree 𝜇 𝑥 , 𝑥  and the non-membership degree 

𝑣 𝑥 , 𝑥  between 2 features 𝑥  and 𝑥 , an 𝐼𝐴 on 𝑈 is said to be an intuitionistic fuzzy 

neighborhood association if and only if it meets the following requirements. 

1. 𝜇 𝑥 , 𝑥 1 and 𝑣 𝑥 , 𝑥 0 for each 𝑥 ∈ 𝑈. 

2. 𝜇 𝑥 , 𝑥 𝜇 𝑥 , 𝑥  and 𝑣 𝑥 , 𝑥 𝑣 𝑥 , 𝑥  for each 𝑥 , 𝑥 ∈ 𝑈. 

 Take into consideration 𝐽 𝛼, 𝛽 |𝛼, 𝛽 ∈ 0,1  and 0 𝛼 𝛽 1. After, for any 

𝛼, 𝛽 ∈ 𝐽, 𝛼, 𝛽 -cut is offer as 𝐼𝐴 , 𝑥 , 𝑥 𝜇 𝑥 , 𝑥 𝛼 𝑎𝑛𝑑 𝑣 𝑥 , 𝑥 𝛽 .  
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It has been noticed that the two characteristics 𝑥  and 𝑥  are 𝛼, 𝛽 -similar to 𝐼𝐴, when 

𝑥 , 𝑥 ∈ 𝐼𝐴 ,  and 𝑥 𝐼𝐴 , 𝑥  is defined.  

 Two characteristics Matching to 𝐼𝐴 with values of 𝑥  and 𝑥  is referred to as 

𝛼, 𝛽 , Whenever there exists a set of components 𝑢 , 𝑢 , … , 𝑢  in 𝑈 such that 

𝑥 𝐼𝐴 , 𝑢 , 𝑢 𝐼𝐴 , 𝑢 , … , 𝑢 𝐼𝐴 , 𝑥 . In this case, 𝑥  is shown to be a uniformity 

association 𝐼𝐴 , . A component 𝑥 in 𝑈 has uniformity class 𝐼𝐴 ,  if and only if 

𝑥 , . In this context, "IF approximation space" refers to the pair 𝑈, 𝐼𝐴 𝛼, 𝛽 .  

 Imagine 𝑋 ⊆ 𝑈. As a result, Eqns. (7.4) & (7.5) define the minimum and 

maximum 𝛼, 𝛽  approximation of 𝑋 in the generalized approximation space 𝐾

𝑈, 𝐼𝐴 𝛼, 𝛽  as 𝑋 , , 𝑋 ,  respectively.  

𝑋 , ∪ 𝑌 𝑌 ∈ 𝐼𝐴 ,
∗  𝑎𝑛𝑑 𝑌 ⊆ 𝑋       (7.4) 

𝑋 , ∪ 𝑌 𝑌 ∈ 𝐼𝐴 ,
∗  𝑎𝑛𝑑 𝑌 ∩ 𝑋 𝜑      (7.5) 

 A When 𝑋 , X ,  a set X is said to be (,)-rough. Similarly, a set X is said to be 

α, β -crisp if and only if X , X , . A set X is said to be α, β -rough if and only if 

the limit LIM , X , X ,  such that LIM , φ. 

(ii) Fuzzification 

 To achieve this goal, this method use the membership function provided by the 

fuzzy knowledge base to convert a granular input into a linguistic variable. Due to the 

fact that linguistic variables are represented as three distinct groups—low (L), medium 

(M), and high (H)—the triangle membership function is put to use. The method cannot 

function without input from the user. Significant parameters for selecting the most 

effective pesticide include compositional ranges across many dimensions. As shown in 

Table 7.1, such n-dimensional data is organized into three linguistic variables with values 

between 0 and 1. 
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Table 7.1 RSF-based Decision Input Variables for Weather and Soil Attributes 

Attributes Low (L) Moderate (M) High (H) 

Temperature 0 – 35 36 – 65 66 – 100 

RH 0 – 29 30 – 59 60 – 80 

RF 0 – 40 41 – 70 70 – 100 

WS 15 – 30 30 – 69 70 – 100 

SSH 0.2 – 0.45 0.46 – 0.7 0.71 – 1.0 

Soil moisture 10 – 25 25 – 40 40 – 60 

pH 0.1 – 0.3 0.3 – 0.6 0.6 – 1.0 

Nitrogen (N) 1.0 – 1.99 2.0 – 3.99 4.0 – 6.0 

Phosphorous (P) 0.15 – 0.35 0.36 – 0.59 0.60 – 0.80 

Pottasium (K) 0.1 – 2.49 2.50 – 4.49 4.50 – 8.50 

(iii) Determination of Membership and Non-Membership Functions  

 The greatest degree of indiscernibility across all characteristics is determined by 

the intuitionistic fuzzy tolerance. The RSF produces α, β  uniformity classes, α with 

denoting a degree of membership and β denoting a degree of non-membership. Better 

predictions of effective pesticides can be made when the degree of membership is high 

and the degree of non-membership is low. 

 If the value of belonging is 1, and the value of not belonging is 0 then, the model 

cannot interpret the data since each forecast may correctly contain a specific pesticide. 

The reason for this is because the feature values are quantitative in nature. The ranges of 

both the membership and non-membership associations are calculated such that the total 

falls inside the interval [0,1].  

 In this case, pesticide forecasting takes into account factors such as leaf diseases, pests, 

soil, and climate. Changing the values of α and β may cause a separation between these 

characteristics. As the range of α is decreased and the range of β is increased, gradually the 
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number of features will become more essential. Eqns. (7.6) & (7.7) explain the membership 

degree (μ) and the non-membership degree (v) between x  and x , respectively:  

μ x , x 1        (7.6) 

v x , x 1        (7.7) 

In Eqns. (7.6) & (7.7), V  denotes the value of x  for a particular crop a . 

(iv) Inference Engine and Knowledge Base 

 Developing, collecting, organizing, analyzing, and disseminating information are 

all functions of the knowledge base. A dataset plus a set of guidelines make up this.  

The data collection supplies the building blocks for establishing language variables and 

rules using IF-THEN decision-making structures. The dataset may be used to validate the 

IF (condition) parts of the rules in the knowledge base. Rule knowledge base in line with 

Mamdani rule generation may be used to anticipate the most effective pesticide for a 

specific leaf disease and insect. 

7.2 BUILDING THE PROPOSED MODEL 

 In order to provide educated pesticide recommendations, the MFL-DCNN 

classifier is used to detect leaf diseases and pests. The model is an Intuitionistic Fuzzy 

Approximation and was constructed using Rough Set. The Plant Village Dataset (PVD), 

soil, weather, pest and pesticide datasets provided in Chapter 3 is utilized for the 

experiments. The stages engaged in the proposed MFL-DCNN-RSF are shown in Fig 7.2, 

wherein dataset preparation is given in Chapter 4, and the high-resolution leaf disease 

image generation is presented in Chapter 5. Also, the third stage of classifying leaf 

diseases and pests is given in Chapter 6. The final stage such as the pesticide 

recommendation is performed using the proposed RSF-based decision support system. 
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Fig. 7.2 Block Diagram of the Proposed MFL-DCNN-RSF Model  

7.2.1 Pesticide Recommendation using RSF-based Decision Support System 

Steps from section 7.1.2.10 of the RSF decision support system are followed to 

determine which pesticides should be used once the MFL-DCNN classifier has been used 

to categorize leaf diseases and pests. Several examples of pesticides used to treat leaf 

diseases are shown in Table 7.2, along with the insects, soil, and climate that are linked to 

these illnesses. 

Table 7.2 Types of Pesticides Used for Different Leaf Diseases 

Leaf Disease 
Name 

Pest Name Soil & weather factors Pesticide Name 

Pepper bell 
bacterial spot 

Xanthomonas 
campestris 

High temperature, high RH, 
low pH, low nutrients 

Cuprofix 

Potato Early 
blight 

Alternaria solani High WS, high RH, high 
temperature, low pH, low 
nutrients 

Maneb 

Potato late 
blight 

Phytophthora 
infestans 

High moisture, low pH, low 
nutrients 

Mancozeb 
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Leaf Disease 
Name 

Pest Name Soil & weather factors Pesticide Name 

Tomato target 
spot 

Corynespora 
cassiicola 

High moisture, high RH, low 
nutrients 

Azoxystrobin 

Tomato mosaic 
virus 

Tomato mosaic 
virus 

High temperature, low pH, 
low nutrients 

Sulfoxaflor 

Tomato yellow 
leaf curl virus 

Tomato leaf curl 
virus 

High temperature, low pH, 
low nutrients 

Pyrafluquinazon 

Tomato 
bacterial spot 

Xanthomonas 
gardneri 

High temperature, high RH, 
low pH, low nutrients 

BASF Cabriotop 

Tomato early 
blight 

Alternaria 
tomatophila 

High WS, high RH, high 
temperature, low pH, low 
nutrients 

Bonide Liquid 
Copper 

Tomato late 
blight 

Phytophthora 
infestans 

High mositure, low pH, low 
nutrients 

Clutch 

Tomato leaf 
mold 

Passalora fulva High temperature, high RH, 
low pH, low nitrogen 

Spray 
chlorothalonil 

Tomato septoria 
leaf spot 

Septoria 
lycopersici 

Medium temperature, high 
RH, high RF, low pH, low 
nutrients 

Copper soap 

Tomato two 
spotted spider 
mite 

Tetranychidae High temperature, low RF, 
low RH, low pH, low 
nutrients 

Bifenthrin 

  

In this research, the RSF is trained to create rules, as given in Table 7.3, based on 

the multi-dimensional features for pesticide recommendation. The pest Xanthomonas 

campestris is to blame for bacterial spot disease in pepper bells if the following 

circumstances are met: (a) temperature is H, (b) relative humidity is H, (c) rainfall is L, 

(d) wind speed is M, (e) soil moisture is L, (f) pH is L, (g) nitrogen is L, (h) phosphorus 

is L, and (g) potassium is L. Therefore, the Cuprofix insecticide is suggested for 

protection against this nuisance. 
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Table 7.3 Rules of RSF System for Pesticide Recommendation 

Temperature RH RF WS SSH 
Soil 

moisture 
pH N P K Leaf diseases Pests Pesticide 

H H L M H L L L L L 
Pepper bell 

bacterial spot 
Xanthomonas 

campestris 
Cuprofix 

H H L H M H L L L L 
Potato Early 

blight 
Alternaria 

solani 
Maneb 

L L L L L H L L L L Potato late blight 
Phytophthora 

infestans 
Mancozeb 

M H L M M H L L L L 
Tomato target 

spot 
Corynespora 

cassiicola 
Azoxystrobin 

H M L L M M L L L L 
Tomato mosaic 

virus 
Tomato mosaic 

virus 
Sulfoxaflor 

H M L M H L L L L L 
Tomato yellow 
leaf curl virus 

Tomato leaf 
curl virus 

Pyrafluquinazon 

H H L L L L L L L L 
Tomato bacterial 

spot 
Xanthomonas 

gardneri 
BASF Cabriotop 

H H L H H L L L L L 
Tomato early 

blight 
Alternaria 

tomatophila 
Bonide Liquid 

Copper 
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Temperature RH RF WS SSH 
Soil 

moisture 
pH N P K Leaf diseases Pests Pesticide 

L L M L L H L L L L 
Tomato late 

blight 
Phytophthora 

infestans 
Clutch 

H H L H H L L L L L 
Tomato leaf 

mold 
Passalora fulva Spray chlorothalonil 

M H H L L M L L L L 
Tomato septoria 

leaf spot 
Septoria 

lycopersici 
Copper soap 

H L L L H L L L L L 
Tomato two 

spotted spider 
mite 

Tetranychidae Bifenthrin 

*Note: H – High; M – Medium; L – Low 
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7.3 RESULTS AND DISCUSSION 

 The metrics used to evaluate the proposed MFL-DCNN-RSF model's 

performance in comparison to the baseline models are shown below. Chapter 3 describes 

the datasets, metrics, and system settings used for assessment. Table 7.4 displays the 

precision, recall, f-measure, and accuracy values obtained from testing the MFL-DCNN-

RSF model on the multi-dimensional datasets. 

Table 7.4 Comparison of proposed MFL-DCNN-RSF Model 

Performance 
Evaluation Metrics 

CNN NE Protocol ANFIS MFL-DCNN-RSF 

Precision 0.8875 0.9048 0.9313 0.9871 

Recall 0.8901 0.9095 0.9542 0.9769 

F-measure 0.8888 0.9072 0.9428 0.9820 

Accuracy 88.95% 90.99% 95.31% 98.93% 

 

 

Fig. 7.3 Results of Proposed MFL-DCNN-RSF Model  
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Fig. 7.3 depicts a comparison of the proposed MFL-DCNN-RSF to other pesticide 

recommendation models evaluated on the same multi-dimensional dataset in terms of 

accuracy, recall, and f-measure. It is observed that the MFL-DCNN-RSF improves 

accuracy over the CNN, NE protocol, and ANFIS models by 11.22%, 9.1%, and 5.99%, 

respectively. When compared to the CNN and NE protocol models and the ANFIS 

model, the MFL-DCNN-RSF's recall is 9.75%, 7.41%, and 2.38% higher, respectively. 

The f-measure value of the MFL-DCNN-RSF is increased by 10.49%, 8.25% and 4.16% 

compared to the CNN, NE protocol and ANFIS models, respectively. This suggests that 

the MFL-DCNN-RSF is superior to other agricultural recommendation models in terms 

of increasing crop production via pesticide recommendations. 

 

 

Fig. 7.4 Accuracy Comparison of MFL-DCNN-RSF Model 

 In terms of the accuracy of various pesticide recommendation models tested on 

the considered multi-dimensional dataset as shown in Fig 7.4. Noted improvements in 

accuracy of 11.22%, 8.73%, and 3.8% over the CNN, NE protocol, and ANFIS models, 

respectively, are achieved by the MFL-DCNN-RSF. This is achieved because of using 

Intuitionistic fuzzy RSs to build a flexible and robust decision support system that 

handles the inherent uncertainty and vagueness in agricultural data. 
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7.4 SUMMARY 

 To summarize, this chapter presented the overview of rule-based decision support 

systems for agricultural applications. The RSF-based decision support system for 

pesticide recommendation is also discussed. For various classes of leaf diseases, pests, 

and pesticides, the performance of the models is analysed. Insecticide recommendations 

and disease classification for leaf crops using the proposed MFL-DCNN-RSF model  

are discussed. 

  


