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ABSTRACT 
The identification and classification of the crop leaf diseases plays an essential role in the 
cultivation. Plants are the livelihood. Peoples depend entirely on crops for the breathing of 
their daily lives. Thus, suitable crop caring should take place. Most research suggests that 
the quality of agricultural commodities can be restricted depending on different factors. Crop 
diseases include microorganisms and pathogens. The leaf diseases not only reduce crop 
growth, the cultivation is also destroyed. Several researchers have been identified crop 
leaf diseases using image processing algorithms but it take more time for detection. 
Therefore, advanced algorithms are required to identify and classify the crop leaf diseases 
automatically with higher accuracy. There are different deep learning algorithms using crop 
leaf images developed for automatically detecting the crop leaf diseases in an efficient 
manner. In this article, a survey on different deep learning algorithms using image processing 
for detecting and classifying the crop or plant leaf diseases is presented. Also, the merits and 
demerits of the surveyed algorithms for crop leaves diseases identification are addressed in a 
tabular form. Finally, a comprehensive analysis is concluded and future directions are 
suggested to increase the accuracy of leaf diseases classification. 
Keywords Crop pathology, Leaf diseases, Image processing, Deep learning, Disease 
classification 
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Abstract 
In agricultural operations, one of the main processes is to effectively identify and
classify the crop leaf diseases. In the past decades, many deep learning models have
been applied to feasibly and efficiently detect and classify the crop leaf diseases.
Among many models, a Dual-Attention and Topology-Fusion with Generative
Adversarial Network (DATFGAN) has achieved better accuracy to categorize the crop
leaf diseases based on the texture features. On the other hand, the GAN aims at training
a generator that models a mapping from a prior latent distribution to the real data
distribution. The DATFGAN training could be accelerated highly by developing
improved algorithm to coordinate generator and discriminator. Thus, it is crucial to
learn the spatial relationships across a series of observations. Therefore in this article,
Positional-aware DATFGAN (PDATFGAN) model is proposed to learn a coordinate
manifold that is orthogonal to the latent distribution manifold. In this model, a
Positional-aware GAN (PGAN) is introduced in which the generator creates images by
parts according to their spatial coordinates as the condition. Once a latent vector is
sampled, the generator conditions on every spatial coordinate and creates patches at
every resultant spatial location. Also, the discriminator learns to decide whether
neighboring patches are homogeneous and continuous across the edges between many
patches. After that, the created high-resolution image patches are combined to get the
full leaf image. Further, the leaf images are fed to the Deep Convolutional Neural
Network (DCNN) classifier for classifying the crop leaf diseases. So, conditional
coordination in DATFGAN can able to generate high-quality images than the quality of
DATFGAN only. This enables the low-quality image leaf disease classification more
robust. Using the generation by parts property, the PDATFGAN is greatly parallelable
and intrinsically inherits the standard divide-and-conquer design paradigm which
allows large field-of-view image generation. Finally, the experimental results reveal
that the PDATFGAN outperform the state-of-the-art deep learning models. 

Keywords—Crop leaf disease, Deep learning, DATFGAN, Conditional coordinates,
Spatial correlation, CNN. 

 
INTRODUCTION 

Leaves play a crucial role in crop production for providing data about the quantity and 
quality of crop yield. Various factors influence food production including global 
warming, weeds and soil erosion. Further, the development of a number of agricultural 
products and a source of economic losses pose a worldwide challenge to plant and leaf 
diseases [1]. The inadequacy of the usage of pesticide/fungicide results in a lack of 
identifying the infections/bacteria/virus in plants. So, plant leaf diseases have been 
commonly taken into account in the research field with an emphasis on the genetic 
characteristics of diseases. 

Precision agriculture incorporates the most sophisticated technologies for decision- 
making optimization. The visual analysis and biomedical examinations are typically 
performed by diagnosing plants when needed. But, this approach normally takes time and 
is economically unsuccessful. To solve these problems, advanced and intelligent 
techniques are required to identify the plant leaf diseases. The standard machine learning 
algorithms have been used in several researches to conduct the agricultural activities [2]. 
Nowadays, deep learning as a subcategory of machine learning has been remarkably 
successful in the identification and classification of real-life objects. As a result, an 
agricultural research has been progressed towards the deep learning-based solutions [3]. 
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ABSTRACT 

The classification of crop leaf diseases is the foremost essential task in agricultural activities 

since it may affect the crop productivity. To achieve this task, a Positional-aware Dual-

Attention and Topology-Fusion with Generative Adversarial Network (PDATFGAN) can 

create super-resolution images of crop leaves robustly. Also, Deep Convolutional Neural 

Network (DCNN) can classify these enhanced images into different types of leaf diseases. 

But, the adversarial learning objectives can have non-convergent boundary sets near 

equilibrium which reduces the generative efficiency. Therefore this proposes a new model 

called PDATF-Evolutionary GAN (PDATFEGAN) by using different objectives to equally 

optimize the generator and create the super-resolution images for classification. In this model, 

an EGAN is constructed which considers an adversarial learning process as an evolutionary 

problem. A discriminator can act as the atmosphere and a population of generators evolve 

related to the atmosphere. During every adversarial iteration, the discriminator is learned to 

identify actual and bogus image samples. Also, the generators who act as parents execute 

different mutations to produce the offspring and adapt to the atmosphere. To decrease 

different losses between the created distribution and the image distribution providing to 

various mutations, different adversarial objective functions are considered. Then, the quality 

and diversity of images generated by the updated offspring are computed for an optimal 
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In agricultural operations, one of the main processes is to effectively identify and classify the crop leaf 
diseases. In the past decades, many deep learning models have been applied to feasibly and efficiently 
detect and classify the crop leaf diseases. Among many models, a Dual-Attention and Topology-Fusion 
with Generative Adversarial Network (DATFGAN) has achieved better accuracy to categorize the crop 
leaf diseases based on the texture features. On the other hand, the GAN aims at training a generator that 
models a mapping from a prior latent distribution to the real data distribution. The DATFGAN training 
could be accelerated highly by developing improved algorithm to coordinate generator and 
discriminator. Thus, it is crucial to learn the spatial relationships across a series of observations. 
Thereforein this article, Positional-aware DATFGAN (PDATFGAN) model is proposed to learn a 
coordinate manifold that is orthogonal to the latent distribution manifold. In this model, a Positional-
aware GAN (PGAN) is introduced in which the generator creates images by parts according to their 
spatial coordinates as the condition. Once a latent vector is sampled, the generator conditions on every 
spatial coordinate and creates patches at every resultant spatial location. Also, the discriminator learns to 
decide whether neighboring patches are homogeneous and continuous across the edges between many 
patches. After that, the created high-resolution image patches are combined to get the full leaf image. 
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In agricultural applications, the most essential task is to classify leaf diseases and their 
associated pests from various aspects. To achieve this, a Deep Convolutional Neural 
Network (DCNN) model was developed to classify the leaf diseases based on the soil and 
climatic features. But it needs a recommendation system to control the pesticide use for 
controlling the leaf diseases caused by specific pests. Hence, this paper hybridizes the 
Multi-dimensional Feature Learning-based DCNN (MFL-DCNN) with the Rough Set (RS) 
on an intuitionistic Fuzzy approximation space (RSF)-based decision support system to 
suggest the proper pesticides for a certain crop to be planted in a particular region. First, the 
leaf images are augmented by the Positional-aware Dual-Attention and Topology-Fusion 
with Evolutionary Generative Adversarial Network (PDATFEGAN) model. Then, the 
multi-dimensional data such as the created leaf images, pest, soil, weather, and pesticide 
data are fed to the DCNN with a softmax classifier for classifying leaf diseases and related 
pests. Then, the RSF-based decision model is applied, which determines the correlation
between leaf disease and pests to recommend suitable pesticides. Finally, the experimental 
results reveal that the MFL-DCNN-RSF accomplishes a maximum efficiency than all other 
models for recommending pesticides to control leaf diseases and pests.

Keywords:
leaf diseases, PDATFEGAN, MFL-DCNN,
pesticide, fuzzy rule, rough set, intuitionistic 
fuzzy approximation space, recommendation 
system

1. INTRODUCTION

Crop productivity is endangered by many conditions, like 
environmental issues, crop diseases, and land erosion. The 
pathogenic illnesses of plants are worsened due to the growth 
of a wide range of natural commodities, and environmental 
degradation characteristics [1, 2]. Those illnesses are not 
appropriately recognized and diagnosed by human eyesight, 
which impacts yield productivity. To tackle this issue, 
Artificial Intelligence (AI) models including machine learning 
and deep learning algorithms have been adopted in crop/plant 
disease detection [3, 4]. The crop diseases are mostly 
identified by the leaves using a variety of methods. Many 
researchers have experienced the different machine learning 
algorithms for the detection and classification of various plant 
leaf diseases, including Support Vector Machine (SVM),
Artificial Neural Network (ANN), random forest, and so on [5,
6]. But these algorithms need separate mechanisms for each 
process like pre-processing, feature extraction, feature 
selection, and classification. This leads to high computational 
time complexity.

So, deep learning algorithms have been developed for the 
detection and classification of crop leaf diseases from a huge 
number of images. Mostly used deep learning algorithms are 
pre-trained DCNNs [7-9], e.g., VGG, AlexNet, GoogleNet, etc. 
These algorithms achieved better feasibility and efficiency in 
identifying and classifying leaf diseases. Alternatively, images 
captured from farms were blurred. Poor image quality may 
degrade the accuracy of pre-trained classifiers, which were 
trained on clear high-resolution images. To increase the 
accuracy of leaf disease classification, low-resolution images 

should be regenerated into high-resolution images. For this 
purpose, a variety of Generative Adversarial Network (GAN) 
models has been employed [10], which generate more high-
resolution images from the limited number of low-resolution 
images. Amongst, the GAN with the Dual-Attention and 
Topology-Fusion strategies called the DATFGAN model [11]
outperformed classical GAN models in terms of sharpness and 
image details. It can generate sharper leaf disease images 
precisely by eliminating artifacts or noisy textures for 
increasing classification accuracy. The generated high-
resolution leaf disease images were classified by the different 
pre-trained DCNN models to identify the types of diseases. In 
our previous works, the problems in the DATFGAN were 
solved: (a) the spatial correlation among the training images 
was learned with the position of disease region from the partial 
or whole leaf by the Positional-aware DATFGAN
(PDATFGAN) model [12], and (b) the non-convergent 
iteration and adversarial learning ability were further 
improved by the Positional-aware Dual-Attention and 
Topology-Fusion with Evolutionary Generative Adversarial 
Network (PDATFEGAN) model which adopts an 
Evolutionary GAN (EGAN) [13]. The EGAN considers many 
adversarial objective values to reduce the different errors 
observed between the distribution of created and actual images. 
But the classification of leaf diseases was not only effective to 
enhance crop productivity.

Identification of causes for leaf diseases was also essential 
to control both pests and their related diseases efficiently. So, 
a few researchers focused on identifying pests from the leaf 
pest images [14, 15] of different plants using deep learning 
models. But, additional factors like soil and weather attributes 
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