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CHAPTER 2 

LITERATURE SURVEY 

 Leaf diseases and pest detection have been the subject of a great deal of study for 

ages. This chapter provides a concise summary of the most recent findings in the fields of 

agricultural pest detection using AI models and pesticide/fertilizer recommendation 

systems, leaf disease detection using image processing with ML algorithms, and DLwith 

transfer learning algorithms. The issue of leaf disease diagnosis and pesticide prescription 

also has a significant knowledge gap because of this. 

2.1 PREAMBLE 

 Energy from plants has grown in importance as a means to combat climate 

change. One of the main threats to the economy is the spread of diseases that affect 

various crops. Bacteria, viruses and fungi are some of the pathogens that can lead to 

illness. Infections caused by different pathogens typically exist themselves with 

distinctive signs and symptoms, including localized lesions. When recognizing a 

pathogen, which is typically targeted by disease-specific lesions, symptoms become 

crucial. Historically, this approach to disease diagnosis has been widely employed. 

Developing countries like India, where a significant portion of the population still 

depends on agriculture for survival, have an urgent need to update their antiquated 

agricultural practises. 

 Monitoring with the naked eye is an outdated method that necessitates additional 

time to diagnose the disease and also requires expertise, so open analysis of the disease 

does not yield acceptable outcomes. It's also difficult to find a sufficient number of 

qualified individuals. Agricultural productivity, crop quality, and the agricultural 

economy are all directly affected by plant diseases, making research into efficient 

techniques of plant disease detection essential. To aid in the early diagnosis of leaf 

diseases and associated pests, image processing has emerged as a valuable tool, including 

several pre-processing and enhancement procedures. The automatic detection of diseases 

and pests is made possible by AI algorithms that learn from a large training set of images.  
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There remains potential for improvement in the detection accuracy of leaf diseases and 

pests, despite the fact that image processing and AI models may help. The challenges of 

early detection of leaf diseases and pests are investigated. 

 The rest of the chapter discusses various state-of-the-art studies associated with 

the different image processing algorithms and AI models in leaf diseases and pest 

detection, as well as pesticide/fertilizer recommendation systems in agriculture. 

2.2 LITERATURE ON MACHINE LEARNING MODELS FOR LEAF DISEASE 

DETECTION 

 Many researchers, first focusing on improving leaf disease pictures using image 

processing methods, then developing various ML models for leaf disease diagnosis.  

This section provides a critical analysis of a selection of research. 

 Detection of plant leaf diseases (Singh & Misra 2017) was performed based on 

the image segmentation and soft computing methods. At first, input leaf inputs were 

subjected to pre-processing in order to remove any undesirable distortions. After cutting 

the leaf picture, the desired image area was produced, and then the image was smoothed 

using a filter. Then, the threshold was chosen to mask the green coloured pixels and the 

masked pixels in the borders were omitted to segment the important sections by genetic 

algorithm. Furthermore, the collected portions were used in a classification system for 

leaf diseases. But its performance depends on the selection of threshold values. 

 Optimized weighted segmentation and feature selection approaches were 

proposed (Sharif et al., 2018) for the recognition and classification of citrus illnesses in 

agricultural settings. First, a weighted segmentation optimization was used to manually 

extract the citrus lesion sites. Then, different features such as colour, surface and 

symmetric features were merged. Also, the relevant features were picked by an ensemble 

PCA rate, entropy and covariance vector. Further, Multi-class SVM (M-SVM) was 

applied for categorizing the diseases of citrus plants. But it was not suitable for  

large-scale datasets because of high computation burden. 

 Plant disease identification (Sun et al. 2018) was presented using image 

processing method such as multiple linear regression. The threshold for segmenting 
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photos of leaf diseases was determined using an enhanced histogram segmentation 

approach. Features such as color, texture, and form were extracted by combining regional 

development with factual color picture analysis. Additionally, leaf illnesses were 

identified using a multiple linear regression classifier. Though it was simple and 

automated, it achieved very less accuracy. 

 ML and digital image processing methods were offered for disease detection in 

leaves (Ramesh et al., 2018). Initially, colour, form, and texture were extracted using the 

Histogram of Oriented Gradients (HOG) feature extraction technique. After that, the 

random forest classifier was used to assign labels to these characteristics. But it has a low 

degree of accuracy. 

 Bacterial foraging optimizer-based Radial Basis Function Neural Network 

(BRBFNN) is an innovative technique for detecting and labelling the region of interest 

(ROI) of various diseases on crop plants (Chouhan et al., 2018) has been created. First, 

the region expanding approach was used to do feature extraction by searching for and 

clustering together seed points with shared characteristics. Then, the RBFNN was trained 

by initializing the optimal weight values, which are chosen by the bacterial foraging 

optimizer to enhance the convergence speed and model efficiency. But its efficiency was 

not satisfactory since it relied only on fungal diseases. 

 Leaf diseases in plants may be identified and categorized using K-means and 

SVMs (Oo & Htun, 2018). Pre-processing, feature extraction, segmentation, image 

capture and classification are all part of the process. Images of diseased leaves were 

collected and processed beforehand to improve their clarity. The images were then 

divided into ROIs using K-means clustering. Grey Level Co-occurrence Matrix (GLCM) 

and Local Binary Pattern (LBP) are two features that were extracted from the segmented 

images. Diseases of the plant leaves were also identified using SVM, including Bacterial 

Blight, Cercospora Leaf Spot, Powdery Mildew, and Rust. But it was not fit for  

large-scale datasets. 

 A novel technique (Khan et al. 2019) was presented for apple disease detection 

and classification. First, a hybrid technique including 3D box filtering, de-correlation, a 

3D Gaussian filter, and a 3D median filter was used to enhance the spots on the apple 
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leaves. After the lesion areas were segmented using the robust correlation-based 

technique, the findings were fine-tuned using a fusion of Expectation Maximisation (EM) 

segmentation. Afterwards, distinct features were retrieved from the segmented images, 

then fused by the comparison-based parallel fusion. In addition, a genetic approach was 

used to choose the characteristics that were ultimately categorized using a one-vs-all  

M-SVM. But the computational cost was high for large-scale datasets. 

 A novel framework based on the combination of Simple Linear Iterative Cluster 

(SLIC) and SVM has been developed (Sun et al., 2019) to improve the extraction of the 

tea plant leaf infection saliency map in complicated situations. Super-pixel blocks were 

identified using SLIC, essential samples were identified using the Harris method, and the 

fuzzy salient area contour was derived using the convex hull technique. The conspicuous 

and contextual super-pixel blocks' 4D texture properties were then retrieved. The SVM 

used to assign labels to the super-pixel blocks ultimately generated the classification map. 

Saliency maps of pictures of sick leaves were obtained by recreating the super-pixel 

segments that had previously been identified using morphological and numerical 

algorithms. But its computational complexity was high for large-scale datasets. 

 Using an image processing and ML technique, Jaisakthi et al. (2019) proposed a 

system that can automatically identify illnesses in grapevines. The grabcut technique was 

first used to segment the picture of the leaf. Next, using global thresholding and  

semi-supervised techniques, the contaminated region of the resultant picture was 

extracted. In addition, SVM, AdaBoost, and random forests were used to extract and 

categorize the features. But these classifiers provide low performance for the dataset with 

noise and were not suitable for high-dimensional dataset. 

 To divide the ROIs, researchers at UC San Diego developed a unique fuzzy set 

extended from neutrosophic logic-based segmentation (Dhingra et al., 2019). After then, 

fuzzy membership factors were used to distinguish between these images. The divided 

regions served as the basis for extracting the characteristics used by several ML 

classifiers to identify diseased leaves. However, these classifiers did not do very well in 

terms of accuracy. 
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 Mango leaf infections were categorized into many groups (Pham et al., 2020). 

Wrapper-based attribute choice technique employing an Adaptive Particle-Grey  

Wolf metaheuristic (APGWO) was used to determine which features were crucial. In 

order to differentiate between unhealthy and healthy leaves, these features were input into 

a Multi-Layer Perceptron (MLP). However, this is only possible after careful adjustment 

of the MLP's settings, such as its layer count, hidden node size, and activation function. 

 Using image analysis and a Back-Propagation Neural Network (BPNN),  

Zhu et al. (2020) presented a technique for the automated identification of grape leaf 

diseases. Denoising the contaminated pictures was accomplished with the use of wiener 

filtering and the wavelet transform. Segmentation utilising the Otsu method was used to 

identify affected areas of grape leaves, and morphological approaches were used to enhance 

the lesion shape. The whole lesion edge was then extracted using the Prewitt operator. 

Diseases on grape leaves were detected using a three-tiered BPNN. However, there were 

only slight differences in the morphological aspects of the various lesions, making a 

definitive distinction between them impossible based on a limited number of parameters. 

 Artificial Bee Colony (ABC)-based feature selection and SVM have been 

investigated for their potential in disease identification and classification in grape leaves 

(Andrushia and Patricia, 2020). To begin, noise and background details were removed 

from the input images through a pre-processing step. Later, color, texture, and shape 

characteristics were extracted. The optimum feature set for grape foliar disease diagnosis 

was selected using the ABC technique, and then input into a SVM classifier. But it did 

not support the detection of other leaf diseases, results in poor generalizability. 

 An automated approach for distinguishing between early blight and late blight on 

potato leaves has been created using the graph-cut algorithm (Hou et al. 2021).  

Otsu thresholding was first used to remove foreground seeds, whereas color statistical 

thresholding on the a* and b* components was used to isolate background seeds.  

To get rid of the backdrops that are the same color as the affected area, it iteratively 

eliminated the superpixels that border the outline of the leaf if their entropies are distant 

from those of the primary section of the leaf. Subsequently, the L*a*b* channels were 

used to extract color characteristics from the improved ROI, while the local binary 
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pattern scheme was used to recover texture characteristics. In addition, many classifiers 

were used, including the KNN, SVM, ANN, and random forest, to locate the potato 

disease. But the feature extraction was difficult under irregular illumination, overlapping 

leaves, etc. 

 For the plants Jatropha Curcas L. and Pongamia Pinnata L., a leaf disease 

segmentation and classification system based on computer vision methods has been 

created (Chouhan et al., 2021). To begin separating the disease area from the leaf images, 

an Adaptive Linear neurone (ADALINE) was utilised. ADALINE is a superpixel 

clustering-based hybrid neural network. In order to identify leaf illnesses, several ML 

algorithms retrieved and categorized data based on color, shape, and texture. But the 

network parameters such as the connection weights between the layers were not 

optimized, which may influence the classification performance. 

 To automatically detect illnesses in tea leaves using image processing algorithms, 

a novel framework was created (Mukhopadhyay et al., 2021). First, photos of tea leaves 

were clustered using the Non-dominated Sorting Genetic Algorithm (NSGA-II) to 

identify the infected area. The segmented pictures were then put via PCA and M-SVM to 

choose the best characteristics and identify the various diseases. But its accuracy was not 

satisfactory due to the class imbalance problem. 

 A recognition of foliar diseases on corn leaves (Phan et al. 2022) was presented 

using a Simple Linear Iterative Clustering (SLIC) segmentation that generates 

superpixels, where a group of pixels defining the ROI on a corn leaf. Then, different  

pre-learned DL structures were applied to detect diseased areas related to various 

superpixel classes like healthy, background, etc. But it needs to utilize images of larger 

sizes for further enhancing the detection of multiple diseases per image. Table 2.1 

summarizes the aforementioned models based on their strengths and weaknesses. 
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Table 2.1 Comparison of Leaf Disease Detection Models based on Machine Learning 

Author & Year Models Benefits Limitations Dataset Used 

Singh & Misra 
(2017) 

Image pre-processing, 
clipping, clipping, 
smooting filter, genetic 
algorithm based 
segmentation and soft 
computing. 

Early detection of 
leaf diseases in 
plants is possible. 

Its performance depends on 
the selection of threshold 
values. 

Bacterial disease on rose leaves, 
bacterial disease on bean leaves, 
sunburn disease on lemon leaves, 
early scorch disease on banana 
leaves, and fungal disease on bean 
leaves. 

Sharif et al. 
(2018) 

Optimized weighted 
segmentation, ensemble 
PCA and M-SVM 

It can achieve 
better accuracy. 

It was not suitable for large-
scale datasets because of the 
high computation burden. 

Plant Village and Citrus Image 
Database of Infested Scales, as 
well as a combined collection of 
images of citrus diseases,  
are two such examples. 

Sun et al. (2018) Improved histogram 
segmentation, multiple 
linear regression 

It can be simple 
and suitable for 
small-scale 
datasets. 

It achieved very low 
accuracy. 

Images inside and outside the 
training libraries 

Ramesh et al. 
(2018) 

HOG feature extraction 
and random forest 
classifier 

It can be 
economically 
efficient. 

Its accuracy was not efficient. 300 leaf samples from both 
normal and infected parts of the 
field in the rural region of Panpoli 
village, Tamilnadu  

Chouhan et al. 
(2018) 

Region growing 
method and BRBFNN 

Better sensitivity 
and specificity. 

Its accuracy was not 
satisfactory since it relied 
only on fungal diseases. 

Common rust, cedar apple rot, late 
blight, leaf curl, leaf spot, and early 
blight are just some of the fungal 
diseases shown in these 270 pictures 
from the Plant Village collection. 
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Author & Year Models Benefits Limitations Dataset Used 

Oo & Htun 
(2018) 

Pre-processing, feature 
extraction and SVM 

It achieved better 
detection accuracy. 

It was not fit for large-scale 
datasets. 

Bacterial blight, Cercospora leaf 
spot, powdery mildew, and rust 
leaf disease on chile, grape, rice, 
soybean, wheat, rose, cotton, 
apple, mango, etc.; 560 picture 
samples taken; four classes. 

Khan et al. 
(2019) 

EM segmentation and 
one-vs-all M-SVM 

It achieved better 
accuracy. 

The computational cost was 
high. 

Images of both healthy and sick 
apple leaves, collected from the 
Plant Village collection. 

Sun et al. (2019) Combined SLIC and 
SVM 

It can achieve 
higher accuracy. 

Its computational complexity 
was high for large-scale 
datasets. 

Tea anthracnose, Tea brown blight, 
Tea netted blister blight, 
Exobasidium vexans Massee, and 
Pestalotiopsis theae are only a few 
of the 1308 samples infected with 
these five prevalent illnesses. 

Jaisakthi et al. 
(2019) 

Grabcut method, SVM, 
AdaBoost and random 
forests 

It achieved better 
performance while 
using small-scale 
datasets. 

These classifiers provide low 
performance for the dataset 
with noise and were not 
suitable for high-dimensional 
datasets. 

5675 grape leaf images from the 
Plant Village website 

Dhingra et al. 
(2019) 

New fuzzy set extended 
form of neutrosophic 
logic-based 
segmentation 

It can be most 
effective for small-
scale datasets. 

The accuracy of these 
classifiers was not highly 
effective. 

Images of basil leaves from the 
herbs garden at Punjab 
Agriculture University Ludhiana, 
including both healthy and sick 
specimens of Ocimum sanctum, 
Ocimum tenuiflorum, Ocimum 
basilicum, and Ocimum 
gratissimum. 
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Author & Year Models Benefits Limitations Dataset Used 

Pham et al. 
(2020) 

APGWO and MLP It has a simpler 
network structure, 
resulting in faster 
performance. 

It requires to fine-tune the 
MLP parameters: the number 
of layers, hidden nodes and 
the activation factor. 

Anthracnose, Gall midge, 
Powdery mildew, and Healthy 
Mango Leaves are the four 
categories for which 450 
photographs were gathered in 
Vietnam.  

Zhu et al. (2020) Otsu method, Prewitt 
operator and three-level 
BPNN 

It achieved high 
classification 
accuracy. 

The variances between the 
morphological characteristics 
of different lesions were 
small and so they cannot be 
completely differentiated by a 
few features. 

60 samples of grape disease 
leaves including leaf spot, 
Sphaceloma ampelinum de Bary, 
anthracnose, round spot, and 
downy mildew, were obtained 
from a farm in Zhengzhou City, 
Henan Province 

Andrushia and 
Patricia (2020) 

ABC feature selection 
and SVM 

Better accuracy and 
reliability. 

It did not support the 
detection of other leaf 
diseases, resulting in poor 
generalizability. 

A total of 350 images of diseased 
grapes, healthy grapes, grape 
esca, grape black rot, and grape 
leaf blight from the Plant Village 
dataset 

Hou et al. (2021) Otsu thresholding, 
KNN, SVM, ANN and 
random forest 

It can achieve the 
highest overall 
accuracy. 

The feature extraction was 
difficult under irregular 
illumination, overlapping 
leaves, etc. 

There were a total of 2840 images 
of potato leaves, categorized as 
either "healthy," "moderately 
affected," "severely affected," 
"generally affected," or 
"infected."  
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Author & Year Models Benefits Limitations Dataset Used 

Chouhan et al. 
(2021) 

ADALINE-based 
segmentation and ML 
classifiers 

It achieved higher 
average specificity, 
sensitivity and 
classification 
accuracy. 

The network parameters such 
as the connection weights 
between the layers were not 
optimized, which may 
influence the classification 
performance. 

There are a total of 133 images of 
healthy Jatropha Curcas L. leaves 
and 124 images of sick leaves, 
while there are a total of 322 
images of healthy Pongamia 
Pinnata L. leaves and 276 images 
of diseased ones. 

Mukhopadhyay 
et al. (2021) 

NSGA-II-based image 
clustering, PCA and M-
SVM 

It reduced pre-
processing 
complexity and 
execution 
overhead. 

Its accuracy was not 
satisfactory due to the class 
imbalance problem. 

Both diseased and healthy tea 
leaves, including those affected 
by red rust, red spider, thrips, 
helopeltis, and sunshine burn, 
were examined. 

Phan et al. 
(2022) 

SLIC segmentation  It can effectively 
detect diseased 
areas with the 
highest overall 
accuracy. 

It needs to utilize images of 
larger sizes to further enhance 
the detection of multiple 
diseases per image. 

Corn leaf images from the Plant 
Village and CD&S datasets 
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2.3 LITERATURE ON DEEP LEARNING BASED LEAF DISEASE DETECTION 

 For the purpose of identifying leaf diseases, several scientists have created  

unique DL models using transfer learning. Some of them are briefly discussed here. 

Sladojevic et al. (2016) proposed a new technique to disease categorisation in plants 

based on the DCNN. Initially, leaf photos were obtained independently for each plant 

disease. The captured pictures were then pre-processed so that the leaf region of interest 

(ROI) could be obtained, and augmentation was used to correct for any remaining 

distortions. A DCNN was then trained to identify normal and unhealthy leaves. But it was 

time-consuming and labour-intensive due to the independent processes. 

 DL model (Ferentinos 2018) was suggested for plant disease recognition and 

diagnosis. The author utilized the CNN model to recognize healthy and diseased leaf 

images. But its performance was degraded while the image quality was poor or blurry.  

A segmentation of corn leaf disease (Wang & Zhang 2018) was presented using Fully 

Convolutional Network (FCN). To begin, pre-processing and data improvement 

strategies were used to obtain training and testing datasets. The input image's dimensions 

were then sampled using the FCN, and the resulting feature map was obtained. 

Deconvolution was used to rebuild the segmented image, and the result was acquired by 

pixel-by-pixel classification of the upsampled feature map. But its accuracy was not 

effective and needs to recognize multiple leaf diseases. 

 An automated framework (Khan et al. 2018) was developed to segment and 

identify fruit crop diseases using correlation coefficient and DCNN features.  

The procedures included in this system are those of identifying diseased areas, extracting 

features from them, and classifying them. First, input picture was enhanced by hybrid 

method to segment the sick regions. In order to extract the characteristics of certain 

illnesses, next turned to VGG16 and AlexNet. A parallel feature fusion procedure was 

used to integrate the features, and the genetic algorithm was used to determine which 

characteristics were most important before an M-SVM classifier was used to make the 

final determination. But it needs more features to improve the recognition accuracy. 

 A symptom-wise recognition scheme (Ma et al. 2018) was presented for 

cucumber leaf diseases depending on DCNN model. To begin, images of cucumber 
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leaves showing illness signs were split from their clutter-filled backgrounds using  

an image segmentation technique. Next, the DCNN was taught to distinguish between 

diseases using the segmented images as input. However, it is not capable of early, 

simultaneous recognition of numerous disease types. 

 Instead of analyzing a whole leaf image, a plant infection detection system 

(Barbedo 2019) was built employing specific lesions and spots and a pre-learned CNN 

like GoogLeNet. But the number of images related to every infection differed highly 

because of the symptoms characteristics. Multiple tiny lesions or spots caused huge 

image collections, resulting in degrading overall model performance. 

 The Plant Disease Diagnosis and Severity Estimation Network (PD2SE-Net) was 

developed by Liang et al. (2019) as a computer-assisted network for estimating the 

severity of plant diseases; it makes use of the residual architecture and shuffle modules. 

This PD2SE-Net model's hyperparameters were also optimized for speed. The PD2SE-

Net model relied on a combination of the ResNet50 base model and shuffle units for its 

functionality. However, overfitting might be an issue if the dataset is broken into classes 

in a way that isn't intended. 

 Research into plant disease classification using enhanced CNNs was conducted 

(Hang et al., 2019). These CNNs combine the structure of inception modules such the 

squeeze-and-excitation module with the global pooling layer. The characteristics of the 

convolutional layer at various sizes were combined using the inception structure. 

Additionally, the FC layer was omitted in favor of global average pooling in order to 

reduce the total number of hyper-parameters. But it was difficult to categorize similar 

diseases since most of the areas in such diseased leaves were very identical. 

 A Multilayer CNN (MCNN) (Singh et al. 2019) has been presented for classifying 

the Anthracnose fungus in mango leaves. First, the well and diseased mango leaf images 

were acquired. After that, a normalised histogram was used to do preliminary processing, 

and the mid square scheme was used to reformat the images to standard dimensions. 

After training and testing, the MCNN-based ternary classifier was used to determine 

which leaf was diseased. However, the employment of the softmax function rendered  

its compatibility with the classification of numerous disorders ineffective. 
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 Highly facilitated DCNNs may be built using a Neuroph Studio model (Sibiya 

and Sumbwanyambe 2019) since convolution and pooling attribute mining are already 

included into the Neuroph files. In order to detect and categorize maize leaf diseases,  

a DCNN with 50 hidden layers was built. Back-propagation was also used in the learning 

process. However, it only takes RGB images into account, despite the necessity to 

evaluate the CNN's performance on grayscale images as well.  

 The RGB hyperspectral images (Nagasubramanian et al. 2019) was translated into 

the HSV colour space and partitioned the charcoal rot tissue using thresholding. Diseased 

soybean stem tissue was classified using the 3D-DCNN, which extracted features 

simultaneously across spatial and spectral coordinates. However, it was ineffective in 

terms of categorization. A method was created for automated recognition and 

classification of leaf spot disease in sugar beetroot leaves using a modified Faster Region-

based Convolutional Neural Network (FRCNN) (Ozguven and Adem 2019). However, in 

order to prevent the misclassifications, the CNN parameters must be optimized. 

 Multilateral Funding Increased The Cucumber Leaf Disease Identification CNN 

(GPDCNN) (Zhang et al. 2019) disease detection on cucumber leaves by combining 

dilated convolution and global pooling. The input image's multi-scale features were first 

extracted and combined using multi-scale convolutional kernels. The FC layer was then 

utilized to diagnose plant ailments. However, it must improve productivity by making use 

of probabilistic graphical frameworks. Tomato leaf infections may be identified using  

a DL-based ToLeD model (Agarwal et al., 2020) that consists of three convolution,  

three max-pooling, and two FC layers. But its accuracy was less because of the lower 

quantity of images.  

 Yu et al. (2020) introduced a unique method based on the ROI-aware DCNN for 

detecting illnesses in apple leaves. Before the VGG network could be used to categorize 

the leaf illnesses, two sub-networks, including an encoder-decoder network, had to be 

developed to partition the images that were input into distinct regions. After that, they 

were sent to a fresh training set that included class information according to leaf disease 

categories and ground truth images, where they were taught autonomously. After the two 

networks were fused and trained together, the projected ROI feature map was overlaid on 
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top of the original source picture. The last step in the process of detecting leaf infections 

was applying a stacked feature map to the sub-network. On the other hand, its accuracy 

was not satisfactory. 

It was recommended that the Convolutional Neural Network (CNN)  

(Hasan et al. 2020) be used to detect and categorize grape leaf illnesses. There were three 

stages to this system: acquisition, attribute training and categorization. First, image  

pre-processing was performed for enhancing the image regularity. After after, the images 

were used to teach the CNN about the many illnesses that might affect grape leaves. 

However, it was less accurate. 

In order to identify and quantify the stress generated by the biotic agents on coffee 

leaves, Esgario et al. (2020) proposed an approach that is both effective and practical. 

Included is a multi-tasking strategy that makes use of both data augmentation and CNN. 

However, this approach has certain limitations, chief among them the fact that the dataset 

only includes the most significant biotic pressures that coffee plants face. 

 To detect grape leaf diseases, a novel Dense Inception CNN (DICNN) was 

created (Liu et al., 2020). Images of sick grape leaves were gathered and then processed 

using a data augmentation technique to generate enough training images. To improve the 

generalisation efficacy, digital image processing technology was used to simulate the 

images in several scenarios. Then, a disease detection in grape leaves using DICNN;  

it has deep separable convolution, an Inception architecture, and a dense connection 

strategy. However, its significant temporal complexity might be attributed to the 

Inception architecture's many convolutional layers. 

 Many photos of sick grape leaves were generated for use in training the 

recognition models, thanks to a unique Leaf GAN model (Liu et al., 2020). At first, 

images of sick grape leaves were made using a producer with progressively more 

complex layers. When it came to distinguishing between original and replicated infected 

images, the differentiator turned to the dense connectivity approach and image 

regularization. Finally, the training process was stabilized with the help of the deep regret 

gradient penalty scheme. However, accurate identification during training necessitates the 

use of many types of images. 
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 A maize leaf feature improvement approach (Lv et al. 2020) was designed to 

boost the maize features under the complex situations. Then, a whole new DNN was 

created for disease detection in maize leaves, and it relied on AlexNet's centralized 

network architecture. This model's attribute mining performance was enhanced by 

combining dilated and multi-scale convolutions. Overfitting was avoided by using batch 

regularization to improve dependability. Adabound optimization and the Parametric 

ReLu (PReLU) activation factor were employed to improve convergence and accuracy. 

However, it must concurrently categorize additional types of maize pests and illnesses. 

 The MobileNetv2-YOLOv3 model has been reported for early disease detection of 

tomato gray leaf spot (Liu and Wang, 2020). The MobileNetv2 was used as the main network 

to facilitate the switch to mobile devices. To improve the model's generalizability, the pre-

learning approach of transfer learning was used. To improve the effectiveness of regression 

box for detecting tomato gray leaf spot, researchers substituted the Intersection Over Union 

(IoU) loss function with the Generalized Intersection Over Union (GIoU) loss function. But 

meteorological elements were essential for developing a multi-data fusion model to 

effectively improve early diagnosis of leaf diseases. 

 The Dual-Attention and Topology-Fusion with Generative Adversarial Network 

(DATAGAN) was developed (Dai et al., 2020) to enhance the quality of low-resolution 

images of leaves. The number of parameters was also reduced by using the weight sharing 

technique. As an added step, the resulting high-resolution images of leaf diseases were input 

into several pre-learned DCNN models for classification. But the spatial correlation across 

the image series should be learned for increasing the detection accuracy. 

 Grape and mango leaf disease identification by transfer learning using DL was 

reported (Rao et al., 2021). They used pre-learned CNN model such as AlexNet to 

recognize diseases in grape and mango leaf images. However, image quality had an effect 

on performance, and a recommendation system was required to advise the best course of 

action to eliminate the threat. 

 Automated and reliable leaf disease recognition model (Chowdhury et al. 2021) was 

presented using EfficientNet to categorize the segmented tomato leaf images into healthy and 

different kinds of tomato leaf diseases. However, its efficiency should be analyzed under 

more diverse circumstances. The identification of viral infections in the leaves of the Vigna 
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Mungo plant was demonstrated using a DL-based method that is both effective and  

non-destructive (Joshi et al., 2021). At first, the acquired picture collection of Vigna Mungo 

leaves belonging to several classes were segmented and supplemented. Then, a CNN named 

VirLeafNet was trained over the course of several epochs using different leaf pictures to 

distinguish between uninfected, mildly infected, and severely infected leaves. However, the 

dataset was very limited and the efficiency was less since it considered only viral diseases. 

 A technique for recognizing multiple fungi diseases of wheat shoots  

(Genaev et al. 2021) was presented using EfficientNet-B0 structure with transfer 

learning. However, due to the similarity between the visual signs of rust illnesses and 

those of other diseases as septoria and powdery mildew, cross-misclassification between 

these diseases sometimes occurred. 

 To identify tomato leaf diseases, a DL-based segmentation and classification of 

leaf images (Shoaib et al. 2022) was created. First, various U-Net designs were utilized to 

elect the best segmentation model by evaluating the segmented model mask with the 

images of ground truth masks. Then, InceptionNet was used to classify segmented tomato 

infected leaf images into different classes. It needs to integrate recommendation systems 

to further increase the crop yields by controlling leaf infections. 

 Predicting the disease class that would harm grape and tomato leaves was the primary 

motivation for the investigation of transfer learning for multi-crop leaf disease image 

categorisation (Paymode and Malode 2022). In order to identify characteristics and classify 

them as either healthy or sick, the Visual Geometry Group (VGG) model was developed.  

A thorough study of leaf images, however, requires the use of sophisticated CNN architectures. 

 An efficient DL model (Akbar et al. 2022) was developed for categorizing bacteriosis 

in peach leaves. Initially, healthy and bacteriosis peach leaves were acquired and pre-processed 

based on the image resizing, noise elimination, image enhancement, etc. Then, such images 

were given to the new LightWeight CNN called LWNet to categorize images into healthy and 

bacteriosis. But this model considered a limited number of labelled training images and may 

not be appropriate for infections that have not been observed before. 

 The above-studied models are summarized based on their benefits and limitations 

in Table 2.2. 
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Table 2.2 Comparison of Leaf Disease Detection Models based on Deep Learning 

Author & Year Models Benefits Limitations Dataset Used 

Sladojevic et al. 
(2016) 

Pre-processing, 
augmentation and 
DCNN 

It can automatically 
classify and detect 
leaf diseases. 

Its accuracy was not 
satisfactory. 

A database of 4483 images of 
healthy and diseased leaves for 
peach, apple and grape 

Ferentinos (2018) CNN It achieved the best 
success rate in 
identifying 
corresponding leaf 
diseases. 

Its sensitivity and specificity 
were degraded while the 
image quality was poor or 
blurry. 

The 87848 images in this public 
collection include 25 plant 
species and 58 types of [plant, 
disease] pairings. 

Wang & Zhang 
(2018) 

FCN Common corn leaf 
disease images may 
be segmented using 
this method.. 

Its accuracy was not 
effective and needs to 
recognize multiple leaf 
diseases. 

Six common illnesses are shown 
here, including corn leaf spot, tiny 
spot disease, leaf spot disease, 
brown spot disease, streak 
disease, and round spot disease, 
among 750 images of corn leaves. 

Khan et al. (2018) VGG16, AlexNet, 
parallel feature 
fusion and M-SVM 

It can achieve a 
higher sensitivity. 

It needs more features to 
improve the recognition 
accuracy. 

Plant village and CASC-IFW 
datasets 

Ma et al. (2018) DCNN 
(ShuffleNetV2) 

Its robustness and 
accuracy were 
efficient. 

It cannot recognize multiple 
types of diseases 
simultaneously. 

Four types of diseases may affect 
cucumbers, and this collection of 
1184 images shows them all: 
anthracnose, downy mildew, 
powdery mildew, and target  
leaf spots. 
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Author & Year Models Benefits Limitations Dataset Used 

Barbedo (2019) GoogLeNet It can be effective for 
detecting severely 
affected leaf diseases. 

Multiple tiny lesions or 
spots can degrade the overall 
model performance. 

A total of 1575 images and 46409 
images of various crop diseases 
for each plant/disease pair before 
and after subdivision, respectively

Liang et al. (2019) PD2SE-Net using 
ResNet50 

It enhanced detection 
accuracy. 

An overfitting problem can 
occur because of the 
undesired splitting of classes 
in the dataset. 

A dataset including 9 different 
plant species in both healthy and 
disease classes 

Hang et al. (2019) Enhanced CNN It can reduce the 
training time and the 
number of training 
parameters. 

It was difficult to categorize 
similar diseases since most 
of the areas in such diseased 
leaves were identical. 

Leaf illustrations representing 10 
different plant diseases 

 

Singh et al. (2019) MCNN-based 
ternary classifier 

It achieved a higher 
classification 
accuracy. 

Because it used the softmax 
function, it was inefficient at 
classifying various 
disorders. 

Using live, in-the-moment 
photography, researchers at 
India's Shri Mata Vaishno Devi 
University were able to acquire 
1070 images of both healthy and 
diseased Mango tree leaves. 

Sibiya and 
Sumbwanyambe 
(2019) 

Neuroph Studio 
model for DCNN 

It achieved 
satisfactory accuracy 
and feasibility. 

While evaluating the CNN's 
effectiveness with grayscale 
images, it only takes RGB 
images into account. 

100 colour images of disease and 
healthy leaves of maize crop 

Nagasubramanian 
et al. (2019) 

3D-DCNN It has better 
classification 
accuracy. 

Its F1 score was not high. There are 111 hyperspectral 
images of stems in a collection, 
64 of which depict healthy stems 
and 47 depicting sick ones. 
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Author & Year Models Benefits Limitations Dataset Used 

Ozguven and 
Adem (2019) 

FRCNN Its overall correct 
classification rate 
was satisfactory. 

In order to prevent 
misclassification, the CNN 
parameters must be 
optimized. 

155 images of sugar beet leaves 
were used to create the dataset; 38 
were of healthy leaves, 20 had 
moderate illness, 35 had severe 
disease, and 62 had a mixture of 
mild and severe disorders. 

Zhang et al. (2019) GPDCNN Convergence may be 
hastened and the 
recognition rate 
raised with its help. 

The use of probabilistic 
graphical frameworks is 
required to improve 
productivity. 

Real-world cucumber diseased 
leaf image dataset 

Agarwal et al. 
(2020) 

ToLeD model It has less 
complexity. 

Its accuracy was less 
because of the lower 
quantity of images. 

Images of tomato diseases from 
plant village dataset 

Yu et al. (2020) ROI-aware encoder-
decoder network 
and VGG 

It can reduce the 
complexity. 

Its accuracy was not 
satisfactory. 

Apple leaf images provided by 
the Apple Research Institute in 
South Korea 

Hasan et al. (2020) CNN Less computation 
time and complexity. 

Accuracy was less. Kaggle dataset includes 1,000 
images of healthy, Black Rot, 
Esca, and Leaf Blight grape 
leaves. 

Esgario et al. 
(2020) 

Multi-task method 
using data 
augmentation and 
CNN 

It can be more robust 
and accurate. 

The dataset only included 
the most significant biotic 
stressors experienced by 
coffee trees, which limited 
its usefulness. 

A total of 1747 images of coffee 
leaves including healthy leaves 
and diseased leaves, were 
collected in different regions in 
Brazil  



63 

Author & Year Models Benefits Limitations Dataset Used 

Liu et al. (2020) DICNN Improved robustness 
and recognition 
performance were 
attained. 

The Inception architecture's 
great temporal complexity 
may be attributed mostly to 
the enormous number of 
convolutional layers it 
employs. 

A total of 7669 images of grape 
leaves are either infected with 
anthracnose, brown spot, mites, 
black rot, downy mildew, leaf 
blight, or are otherwise healthy. 

Liu et al. (2020) Leaf GAN It can effectively 
improve the detection 
accuracy. 

Effective identification 
during training necessitates 
the use of many types of 
images. 

The Plant Village dataset was 
mined for a total of 4062 images 
of grape leaf diseases, comprising 
1180 Black rot images, 1383 Esca 
measles images, 1076 Leaf spot 
images, and 423 healthy leaf 
images 

Lv et al. (2020) Combined Dilated 
and Multi-Scale 
convolution (DMS)-
robust AlexNet 

It achieved high 
accuracy and strong 
robustness. 

Concurrently identifying and 
classifying maize pests and 
diseases is essential. 

The majority of the 7193 maize 
leaf disease images gathered from 
the Plant Village collection fall 
into the following categories: 
common rust, grey leaf spot, 
northern leaf blight, zinc 
deficiency, round spot, autumn 
army worm, and healthy. 

Liu and Wang 
(2020) 

MobileNetv2-
YOLOv3 

It detected gray leaf 
marks on tomatoes in 
real time while 
maintaining a high 
degree of accuracy. 

A multi-data fusion model 
for effective early leaf 
disease detection required 
weather components. 

A total of 2385 tomato gray leaf 
spot images 
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Author & Year Models Benefits Limitations Dataset Used 

Dai et al. (2020) DATAGAN It achieved better 
accuracy by using 
high-resolution leaf 
images. 

Improving detection 
accuracy requires training 
on the spatial correlation 
between images in a 
sequence. 

Plant Disease Recognition 
Competition of the 2018 AI 
Challenger DIV2K Dataset and 
1350 Crop Leaf Disease Images 

Rao et al. (2021) AlexNet It achieved the 
maximum detection 
accuracy. 

A recommendation system 
was required to advise on 
the best course of action to 
take since poor the image 
quality was hindering 
performance. 

The Plant Village collection 
contains 8438 images of sick and 
healthy grape and mango leaves. 

Chowdhury et al. 
(2021) 

EfficientNet It has the highest 
classification 
accuracy. 

Its efficiency should be 
analyzed under more diverse 
circumstances. 

A total of 18161 tomato leaf 
images for healthy and different 
disease classes 

Joshi et al. (2021) VirLeafNet All classification of 
leaf images was done 
automatically, 
without any 
destruction, and in 
real time. 

The dataset was very limited 
and the efficiency was less 
since it considered only viral 
diseases. 

A total of 433 images of Vigna 
mango leaves are divided into 
three groups: healthy, mildly 
diseased, and severely infected. 

Genaev et al. 
(2021) 

EfficientNet-B0 It achieved better 
accuracy and reduced 
the degeneracy of 
training data. 

Due of the similarity in 
appearance, rust infections 
and others like septoria and 
powdery mildew were 
sometimes misdiagnosed as 
one another. 

This 2414-image set depicts 
several wheat fungal infections. 
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Author & Year Models Benefits Limitations Dataset Used 

Shoaib et al. 
(2022) 

U-Net and 
InceptionNet 

It achieved the 
maximum detection 
accuracy. 

It needs to integrate 
recommendation systems to 
further increase crop yields 
by controlling leaf 
infections. 

Including both healthy and sick 
tomato leaf images, the 18161-
image Plant Village dataset is 
available for analysis. 

Paymode and 
Malode (2022) 

VGG It achieved better 
accuracy. 

A thorough study of leaf 
images requires the use of 
sophisticated CNN 
architectures. 

A total of 54303 images of crop 
leaves from 152 crop solutions 
representing 38 crop classes and 
19 crop categories were included 
in the Plantvillage collection. 

Akbar et al. (2022) LWNet It can be more 
effective and achieve 
maximum 
classification 
accuracy. 

It considered a limited 
number of labeled training 
images and may not be 
appropriate for infections 
that have not been observed 
before. 

A dataset consists of 10000 peach 
leaf images including 4500 
Bacteriosis and 5500 healthy 
images 
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2.4 LITERATURE ON PEST DETECTION USING ARTIFICIAL INTELLIGENCE 

TECHNIQUES 

 Some academics had focused on detecting pests using DL models. A detailed 

review of some studies is presented in this section. Using a saliency map and DCNN 

training, Liu et al. (2016) presented a method for the automated detection and 

identification of pests in agricultural settings using visual data. After that, bounding box 

was extracted, resized and utilized to create a huge dataset named PestID. Such dataset 

was considered to learn image characteristics and categorize pest classes. But its accuracy 

was not effective since it needs to consider a finer search in the saliency maps.  

In a complicated setting, a pest identification model was demonstrated using deep 

residual learning (Cheng et al., 2017). To distinguish the pests from the farm's complex 

backdrop, they employed CNNs and deep residual learning models. However, when 

CNN's depth was increased, accuracy was sacrificed.  

A reliable DL-based identifier (Fuentes et al. 2018) has been developed to 

recognize the real-world tomato crop illnesses and insects. Together with VGG and 

ResNet, this model used the FRCNN, R-FCN, and SSD (Single Shot Multibox Detector). 

In addition, a strategy for improving learning efficiency and decreasing mistakes via 

picture magnification, label notation of nearby objects, and global label notation were 

also presented. However, because of the low number of photos available, many of the 

few labels that had significant pattern shifts were incorrect. 

 For accurate CNN-based pest localization and identification in agriculture,  

an efficient data augmentation strategy has been proposed (Li et al., 2019). Images were 

rotated at different angles and cropped into numerous grids as part of a data augmentation 

strategy used during the learning stage. In the evaluation phase, researchers employed the 

test time augmentation technique, which allows the trained multi-scale model to make 

clear inferences from input pictures of varying resolutions. Moreover, such recognition 

outcomes from various image scales were concatenated by non-maximum suppression to 

obtain a final solution. However, training efficiency was degraded due to the random 

image augmentation that creates more uncontrollable noise and affects image quality. 
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 A region-based end-to-end channel-spatial attention with the CNN model called 

PestNet (Liu et al. 2019) was developed to identify and categorize large-scale multi-class 

pests. At first, a new Channel-Spatial Attention (CSA) was integrated with the CNN to 

extract and enrich features. Using extracted feature maps from pest images, an area 

Proposal Network (RPN) was developed to provide area suggestions as potential pest 

sites. When it came time to classify pests and determine their bounding boxes, the FC 

layer was replaced with the Position-Sensitive Score Map (PSSM). Furthermore,  

region-of-interest (ROI) context data was employed to supplement the recognition 

accuracy of pest traits. In contrast, the mean precision was less due to the low-quality 

images that contain noise and occlusions. 

 An efficient DCNN framework with transfer learning (Thenmozhi and Reddy 

2019) was designed for categorizing crop pests. Categorisation was performed using a 

transfer learning technique that made use of pre-learned versions of DCNN models 

including AlexNet, ResNet-50, ResNet-101, VGG-16, and VGG-19. To improve 

detection efficiency, however, finer-grained characteristics from insect photos were 

required. A crop pest detection technique based on the CNN (Li et al. 2020) was 

presented to precisely detect various crop pests. First, the crop pest dataset was acquired 

and then a modified GoogLeNet structure was adopted to classify the pest classes. 

However, this model needs more computing power and training period.  

 A new deep residual network model (Alves et al. 2020) was designed for cotton 

pest’s categorization in field-based images. A new RGB cotton field ground-truth dataset 

and the ResNet34* model to automatically classify major pests (primary and secondary) 

from images were presented. But it needs to enlarge the pest dataset by adding new 

samples and more classes of insects related to other types of crops to further improve the 

precision. A few-shot cotton pest detection scheme (Li and Yang 2020) was presented,  

in which the CNN was used to capture feature vectors of pest images. The CNN feature 

extractor was trained by the triplet loss to separate multiple pest species and guarantee the 

model robustness. But its accuracy was not satisfactory and the execution speed was less 

due to the more network parameters. 
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 An improved YoloV3-based CNN model (Liu et al. 2020) was developed that 

utilizes the image pyramid to merge features of multiple levels and obtain feature maps of 

multiple scales for detecting tomato diseases and pests. Also, Then, the object box size 

was grouped and the number of anchor box was increased to get additional edge details 

of the object. However, the precision of detecting leaf disease and pest images was less 

due to the limited low-quality images of various kinds of diseases and pests. 

 In order to detect diseases and pests in rice plant photographs,  

Rahman et al. (2020) introduced a unique training scheme called two-stage training that 

use the Simple CNN model. However, in order to further enhance the detection 

effectiveness, it must include meteorological and soil data with photos of the affected 

plant portions. Recognition and categorization of soybean pests (Tetila et al. 2020) was 

presented based on the DL models using UAV images. They used several fine-tuning and 

transfer learning techniques to research a wide variety of deep-learning architectures 

including InceptionV3, ResNet50, VGG16, VGG19, and Xception. However,  

the low-resolution pest photos hindered sensitivity. 

 Data augmentation model (Kusrini et al. 2020) has been presented for automated 

categorization of pests in mango farms. The network's deep features were extracted using 

an augmented version of the VGG16 architecture. The 2-layer FC network then used 

these extracted characteristics to learn how to categorize pests in mango crops. But its 

overall classification accuracy was less due to the low-quality pest images, which impacts 

the training of the deep-learning model. 

 Ayan et al. (2020) used a genetic algorithm-based weighted ensemble of DCNNs 

to classify agricultural pests. They employed transfer learning to improve and retrain the 

VGG-16, VGG-19, ResNet-50, Inception-V3, Xception, MobileNet, and SqueezeNet 

DCNN architectures they had previously learned. The detection efficiency was  

further improved by training an ensemble of the three best-performing CNN models  

(Inception-V3, Xception, and MobileNet) using a sum of maximum probability approach. 

Next, researchers used a weighted voting system based on an ensemble of similar models, 

with individual vote weights set by a genetic algorithm.However, the accuracy was less 

for large-scale datasets that comprises more than hundred classes. 
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 The integration of multi-scale context-aware information representation was 

offered as the foundation for automated in-field pest detection (Wang et al., 2020).  

They came up with a novel method of pest detection using cascading mobile vision 

dubbed DeepPest. To begin, a context-aware attention network was built to first classify 

pest photos into crop types based on retrieved multi-scale contextual information from 

the images. In order to create the super-resolved feature map, a multi-forecast pest 

detection framework was developed to combine contextual information about the pests 

from low- and high-level convolutional layers. These crop pest images were also used to 

train the model. When just a few images of pests were used throughout training, however, 

its effectiveness decreases.  

 Automated acoustic detection of a cicadid pest in coffee plants was performed by 

Escola et al. (2020). They developed a new algorithm, which is executed in a low-cost 

real-time platform for identifying the acoustic of cicadas in plantations. This algorithm 

included the bark scale, wavelet-packet transform, paraconsistent feature extraction and 

SVM classifiers. But it has a high complexity and less accuracy for large-scale datasets. 

A ResNet model was presented (Tian et al. 2020) to recognize diseases and pests on the 

citrus plants. But its accuracy was not efficient since it needs a larger number of samples 

for effective training. 

 Early identification of tea foliar infections and pest damages in real-time field 

situations was shown (Lee et al., 2020) to be possible using the FRCNN, which identifies 

the sites of the lesion on the leaves and the origins of the lesions, i.e. pests. But the 

performance was not effective due to the limited number of samples. Also, the main 

problem was more precise detection of multiple infections and pests concurrently.  

A knowledge-based crop pest identifier (Rodríguez-García et al. 2021) was developed to 

detect various overlapping pests related to the diseases in almond tree, olive tree and 

grape vine. However, other factors like soil, weather, etc., were essential to increase the 

detection performance and yield quality. 

 Wheat mite identification and counting in wheat fields using a three-stage DL 

model was described (Chen et al., 2021). Initially, actual image dataset was split into 

small one. Then, CNN was used to process the input image and provide a group of 
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feature maps. The RPN was provided with such feature maps in order to generate  

many rectangular goal suggestions, each of which was assigned an object score.  

Then, the two FC levels, a box-regression layer and a box-classifier layer, were fed one  

256-dimensional vector containing these suggestions to calculate probability scores for 

the locations and the wheat mite population. However, identifying photos with fewer than 

50% wheat mites proved challenging. 

 The CNN model comprising four convolutional layers and a FC layer was built 

(Naufal et al. 2021) to detect various species of insects in the sweetcorn field in Thailand. 

But it has a less accuracy since it failed to detect a few insects like aphids, thrips, etc. 

Field testing of a crop pest detection technique (Chen et al. 2021) based on an attention-

embedded lightweight network was described. Using the pre-learned MobileNetv2 as a 

backbone network and including the attention approach and a Classification Activation 

Map (CAM) in the CNN network improved the learning ability for insect photos with 

crowded backgrounds. Two-stage transfer learning and an improved loss function were 

also used. Although it is able to identify the locations of the pests, the model accuracy 

was negatively impacted by false positives in the attention map. 

 The Convolutional Rebalancing Network (CRN) has been developed  

(Yang et al., 2021) to classify large, imbalanced datasets of rice pest and disease data.  

A convolutional rebalancer, an image enhancer, and a feature concatenation unit made up 

this network. To extract features from images of rice pests and illnesses, a convolutional 

rebalancing unit was deployed; this unit used instance-balanced sampling, while reversed 

sampling was employed to enhance feature engineering for classes with less training 

images. Then, an image augmentation unit was constructed to increase the learning data. 

Also, a feature concatenation unit was used to boost the categorization efficiency by 

merging the image features learned by earlier layers. But the accuracy was degraded 

when increasing the number of attention maps in the CRN. 

 The automated insect pest monitoring system used an Online Semi-Supervised 

Learning (OSSL) model (Rustia et al. 2021). In OSSL, insect image recognition was 

accomplished by unsupervised pseudo-labelling and semi-supervised classifier model  
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training. There are three main phases to the pseudo-labelling algorithm: image 

 tagging, label reconfirmation, and sample cleaning. However, due to differences in the 

number and quality of insect image samples recorded from each farm, the average  

F1-score was low. 

 There is now a method for accurate pesticide spraying thanks to the use  

of DL on an embedded drone to identify fruit tree pests (Chen et al., 2021).  

They used a drone equipped with a sensor to locate the pest and then trained  

a neural network to recognize T. papillosa in the orchard and pinpoint its position in real 

time. The locations of these pests were used to plan the most efficient route for the 

agricultural drone to spray insecticide. But it did not consider weather factors that may 

influence the model efficiency.  

An image detection of crop diseases and pests (Xin and Wang 2021) was 

developed using DCNN model. Initially, an enhanced 3D panoramic image synthesis 

scheme was applied according to the coordinate ascending inverse mapping.  

Then, the location of ROI in all images was recognized by the YOLO-v4 model.  

In addition, the inverse mapping technique of coordinate elevation was derived from the 

pixel coordinate system using the calibration parameters of the insect cameras  

and the other conditions. The absolute predicted location was obtained by combining and 

filtering the prediction locations. But the model performance was affected by the visual 

quality of images. 

 A CNN ensemble called PlantDiseaseNet (Turkoglu et al. 2022) was developed 

for plant disease and pest recognition. Two categorization frameworks were presented 

depending on deep feature extraction from pre-learned CNNs. Various classical CNNs 

were modified and combined to extract deep features. Then, such features were given to 

the SVM classifier to get final results. However, there were not enough data points to 

properly train the DL model. 

 Recognition of crop diseases and insect pests (Wang 2022) was presented using  

DL-based model. Initially, crop images were acquired and preprocessed based on the 

nearest neighbor interpolation scheme. After that, the improved AlexNet was designed by 

tuning the FC layer to recognize both crop diseases and pests precisely. But the 
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recognition time was high and the accuracy was less due to the limited number of images. 

A combined YOLOv5 and GhostNet (Zhang et al. 2022) was designed by substituting the 

convolution kernel with a linear operation to recognize orchard pests. However, the 

average precision was decreased since a few feature details were missed while adding the 

GhostNet in the backbone part. 

 A crop pest image identification technique (Liu et al. 2022) has been built 

utilizing transfer learning and CNN models. At first, a geometric operation was applied 

on the crop pest image in order to expand the dataset's sample size. After that, such 

samples were trained by the AlexNet, VGG-16 and ResNet-50 models to recognize crop 

pests. But the model performance depends on the network parameters like convolutional 

kernel size, pool size, training rate, epoch, etc. A recognition of field pests in the complex 

background (Zhang et al. 2022) has been achieved based on the rotation detection 

scheme. But its accuracy was not satisfactory due to the limited number of samples 

collected at constrained circumstances, whereas the efficiency was needed to improve by 

collecting samples of multiple pests in more complex conditions. 

 A Multi-Scale Attention Learning Network (MS-ALN) has been developed  

(Feng et al. 2022) for pest detection. By using the MS-ALN, discriminative areas were 

localized and region-based feature representation was learned. In order to create  

multi-scale images, the MS-ALN uses target localization, attention detection, and 

attention removal to link two feature extraction sub-nets in close proximity. By using the 

attention removal unit to randomly reduce the discriminative area, occlusions may be 

avoided while the target localization and attention recognition units are utilized to 

pinpoint the discriminative regions and eliminate complicated backdrops, respectively. 

Next, the feature extraction sub-network was followed in all of its branches  

by the parameter-shared classification sub-network in order to identify pests. 

Misclassification of minor pests is simple for the MS-ALN to make, and thus reduces  

its detection accuracy. 

 For the purpose of identifying pests and illnesses of fruits like Longan and lychee, 

a recognition model has been created (Zhu et al., 2023). Before anything else,  

a knowledge graph of lychee and Longan-related illnesses and pests was established. 
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After that, an embedded system with VGG16 network was trained by the created 

knowledge graph for recognition. But its accuracy was not satisfactory and it  

was expensive. 

 To identify litchi leaf illnesses and pests, an improved Fully Convolutional  

One-Stage (FCOS) object identification technique was developed (Xie et al. 2023).  

Our knowledge of litchi leaf diseases and pests was enhanced by adding the Central 

Moment Pooling Attention (CMPA) method on top of the G-GhostNet-3.2 backbone 

network. Adding the width and height dimensions of an actual target improved the 

models' ability to generalize for future targets. An enhanced localisation loss function 

was used to locate the specific location of leaf diseases and pests. However, the accuracy 

was impacted by a few missed recognitions in the recognizing phase. 

 A novel pest recognition model using enhanced YOLOv5m (Dai et al. 2023) has 

been developed. To aid in the extraction of more generalised information from pest 

images, the YOLOv5m network was first supplemented with the SWin Transformer 

(SWinTR) and new Transformer (C3TR) techniques. Residual Spatial Pyramid Pooling 

(ResSPP) was later included into the foundation in order to extract even more features. 

To transfer the global features from the feature map to the recognition phase, the feature 

fusion phase transforms the three output necks C3 into SWinTR. To further enhance the 

network's feature fusion capability, a Weight Concat (WConcat) was included into the 

fusion feature. But it has a high complexity and less accuracy. 

Table 2.3 provides an overview of the aforementioned models in terms of their 

advantages and disadvantages. 
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Table 2.3 Comparison of Pest Detection Model based on Artificial Intelligence  

Author & 
Year 

Models Benefits Limitations Dataset Used 

Liu et al. 
(2016) 

DCNN It achieved better mean 
accuracy precision and 
less runtime. 

Its accuracy was 
insufficient since it did not 
take into account a more 
nuanced search in the 
saliency maps. 

Over 5,000 images of 12 common 
paddy field pest bug species were 
obtained from Google, Naver, and 
FreshEye's image search databases. 

Cheng et al. 
(2017) 

CNN It achieved the highest 
classification accuracy. 

Complexity was high while 
increasing the depth of CNN. 

10 classes of crop pest images 

Fuentes et al. 
(2018) 

Integration of 
FRCNN, R-FCN and 
SSD with VGG and 
ResNet 

It can handle 
complicated situations 
from a plant's 
environment in order to 
identify pests and 
illnesses. 

Few labels having huge 
motif changes were often 
inaccurate owing to a lack 
of sufficient pictures, 
leading to a high rate of 
false positives. 

5,000 images of tomato illnesses and 
pests, taken from farms around the 
Korean Peninsula. 

Li et al. 
(2019) 

Data augmentation 
and CNN 

It achieved better mean 
average precision for 
pest detection. 

Training efficiency was 
degraded due to the random 
image augmentation that 
creates more uncontrollable 
noise and affects image 
quality. 

Four different types of pests (wheat 
mites, wheat aphids, wheat sawflies, 
and rice planthoppers) are 
represented in this data collection. 

Liu et al. 
(2019) 

PestNet It can be suitable for 
large-scale datasets. 

The mean precision was 
less due to the low-quality 
images that contain noise 
and occlusions. 

More than 80,000 images were used 
to name and categorize 580,000 pests 
into 16 different groups for the 2018 
Multi-class Pests Dataset. 
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Author & 
Year 

Models Benefits Limitations Dataset Used 

Thenmozhi 
and Reddy 
(2019) 

Pre-trained DCNNs It can achieve the 
highest classification 
accuracy. 

Better detection 
performance required more 
fine-grained characteristics 
extracted from insect 
photos. 

Insects from the NBAIR (40 classes), 
Xie1 (24 classes), and Xie2 (40 
classes) datasets. 

Li et al. 
(2020) 

Modified 
GoogLeNet 

It achieved better 
accuracy and robustness. 

This model needs more 
computing power and a 
training period. 

All all, there are 5,629 images here; 
the vast majority came via the Bing 
image search, while the remaining 
650 were gathered via web crawling. 
More than 400 images belong to the 
pest category, and over 1000 belong 
to the snail group. 

Alves et al. 
(2020) 

ResNet34* It achieved the greatest 
accuracy and f-measure. 

In order to increase 
precision, the pest dataset 
should be expanded to 
include data on more crop 
kinds and insect families. 

The database contains 1,600 images 
from the field and is evenly split 
between 15 pests and 1 control. 

Li and Yang 
(2020) 

CNN It achieved low 
complexity cost and 
running time. 

Its accuracy was not 
satisfactory and the 
execution speed was less 
due to the more network 
parameters. 

National Bureau of Agricultural 
Insect Resources (NBAIR) dataset 

Liu et al. 
(2020) 

Improved YoloV3 Tomato diseases and 
pests can be promptly 
located, and their 
classification 
determined. 

The precision of detecting 
leaf disease and pest 
images was less due to the 
low-quality images. 

15000 images of tomato diseases and 
pests 
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Author & 
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Models Benefits Limitations Dataset Used 

Rahman et 
al. (2020) 

Simple CNN It achieved higher 
accuracy with reduced 
model size. 

To further enhance 
detection effectiveness, it 
should include 
meteorological and soil 
data with images of the 
affected plant portions. 

There are a total of 1426 images of 
rice diseases and pests from 
Bangladeshi paddy fields that have 
been collected by the Bangladesh 
Rice Research Institute (BRRI). 

Tetila et al. 
(2020) 

Pre-trained DCNN 
models 

It achieved better 
accuracy and 
generalizability. 

The sensitivity was not 
good due to the low-
resolution pest images. 

A set of 5,000 images in 13 pest 
classes 

Kusrini et al. 
(2020) 

VGG16 It can reduce the 
required computational 
time. 

The trained deep-learning 
model's overall 
classification accuracy 
suffered by the low-quality 
pests images. 

There are 510 unique images 
included in a collection, all of which 
were taken on mango fields in 
Indonesia. 

Ayan et al. 
(2020) 

Pre-trained DCNNs Small-scale datasets may 
be used effectively for 
early identification and 
categorisation of pests. 

More than a hundred class 
instances reduced accuracy 
for big datasets. 

D0 dataset with 40 classes 

Wang et al. 
(2020) 

DeepPest It may make the model 
more reliable and 
effective in identifying 
pests. 

When just a few images of 
pests are used during 
training, it performs less 
well. 

In-Field Pest in Food Crop (IPFC) 
dataset 

Escola et al. 
(2020) 

SVM It improved accuracy. It has a high complexity for 
large-scale datasets. 

Database of 1366 recordings of the 
cicadid pest in coffee plants 
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Models Benefits Limitations Dataset Used 

Tian et al. 
(2020) 

ResNet Less complexity. Its accuracy was not 
efficient since it needed a 
larger number of samples 
for effective training. 

510 diseased or insect-infested 
pomelo leaves 

Lee et al. 
(2020) 

FRCNN It could help growers 
identify the origins of 
problems on tea leaves 
in near-real time.  

The performance was not 
effective due to the limited 
number of samples. 

Images of sick tea leaves date back to 
1822, and they may be traced back to 
a variety of pests such as the leaf 
miner, tea thrip, tea leaf roller, and 
tea mosquito bug. 

Rodríguez-
García et al. 
(2021) 

Knowledge-based 
crop pest identifier 

It achieved the highest 
accuracy. 

Other factors like soil, 
weather, etc., were 
essential to increase the 
detection performance and 
yield quality. 

Almond tree, olive tree, and grape 
vine have a combined 212 symptoms 
caused by 75 distinct pests and 
diseases. 

Chen et al. 
(2021) 

CNN and RPN It achieved better 
recognition accuracy. 

It was complex to 
recognize the images 
having lower than 50% 
wheat mites. 

546 images, which contain more than 
1000 wheat mites 

Naufal et al. 
(2021) 

CNN Less complexity and can 
be effective for images 
with no background. 

It has less accuracy since it 
failed to detect a few 
insects like aphids, thrips, 
etc. 

5568 images of eight sweet corn 
pests 

Chen et al. 
(2021) 

Attention-embedded 
lightweight network 

It improved the average 
accuracy of identifying 
plant pests. 

The attention map's false 
positives reduced the 
model's accuracy. 

A total of 5629 images of spiders, 
insects, and other pests were culled 
from the public database and 
organised into 10 different groups. 
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Yang et al. 
(2021) 

CRN It may serve as a vital 
resource for the effective 
management of rice 
diseases and pests. 

When more attention maps 
were added to the CRN, 
accuracy suffered. 

Using freely available plant image 
datasets (Flavia, Swedish Leaf, and 
UCI Leaf) and pest image datasets 
(SMALL and IP102), a large, 
heterogeneous collection of rice pests 
and diseases (18391 pictures) was 
compiled. 

Rustia et al. 
(2021) 

OSSL model It can achieve better 
accuracy. 

Due to differences in the 
number and quality of 
insect image samples 
obtained from each farm, 
the average F1 score was 
low. 

There were a total of 2174 images of 
insects and 1876 images of other 
animals. 

Chen et al. 
(2021) 

Tiny-YOLOv3 It may help farmers 
track pests in their fields 
and take preventative 
measures in real time. 

It did not consider weather 
factors that may influence 
the model efficiency. 

700 images of T. papillosa collected 
from the wild and online in various 
stages and instars 

Xin and 
Wang (2021) 

YOLO-v4 It has better recognition 
accuracy. 

The visual quality of the 
images has an effect on the 
model's performance. 

640 still images of pests and illnesses 
in agricultural crops 

Turkoglu et 
al. (2022) 

PlantDiseaseNet It achieved better 
accuracy. 

Insufficient data prevented 
a more thorough training of 
the DL model. 

The Turkey-Plant-Dataset contains 
unrestricted photos of 15 different 
types of plant diseases and pests. 
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Wang (2022) AlexNet Its complexity was less. Recognition time was high 
and the accuracy was less 
due to the limited number 
of images. 

A total of 1200 images of Yulu 
fragrant pear leaf pests 

Zhang et al. 
(2022) 

Combined YOLOv5 
and GhostNet 

It has high feasibility 
and less detection time. 

The average precision was 
decreased since a few 
feature details were missed 
while adding the GhostNet 
in the backbone part. 

2500 pest images in 7 classes 
collected from web crawler 

Liu et al. 
(2022) 

Pre-trained DCNNs Improve crop quality 
and output while 
decreasing pesticide 
usage with this 
revolutionary tool. 

Model performance 
depends on the network 
parameters like 
convolutional kernel size, 
pool size, training rate, 
epoch, etc. 

Image Database for Agricultural 
Diseases and Pests (IDADP) 

Zhang et al. 
(2022) 

Rotation detection It has a low detection 
speed and rotation 
detection time.  

Its accuracy was not 
satisfactory due to the 
limited number of samples 
collected under constrained 
circumstances. 

Pest dataset pest Rotation Detection 
(PRD21) 

Feng et al. 
(2022) 

MS-ALN It is able to solve issues 
associated with 
occlusion and 
complicated backdrops. 

It can easily misclassify 
small pests, which impacts 
the detection accuracy. 

IP-102 dataset, comprising more than 
75000 images of 102 common 
agricultural pests 
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Zhu et al. 
(2023) 

VGG16 It may be utilized for 
real-time illness and pest 
detection. 

Its accuracy was not 
satisfactory and it was 
expensive. 

Knowledge graph of lychee pests and 
diseases 

Xie et al. 
(2023) 

FCOS object 
recognition scheme 

It may help with the goal 
of instantaneous and 
accurate leaf disease 
detection. 

A few missed recognitions 
during the identification 
stage had an effect on the 
overall accuracy. 

Diseases and parasites such as the 
litchi leaf mite, litchi sooty mould, 
litchi anthracnose, mayetiola sp., and 
litchi algal spot are all represented in 
this data collection. 

Dai et al. 
(2023) 

Enhanced 
YOLOv5m 

Accuracy and reliability 
in identifying plant pests 
may be improved. 

It has a high complexity 
and less accuracy. 

Dataset with 1309 pest images in 
different classes 
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2.5 LITERATURE ON RECOMMENDATION SYSTEMS IN AGRICULTURE 

 A few scholars had experienced in developing pesticide or fertilizer recommendation 

systems in agriculture. In-depth review of some pesticide recommendation systems to 

control leaf diseases and pests is presented in this section. 

A pesticide residue monitoring (Ferentinos et al. 2013) was performed by a new 

ANN combined with a bioelectric cellular biosensor. As the amount of data points 

increased, however, so did the complexity of the ANN. A content-based paddy leaf 

disease diagnosis and treatment prediction model was developed making use of K-means 

clustering and the SVM (Pinki et al., 2017). The first step in isolating the damaged region 

in a paddy leaf image was using K-means clustering. Colour, texture, and shape were then 

isolated for further analysis. The SVM classifier learns these properties to classify paddy 

leaf diseases. Once a disease was identified, a predicted cure was suggested based on the 

severity of the condition, helping farmers choose the most effective pesticides. However, 

this model did not do well when attempting to categorize several illnesses at once. 

 In order to categorize leaf disease images and advise on pesticides based on leaf 

disease, the CNN with several layers was provided (Kosamkar et al., 2018). They used two 

different stages: training and testing. During training, image acquisition, preprocessing and 

CNN-based training were performed. During testing, image acquisition, preprocessing, 

categorization of leaf diseases and recommendation of pesticides were performed. But other 

factors that impact the plant leaves were needed to increase the accuracy. 

 By optimising sigmoid kernels in M-SVM, the agricultural fertiliser recommendation 

system (Suchithra and Pai, 2018) was given. With the help of the genetic algorithm and 

particle swarm optimisation, a unique sigmoid kernel SVM classifier was constructed to 

provide recommendations for the multiclass soil nutrients on rice fields. But it cannot be 

effective for huge quantity of data since its training time was high and it did not learn 

more deep characteristics from the data. 

 A soil fertility analysis and fertilizer recommendation system (Pratap et al. 2019) 

has been presented to find the soil nutrient richness and predict the fertility of a given soil  
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sample. According to these outcomes, the system can recommend the category of 

fertilizer to be utilized by the farmers. But its accuracy was less due to the limited data 

and training ability. 

 Model-based balanced nutrient necessities for barley output in northern Ethiopia 

were provided (Mesfin et al., 2021). This made it possible to create a system for 

recommending fertiliser based on a given location. The ideal ratios of nitrogen, phosphorus, 

and potassium for growing barley were predicted using a Quantitative Evaluation of Fertility 

of Tropical Soils (QUEFTS) model. Based on the predicted soil nutrients, a proper fertilizer 

was recommended to enhance yield quality. But it has a high complexity and requests other 

factors like weather changes to increase the recommendation efficiency. 

 For the purpose of determining the appropriate fertilizer, a prediction technique 

based on an Adaptive Neuro Fuzzy Inference System (ANFIS) has been developed 

(Kuzman et al., 2021). In order to anticipate the optimal fertilizers, this system can 

analyze the impact of environmental factors such as temperature, humidity, moisture,  

soil type, crop type, and soil nutrient. But its efficiency depends on the selection of 

appropriate fuzzy membership function. A voting-based ensemble classifier  

(Pragathi 2021) has been presented to recommend proper fertilizers based on the soil 

nutrients and weather factors. But it was not suitable for large-scale datasets. 

 A Nutrient Expert (NE)-based protocol (Amgain et al. 2021) was developed, 

which was a decision-making model depending on site-specific nutrient control to 

recommend an alternate fertilizer for enhancing rice productivity in Nepal. But its 

generalization was not effective since it considered the data collected from only specific 

locations. A new recommendation model using DL (JuhiReshma and Aravindhar 2021) 

was presented to predict the quantity of fertilizers for a banana crop based on the soil 

nutrients. However, its effectiveness was not measured so that its suggestion success rate 

could be compared to that of comparable models. 

 ML methods such as logistic regression, polynomial regression, and KNN were used 

to offer an optimization of pesticide spraying on crops in agriculture (Baghel et al. 2022). 

According to this system, the repetition of pesticides in agriculture was controlled.  
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But DL algorithms were needed to increase the optimization efficiency. A new hybrid 

statistical learning model (Grégoire et al. 2022) golf course pesticide consumption 

prediction model that incorporates SVM, random forest, and grasshopper's heuristic 

optimization approach. But weather factors should consider as input parameters to 

increase the efficiency of predicting pesticide usage on various weather conditions. 

 A novel model was created (Gao et al. 2023) by merging ML and swarm 

intelligence search techniques to select correct fertilizers. Predictions of crop production 

were made using a number of ML algorithms based on past data for maize, rice, and 

soybeans. These included random forest, extreme random tree, and extreme gradient 

boosting. Then, a significant model for making fertilization decisions based on the 

cuckoo search algorithm was included. But it did not consider weather factors and the 

accuracy was affected by the missing data or noise in the datasets. 

 An intelligent insecticide and fertilizer recommendation model (Thorat et al. 2023) 

was developed based on the DL. To determine the best pesticide to use, a picture of the 

pest was processed independently and in real time using a dual operator consisting of the 

Transition Probability Function (TPF) and a CNN. The goal function of the model was 

determined mathematically. In addition, a soil nutrient analysis was performed to provide 

fertilizer recommendations based on nutrient levels. But its accuracy was not sufficient 

and it needs weather factors to increase the recommendation efficiency.  

The above-studied models are summarized in Table 2.4 based on their benefits 

and limitations. 
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Table 2.4 Comparison of Pesticide Recommendation Systems 

Author & 
Year 

Models Benefits Limitations Dataset Used 

Ferentinos et 
al. (2013) 

New ANN with 
bioelectric cellular 
biosensor 

It achieved a better 
overall success rate. 

Adding more and more layers to 
the ANN made it more 
complicated as the amount of 
data. 

Three different pesticide 
groups such as 
carbamates, pyrethroids, 
and organophosphates 

Pinki et al. 
(2017) 

K-means clustering and 
SVM 

Based on illness 
severity, it may 
recommend pesticides. 

Pesticide recommendations for 
many illnesses were labor-
intensive. 

Brown spot, leaf blast, and 
bacterial leaf blight: 
predictive measurement 
for paddy leaves 

Kosamkar et 
al. (2018) 

CNN It achieved better 
accuracy. 

Other factors that impact the 
plant leaves were needed to 
increase the accuracy. 

Plant village dataset 

Suchithra and 
Pai (2018) 

New sigmoid kernel SVM It can achieve better 
performance for small-
scale datasets. 

It cannot be effective for a huge 
quantity of data since its training 
time was high and it did not learn 
more deep characteristics from 
the data. 

Method for recommending 
soil fertiliser types for 
paddy fields with several 
classes 

Pratap et al. 
(2019) 

Soil fertility analysis and 
fertilizer recommendation 

It can predict the soil 
fertility and fertilizers 
to enrich the soil 
nutrients. 

Its accuracy was less due to the 
limited data and training ability. 

Soil samples, pH sensor 
values and moisture sensor 
values 
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Mesfin et al. 
(2021) 

QUEFTS model It achieved better 
prediction accuracy to 
recommend fertilizer 
based on crop 
requirements. 

It has a high complexity and 
requests other factors like 
weather changes to increase the 
recommendation efficiency. 

Soil data, yield and 
agronomic data 

Kuzman et al. 
(2021) 

ANFIS Optimizing the crop 
production response in 
this way may help keep 
costs down. 

Its efficiency depends on the 
selection of an appropriate fuzzy 
membership function. 

Soil parameters 

Pragathi 
(2021) 

Voting-based ensemble 
classifier 

It can be precise and 
accurate for a limited 
number of samples. 

It was not suitable for large-scale 
datasets. 

Soil nutrients 

Amgain et al. 
(2021) 

NE-based protocol It was an effective tool 
to dynamically 
recommend fertilizers 
for rice. 

Its generalization was not 
effective since it considered the 
data collected from only specific 
locations. 

Yield data and soil 
nutrients  

JuhiReshma 
and 
Aravindhar 
(2021) 

DL model It can recommend the 
amount of fertilizers 
with less complexity. 

Its efficiency was not analyzed to 
comprehend the success rate of 
recommendation compared to the 
other models. 

Soil nutrients for banana 
crop 



86 

Author & 
Year 

Models Benefits Limitations Dataset Used 

Baghel et al. 
(2022) 

Logistic regression, 
polynomial regression 
and KNN 

It can reduce the 
impact of pesticides 
due to improper usage. 

The optimization efficiency was 
not effective. 

Crop data and pesticides 
sprayed on crops 

Grégoire et al. 
(2022) 

Hybrid SVM, random 
forest and grasshopper 
optimization algorithm 

It can increase the 
model’s sustainability.  

Weather factors should be 
considered as input parameters to 
increase the efficiency of 
predicting pesticide usage in 
various weather conditions. 

It has the potential to save 
expenses by enhancing the 
production responsiveness 
of crops. 

Gao et al. 
(2023) 

Random forest, extreme 
random tree, extreme 
gradient boosting and 
cuckoo search algorithm 

It achieved the highest 
performance in 
optimizing 
fertilization. 

It did not consider weather 
factors and the accuracy was 
affected by the missing data or 
noise in the datasets. 

Yield data for maize, rice, 
and soybean crops 

Thorat et al. 
(2023) 

TPF and CNN It can recommend 
fertilizers based on the 
soil nutrient values. 

Its accuracy was not sufficient 
and it needs weather factors to 
increase the recommendation 
efficiency. 

Soil nutrient analysis 
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2.6 RESEARCH GAP 

 Methods for detecting leaf diseases and pests may be broken down into  

two groups. Both visual analysis and automated systems can identify plant diseases.  

The following requirements are necessary for a visual examination are, 

 It is difficult process since it demands constant manual monitoring and a 

knowledgeable botanical expert 

 This technique employs the human eye and laboratory inspection to detect leaf 

diseases and pests 

 The classification rate depends on how the technician detects the disease 

 Identifying the precise disease type takes additional effort 

 It is a complicated and time-consuming procedure 

2.7 SUMMARY 

To that end, this chapter provides a comprehensive review of the literature on pest 

detection using AI models, pest detection using DL with transfer learning models, and 

pest detection using image processing with ML algorithms, as well as pesticide and 

fertilizer recommendation systems in agriculture. In addition, the research gaps in those 

earlier studies are observed and discussed 

  


