
Chapter 4

99

CHAPTER 4

PROPOSED MODEL: A POSITIONAL-AWARE

DUAL-ATTENTION AND TOPOLOGY-FUSION WITH

GENERATIVE ADVERSARIAL NETWORK-BASED

HIGH-RESOLUTION FRAMEWORK FOR LEAF

DISEASE IMAGE CLASSIFICATION

4.1 INTRODUCTION

This chapter presents a quick summary of the difficulties in classifying leaf

disease images. It also discusses the role of leaf disease image restoration and

classification techniques. Using the Plant Village Dataset (PVD), The state-of-the-art

models are compared and contrasted, including DATFGAN using ShuffleNetV2,

DenseNet121, and MobileNetV2 classifiers, against the proposed Positional-aware

Dual-Attention and Topology-Fusion with Generative Adversarial Network (PDATFGAN).

4.2 OVERVIEW OF LEAF DISEASE IMAGE CLASSIFICATION

 Nowadays, crop management put importance on leaf disease classification

because of more frequency of different kinds of leaf diseases. Leaf disease detection is

more difficult task because of diagnosis impacts and discrepancies in atmospheric

conditions. The classification of many leaf diseases, which affect several plant species is

problematic and manual detection is not appropriate for proper diagnosis. Automated leaf

disease image classification has been developed to solve this problem. It's a subfield of

plant pathology where computer vision is used to develop methods for the purpose of

automatically classifying images of plant leaf diseases (Kaur et al., 2019). It intends to

computerize the classification procedure by training different algorithms on huge datasets

of labelled images, allowing them to capture different visual characteristics related to the

leaf disease symptoms. It is essential for the agriculture field since cultivators may apply

it to make precise decisions on preventing leaf diseases that enhances crop yield

quality and productivity.

On the other hand, poor quality leaf images can pose significant challenges to leaf

disease classification models (Wen et al. 2020). These challenges arise from the fact that

100

low-quality images might lack essential visual features and information needed for

accurate disease detection. Some specific problems that can occur in leaf disease

classification due to poor quality leaf images are the following:

 Lack of clear features: Image quality issues such as low resolution, blurriness, and

noise might hinder the model's ability to differentiate between healthy and sick

leaves. Clear and distinct visual features are crucial for accurate classification

(Dhaka et al. 2021)

 Ambiguous visual cues: Some diseases might manifest as subtle colour changes

or minor textural differences on leaves. Poor quality images can obscure these

cues, leading to misclassifications or difficulties in distinguishing between classes

 Limited textural information: Texture plays a crucial role in leaf disease

identification. Low-quality images might lack the necessary texture details,

making it challenging for the model to differentiate between different disease

types (Singh et al. 2020)

 Colour distortions: Inaccurate colour reproduction, lighting variations, or colour

shifts in images can misrepresent the true colour of leaves. Since colour is a vital

visual feature, these distortions can lead to incorrect disease classification

 Occlusions and background noise: Cluttered backgrounds, occluded leaves, or other

objects in the image can interfere with leaf disease detection (Wang et al. 2021).

Poor quality images might contain more noise and distractions, making it harder

for the model to focus on the leaf itself

 Limited diversity: Poor quality images might not capture the full diversity of

disease symptoms, leading to biased or incomplete training data. The model might

struggle to generalize to unseen disease variations

 Loss of structural information: Poor quality images might lack the structural

details of leaves such as vein patterns or leaf shape (Azlah et al. 2019).

These details are important for distinguishing between different plant species

and diseases

101

Pre-trained DCNNs like AlexNet, VGG, and GoogLeNet have been used in a

number of automated leaf disease image detection systems reported in recent decades

(Thenmozhi & Reddy 2019). Those DCNNs are helpful for identifying and categorizing

leaf diseases. Instead, most farm-based leaf disease images are fuzzy, low-resolution

affairs. Low-quality images significantly degrade the classification performance of

pre-trained DCNN classifiers, which are typically trained on clear high-resolution

datasets. In order to improve the accuracy of agricultural disease image classification,

low-resolution images must be high-resolved to increase spatial resolution and replicate

the high-frequency characteristics of sharp edges.

To better diagnose agricultural leaf diseases, a novel Dual-Attention and

Topology-Fusion with Generative Adversarial Network (DATFGAN) (Dai et al., 2020)

can up-resolution low-resolution leaf images. They used the weight allocation policy to

train deeper structures that classify leaf diseases according to texture features while

reducing the number of parameters. However, the goal of a GAN was to train a generator

that adapts a prior latent distribution to actual data. By improving algorithms to

coordinate the generator and discriminator networks, its training time was increased.

Also, the diseases could have affected the leaf partially or completely.

There is a need for the Positional-aware Generative Adversarial Network (PGAN)

model to learn the spatial relationships among multiple leaf image observations and

increase the accuracy of classifying leaf diseases.

4.3 HIGH-RESOLUTION LEAF DISEASE IMAGE GENERATION

CLASSIFICATION

4.3.1 High-Resolution Leaf Disease Image Generation

 Generating high-resolution leaf disease image is a technique used to enhance the

resolution of low-quality or low-resolution leaf images. This process involves generating

high-resolution versions of images while preserving important details and features.

It is useful for various purposes, such as creating realistic training datasets, generating

synthetic data for research, or enhancing the visual quality of diagnostic tools

(Abayomi-Alli et al. 2021). We'll go over a few methods for creating images of excellent

quality of leaf diseases.

102

4.3.1.1 Data Augmentation

"data augmentation" describes an approach to expanding the variety of information

available from a dataset by altering its current images. This is commonly done by introducing

small variations to the images while preserving their semantic content. In the context of high-

resolution leaf disease image creation, data augmentation is used to generate new images

with the same disease characteristics but slightly different visual properties. This technique

helps improvement in model generalization and performance may be achieved by expanding

the amount and variety of the dataset (Liu et al. 2020).

Augmentations such as rotation, flipping, cropping, zooming, deblurring,

denoising, colour variations (brightness, contrast, Hue and saturation), and resolution

adjustments (Downscaling and upscaling) can simulate different viewing angles and

lighting conditions, effectively increasing the effective resolution of leaf disease image

dataset (Shorten & Khoshgoftaar 2019).

By applying these augmentations, variations of high-resolution leaf disease

images can be generated that resemble real-world conditions. This augmented dataset can

then be used for training DL models, improving their ability to generalize to different

scenarios and variations. To keep the produced images realistic and useful for appropriate

diagnosis, however, a balance must be struck between augmentation and keeping the

integrity of the underlying illness patterns.

4.3.1.2 Texture Synthesis

Texture synthesis is a technique used to generate new images with textures that

resemble those found in existing images. In the context of high-resolution leaf disease

image generation, texture synthesis involves creating new images that exhibit the same or

similar textural patterns as real disease-affected leaves (Hasan et al. 2022).

This technique can be particularly useful for generating high-resolution images of leaf

diseases with intricate and distinctive texture details.

Texture synthesis methods, like patch-based or example-based approaches,

can generate high-resolution textures that mimic the appearance of real leaf diseases.

These techniques extract texture patterns from existing images and apply them to

103

generate new high-resolution textures (Wei et al. 2009). But it might not capture the

underlying structural and semantic information of the original disease. This could lead to

generated images that lack accurate disease features. Also, these techniques can be

computationally intensive, resulting in long processing time and less practical for

large-scale image generation.

Texture synthesis might not consider the contextual information present in the

original image, such as the spatial relationships between textures or their interactions

with other image components. Some disease patterns are inherently complex and involve

interactions between different textures and structures. Capturing such complex patterns

accurately through texture synthesis can be challenging.

4.3.1.3 Data Fusion

Integrating information from several sources or forms of analysis, as is done in

data fusion, provides a more comprehensive images of the data at hand. Data fusion may

be utilized to improve the quality, accuracy, and realism of produced high-resolution leaf

disease images by combining data from many sources (Ouhami et al. 2021). For instance,

combining colour and multispectral data can result in high-resolution images that capture

both colour and spectral information. Some data fusion techniques applied to create

high-resolution leaf disease images include:

 Combining spatial and spectral information: Leaf diseases often manifest in both

the spatial and spectral domains. Data fusion can leverage spatial and spectral

information to generate high-resolution images that reflect the intricate spatial

patterns of diseases and their spectral signatures

 Enhancing texture and detail: Fusion techniques can integrate texture information

from one image source with structural details from another. This can result in

generated images that exhibit more realistic and visually appealing textures,

making them suitable for classification

 Super-resolution fusion: Super-resolution methods may be used with other data

sources to boost the resolution of produced images. For instance, a low-resolution

image of a diseased leaf can be fused with high-resolution texture patterns to

create a more detailed and high-quality image

104

 Feature-level fusion: It involves extracting relevant features from different data

sources and combining them to create a more informative representation. In the

context of high-resolution leaf disease image generation, this can lead to images

that accurately capture disease-specific features

 Neural network fusion: DL methods, such as neural networks, may be used to

combine data from several sources. They can learn to extract and combine

relevant features, resulting in high-resolution images that effectively leverage the

strengths of each data source

 Semantic information fusion: Data fusion can incorporate semantic information, such

as disease labels or regions of interest, to guide the generation process. This can lead

to high-resolution images that accurately represent specific disease patterns

4.3.1.4 Image-to-Image Translation Using GAN Variants

The purpose of the image-to-image translation method is to transfer images from

one domain to another without losing their significance. In the context of creating high-

resolution images of leaves, image-to-image translation is used to convert images of

healthy leaves (the source domain) into images of diseased leaves (the destination

domain). This technique is often employed using DL models, such as Generative

Adversarial Network (GAN) and its variants, to achieve realistic and accurate

transformations (Lu et al. 2022).

A. GAN

High-resolution images of leaf diseases may be synthesized using GANs, and they

will seem quite similar to the original data. To make synthetic images, GANs use a

generator network, and to tell the difference between genuine and artificial images,

GANs use a discriminator network (Liu et al. 2020). By iteratively training these

networks, GANs can produce high-quality, high-resolution images.

Since its introduction by Goodfellow et al. (2020), GANs have been used by

several scholars across many disciplines. The generator and discriminator of a GAN are

two antagonistic components that engage in a minimax game to achieve their respective

goals. The goal of the generator is to mimic the distribution of actual data and provide

105

convincing fake samples to the discriminator. Alternatively, discriminator goals are

sample origin determination. The cost of each network is proportional to the success of

the competing component, and this competition between the discriminator and the generator

may be described using the following formulation (Eq. 4.1) with value function 𝑉ሺ𝐺, 𝐷ሻ.

𝑚𝑖𝑛
ீ

𝑚𝑖𝑛
஽

𝑉ሺ𝐷, 𝐺ሻ ൌ 𝐸௫ሾ𝑙𝑜𝑔 𝐷ሺ𝑥ሻሿ ൅ 𝐸௭ሾ𝑙𝑜𝑔ሺ1 െ 𝐷ሺ𝐺ሺ𝑧ሻሻሻሿ (4.1)

 𝐷ሺ𝑥ሻ in Eq. (4.1) is the discriminator's assessment of the probability that data

instance x is authentic, while the generator's response to noise 𝑧 is denoted by G(z),

The probability that a false instance is genuine, as determined by the discriminator, is

represented by 𝐷ሺ𝐺ሺ𝑧ሻሻ, 𝐸௫ irepresents the average value of all occurrences of actual

data, and 𝐸௭ is the average value of the generator given a set of random inputs. Fig 4.1

depicts an overarching framework for the GAN training process. Digital Elevation

Models (DEMs) of poor resolution may be upgraded using the Generator. To determine if

high-resolution DEMs are genuine or false, the discriminator compares them to examples

from the training set.

Fig. 4.1 Architecture of the GAN Training Procedure (Demiray et al. 2021)

Based on the discriminator's performance, the adversarial loss is computed, and

the weights of the discriminator and the generator are adjusted. While feeding back to the

generator, the content loss is determined by comparing the created DEMs to the original

high-resolution ones pixel-by-pixel.

106

B. Super-Resolution GANs

Super-Resolution GAN (SRGAN) is a specialized type of GAN designed to

enhance the resolution of images, including high-resolution leaf disease images.

SRGANs use DL approaches to produce high-quality, high-resolution imagery from

low-resolution inputs, essentially "super-resolving" the images while keeping realistic and

visually correct features (Wang et al. 2022). Medical imaging and remote sensing are only

two examples of the many applications of this method for creating and improving images.

A SRGAN consists of a generator and a discriminator, as shown in Fig. 4.2.

 Generator: In order to generate a high-resolution image, the generator must first

receive a low-resolution image as input. It employs DCNNs to upscale the image

while adding high-frequency details that are consistent with the high-resolution

data distribution

 Discriminator: It is a method for verifying the authenticity of high-resolution

images. It directs the generator to create images that seem just like actual

high-resolution ones.

Fig. 4.2 Architecture of Generator and Discriminator Network (Ledig et al. 2017)

107

SRGAN training follows the standard GAN training process:

 The generator attempts to create high-resolution images that can "fool" the

discriminator into categorizing them as actual images.

 The discriminator seeks to accurately categorize images of excellent quality as

either authentic or fraudulent, given just their resolution.

As the generator learns to create more convincing high-resolution images, the

discriminator becomes better at telling genuine from produced images, and the training

loop continues. To help direct the training process and guarantee the quality of produced

images, SRGAN makes use of a number of loss functions (Ledig et al., 2022).

 Adversarial loss: promotes the generation of images with excellent resolution that

may deceive the discriminator into thinking they are genuine.

 Perceptual loss: Calculates the degree to which a pre-trained CNN can distinguish

between genuine and synthetic visual features. Because of this, the creator is

incentivized to protect crucial structural and visual aspects.

 Content loss: Similar to perceptual loss, content loss focuses on the preservation

of image content and texture details

Disadvantages of SRGAN

SRGANs also have specific disadvantages and challenges when applied to

high-resolution leaf disease image generation. The diagnostic, research, and training

applications of the produced images may suffer as a result of these drawbacks.

 Loss of disease-specific details: SRGANs might prioritize general texture

enhancement over disease-specific details. This could result in generated images

that lack accurate disease patterns and characteristics, limiting their usefulness for

accurate disease detection and analysis

 Unrealistic disease manifestations: Generated images might exaggerate disease

patterns or create unrealistic manifestations that do not accurately represent the

variations found in real-world leaf diseases

108

 Difficulty in capturing subtle features: Some leaf diseases exhibit subtle

colour changes, minor texture variations, or small lesions. SRGANs might

struggle to faithfully capture these fine-grained features, leading to inaccuracies in

generated images

 Dependency on high-quality low-resolution inputs: SRGANs heavily rely on the

quality of low-resolution inputs. If the low-resolution images are of poor quality

or do not accurately represent the disease patterns, the generated high-resolution

images might not be reliable

 Complex disease interactions: Some leaf diseases interact with each other or

exhibit complex patterns that are challenging to model accurately using SRGANs.

This can lead to inconsistencies or inaccuracies in generated images

 Evaluation challenges: Accurately evaluating the quality and realism of

generated high-resolution leaf disease images can be difficult. Conventional

metrics might not capture disease-specific features, and subjective evaluation by

experts is often necessary

 Data artifacts: If the low-resolution images used for training contain artifacts or

noise, the SRGAN might inadvertently amplify these artifacts when generating

high-resolution images

 Limited interpretability: The generated images might lack interpretability, making

it challenging to understand the underlying disease patterns that contributed to

their creation

Combining SRGANs with other techniques, such as data fusion or attention, can also

help address some of these limitations. Ultimately, understanding the potential disadvantages

of using SRGANs for high-resolution leaf disease image generation is essential for making

informed decisions about their deployment and interpreting their results.

C. Dual-Attention and Topology Fusion Generative Adversarial Network

The Deep Attention and Topology Fusion Generative Adversarial Network

(DATFGAN) model was developed by Dai, et al., in 2020. It's made up of a network for

extracting deep features, one for fusing attention to topologies, and another for

109

reconstructing images, all of which share parameters. To create high-resolution images,

the reconstruction network makes advantage of global residual learning, whereas the

generator network, as illustrated in Fig 4.3, comprises two convolutional layers for

shallow features.

Fig. 4.3 Generator Network in DATFGAN

Fig. 4.4 Discriminator Network in DATFGAN

 The discriminator network is seven convolutional layers deep, where the filter

kernels increase in size with each layer. It is trained to maximise a target variable.

To improve the probability of image classification, researchers first reduce the image

resolution using striding convolutions, and then feed the resulting 512 feature maps into a

LeakyReLU activation function and two linear layers (Fig. 4.4).

110

 Parameter Sharing

 It is the local information extracted by convolution processes that may be utilized

in various places throughout an image. The CNN uses a convolution kernel to extract

features from the input data one at a time. However, parameter explosion in the

convolution layer is a common occurrence if the input data contains numerous

dimensions. Without taking into account local correlations, the convolution kernels each

extract their own unique set of characteristics. Parameter sharing enables each feature to

appear in many places in different data, hence reducing the number of parameters

required in the convolutional layer (Dai et al., 2020).

 The number of convolutional layer parameters may be reduced via weight sharing.

Parameter-sharing attention may be used to reduce the number of network parameters, reduce

the likelihood of overfitting, and improve the trainability of deeper structures."-improved

topology"The DATFGAN generating network made use of fusion networks.

 Topology Fusion

 ResNet (He et al. 2016) was developed to address the degradation problem

in DL by reducing error rates and optimizing complex models. ResNet's residual

block, implemented through residual connections, increases training speed without

additional parameters or calculations. By building residual connections between the front

and rear layers, this architecture enhances the overall training efficiency of deep CNNs.

 Like ResNet, DenseNet (Huang et al. 2017) makes advantage of dense connections

between layers to improve performance while decreasing the quantity of inputs and the

amount of processing time. It also accomplishes direct fusion of feature maps, improving

feature reuse.

 Contiguous memory for DATFGAN is supplied by the generator's mix of residual

and dense connections in a single layer, which halves the channel formation rate. It improves

information flow and gradients while decreasing network parameters and making deeper

structures trainable. Mixed-link connections' inner structure is seen in Fig 4.5.

111

Fig. 4.5 Topology Fusion

 Mixed-link operations are computed as follows:

𝐹௜ିଵ
ଵ , 𝐹௜ିଵ

ଶ ൌ 𝑆𝑙𝑖𝑐𝑒ሺ𝐹௜ିଵሻ (4.2)

 𝑆𝑙𝑖𝑐𝑒ሺ. ሻ is a slicing operation, and it is used to split the input channels

in half in Eq. (4.2). Since 𝐹௜ିଵ is an 𝑁 -channel feature map, 𝐹௜ିଵ
ଵ and 𝐹௜ିଵ

ଶ may each

contain up to
ே

ଶ
 channels as a result of the slicing procedure.

𝐹௜
ଵ, 𝐹௜

ଶ ൌ 𝑆𝑙𝑖𝑐𝑒ሺ𝑊ሺ𝐹௜ିଵሻ ൅ 𝑏ሻ (4.3)

 In Eq. (4.3), where 𝑊 is a convolution layer's weight and 𝑏 is the bias, the result

of a single layer or unit is split in half along the channel dimension.

𝐹௜ାଵ ൌ 𝐶ሺ𝐶ሺ𝐹௜
ଵ ൅ 𝐹௜ିଵ

ଶ , 𝐹௜
ଶሻ, 𝐹௜ିଵ

ଵ ሻ (4.4)

 With respect to Eq. (4.4), 𝐶ሺ. ሻ is a fusion operation, 𝐹௜ିଵ
ଵ and 𝐹௜ିଵ

ଶ represent

subsets of the characteristics used in the previous layer, and 𝐹௜
ଵ and 𝐹௜

ଶ include

characteristics extracted from the current layer in subsets. When 𝐹௜
ଵ and 𝐹௜ିଵ

ଶ are added

together, the resulting topology is residual, whereas when 𝐹௜
ଵ ൅ 𝐹௜ିଵ

ଶ , 𝐹௜
ଶ and 𝐹௜ିଵ

ଵ are

fused, the resulting topology is dense.

112

 As demonstrated in Eq. (4.5), the number of channels may be reduced by

concatenating features across blocks using a transition convolution, where 𝑊௧ is the

weight of an 1×1 convolution for block-feature concatenation, 𝐹௝ିଵ is the characteristics

of the previous mixed-link section, and 𝐹௝ shows the output characteristics of the active

mixed-link block. This mixed-link strategy allows the DATFGAN to quickly build

residual and dense connections, both of which control parameter expansion and improve

network performance.

𝐹௝ ൌ 𝑊௧൫𝐹௝ିଵ൯ ൅ 𝑏 (4.5)

 Dual Attention

 Image transformation is made more effective by using channel and texture attention

algorithms (Dai et al., 2020).

 Channel attention: Topology fusion is used to represent the interdependencies

across convolution channels, learning independently how to emphasize relevant

channels while downplaying noise. To rebalance the information and gradient

flow across networks, it acts as a filter. To provide self-trained channel-wise

attention, the module uses a global pooling layer, convolutions, and a sigmoid

layer, as shown in Fig 4.6.

 Eqns. (4.6) and (4.7) are the basis for the operation of channel focus:

𝑆ሺ𝐹ሻ ൌ ଵ

ுௐ
∑ ∑ 𝐹ሺ𝑖, 𝑗ሻௐ

௝
ு
௜ (4.6)

 In Eq. (4.6), 𝐻 and 𝑊 stand for the width and height of the feature map used as

input, respectively; 𝑆ሺ. ሻ is a squeeze operation that pools the features in all channels

into a global mean.

𝐴ሺ𝐹ሻ ൌ 𝛿 ቀ𝑊௨𝜎൫𝑊ௗ𝑆ሺ𝐹ሻ൯ቁ ∗ 𝐹 (4.7)

 Channel attention is denoted by 𝐴ሺ. ሻ in Eq. (4.7), whereas ReLU is

denoted by 𝜎, and 𝑊௨ and 𝑊ௗ are two 1×1 convolutions. First, the channels are

shrunk by a factor of
ଵ

ଵ଺

௧௛
 by 𝑊ௗ, and then a bottleneck is produced by the expansion of

113

the tensor to its true form by 𝑊௨. In addition, 𝛿 is the sigmoid function that scales all

channel weights to a value between 0 and 1. These weights are used to highlight relevant

data and hide irrelevant data.

Fig. 4.6 Channel Attention

 Texture attention: High-frequency features in plant photos are often situated

near the borders, making texture critical for image high-resolution

applications. Eqns. (4.8) and (4.9), where 𝑊௘௫௣ signifies extending the actual

number of channels, are utilized to design a reconstruction network that

focuses on textures by paying attention to edges at the global spatial level.

The number of global characteristics is doubled for this challenge. Only some

of the channels have their weights adjusted based on global data; the others

use only local data. As seen in Fig. 4.7, the two parts are combined by adding

and averaging them.

𝐹௜
ଵ, 𝐹௜

ଶ ൌ 𝑆𝑙𝑖𝑐𝑒 ቀ𝑊௘௫௣ሺ𝐹௜ିଵሻቁ (4.8)

𝐹௜ାଵ ൌ 𝑈𝑝൫𝐶𝑎𝑛𝑛𝑦ሺ𝐹଴ሻ൯ ∗ 𝐹௜
ଵ ൅ 𝐹௜

ଶ (4.9)

114

 𝑈𝑝 is an upsampling operation, 𝐶𝑎𝑛𝑛𝑦 is an edge feature extraction operator, and

𝐹଴ is the original input features in Eqn. (4.9). divided by two utilising large-scale pixel

maps for feature multiplication, and then combined with the other half of the input features.

Fig. 4.7 Texture Attention

 Adversarial Training

 Adversarial training is a kind of model improvement that uses competition to

landscape loss function refinement for improved model performance. Although not

expected to improve generalization ability, it can simplify prediction functions for real

data, making them more smooth and simple.

 Comparable inputs will provide comparable results in this strategy (Dai et al., 2020).

For regularization to work, equivalent results must be achieved using a variety of inputs.

In order to construct a confrontation sample and lower cross-entropy, it is essential to identify

the most harmful disruption. To create more aesthetically pleasing pictures, adversarial

training is used rather than minimising the MSE between input images and targets.

 Adversarial loss is defined by

𝐿ீ஺ே ൌ 𝔼ൣ𝐷൫𝐺ሺ𝐼௅ோሻ൯൧ െ 𝔼ሾ𝐷ሺ𝐼ுோሻሿ (4.10)

115

 Eq. (4.10) uses the DATFGAN discriminator 𝐷ሺ. ሻ, the generator 𝐺ሺ. ሻ, the

produced pseudo-high-resolution pictures 𝐼௅ோ, and the real-time high-resolution images

𝐼ுோ. The sum of loss and the adversarial loss is defined by

𝐿 ൌ 𝛼𝐿ீ஺ே ൅ 𝐿௖௢௡௧௘௡௧ (4.11)

 Eq. (4.11), where 𝐿 is the overall loss, 𝐿ீ஺ே is the adversarial loss, 𝐿௖௢௡௧௘௡௧ is the

overall perceptual loss for the target content, and 𝛼 is a constant value.

D. Positional-aware Dual-Attention and Topology Fusion Generative Adversarial

Network

Because traditional GANs automatically produce entire images, memory and

computing constraints dictate the maximum picture resolution that can be achieved.

This work proposes the Positional-aware GAN (PGAN) as a solution to this problem by

only producing a small region of an image based on its coordinates. The resulting

pictures are then combined to form a single absolute global image. There are two

networks that make up the PGAN: a generator ሺ𝐺ሻ and a discriminator ሺ𝐷ሻ.

The G integrates a micro-coordinate structure on a finer scale for 𝐺, a coarse-grained

macro-coordinate structure for 𝐷, and images in three dimensions: full images

(actual ሺ𝑎ሻ and generated ሺ𝑥ሻ), macro-patches (actual ሺ𝑎ᇱሻ and generated ሺ𝑥ᇱሻ),

and micro-patches (generated ሺ𝑥ᇱᇱሻ). An enhanced topology-merging and re-creation

network with a flexible attention distribution is also included. Using the coordinate

structure of the shallow-feature selection, 𝐺 is mined for its shallow features and the

location of the image patch. The structure of 𝐺 in PDATFGAN is shown in Fig 4.8.

In the first step, 𝐺 is fed a collection of low-resolution picture patches that are

then divided in half. An upscaling unit is given the first subset, then the first

convolutional layer in 𝐺. After the second convolutional layer, a subset is sent to the

topology merging unit for prediction. In order to construct high-resolution picture

patches, the Restoration Network (RestoreNet) uses the global residual training to mix

the upscaled patches with approximated information. The leaf image patches' feature

vectors are then normalized using Conditional Batch Normalization (CBN).

116

Fig. 4.8 Structure of 𝑮 in PDATFGAN

 𝑥ᇱᇱ ൌ 𝐺ሺ𝑧, 𝑐ᇱᇱሻ, where z is the latent vector and 𝑐ᇱᇱ is a micro-coordinate condition

denoting the spatial location of 𝑥ᇱᇱ to be constructed, is a constrained framework inside

PGAN that generates high-resolution micro-patches. The ultimate goal of 𝐺 is to produce

reasonable and faultless whole images by entirely gathering a set of 𝑥ᇱᇱ with a fusion

factor 𝜑. For high-resolution image patches, it is sufficient to configure 𝜑 as

an aggregation factor with no overlap, since this is PGAN does automatically.

To learn 𝐷, a partition conversion 𝜑, in which a macro-patch 𝑎ᇱ is created by dividing

an actual image 𝑎 into smaller patches, 𝜑is used to simulate real macro-patches.

117

Fig. 4.9 Structure of 𝑫 in PDATFGAN

 In this layout, the ridges between consecutive patches are the main

hindrance to positive identification. 𝐷 is then taught with these larger macro-patches,

which are compiled from many smaller micro-patches, to solve the issue. The goal

of this model is to guarantee, relative to adversarial loss, the stability and consistency

of a large number of consecutive or nearby micro-patches. For the 𝐺 to manipulate 𝐷,

it has to close the gaps between the patches it creates. The following loss factors

are used to train this PGAN: adversarial loss ሺ𝐿௉ீ஺ேሻ, total perceptual loss ሺ𝐿஼௢௡௧௘௡௧ሻ,

spatial consistency loss ሺ𝐿ௌሻ and gradient penalty loss ሺ𝐿ீ௉ሻ. This PGAN only

works with macro- and micro-patches for 𝐿௉ீ஺ே and 𝐿ீ௉, whereas traditional

GAN makes use of whole pictures for both 𝐺 and 𝐷 training. 𝐿ௌ is a GAN loss factor

that acts similarly to an auxiliary classifier. Fig. 4.9 depicts the organization of 𝐷

inside PDATFGAN.

The macro-coordinate 𝑐ᇱ of the macro-patches 𝑎ᇱ is determined according to the

set-up of 𝜑. In addition, 𝐿ௌ and 𝐿஼௢௡௧௘௡௧ want to lessen the disparity between 𝑐ᇱ and the

𝐷-approximated 𝑐̂ᇱ by closing the gap between the two values. Here are some of

PGAN's losing factors:

 ൜
𝐿௉ீ஺ே ൅ 𝐿஼௢௡௧௘௡௧ ൅ 𝜆𝐿ீ௉ ൅ 𝛼𝐿ௌ, 𝑓𝑜𝑟 𝐷

െ𝐿௉ீ஺ே ൅ 𝛼𝐿ௌ, 𝑓𝑜𝑟 𝐺 (4.12)

118

(i) Spatial Coordinate System

 Create a micro-coordinate framework for 𝐺 and framework for large-scale

coordination of 𝐷 are the first steps. The matrix of microcoordinates is connected to

each macrocoordinate 𝑐ሺ௜,௝ሻ
ᇱ by the expression: 𝐶ሺ௜,௝ሻ

ᇱᇱ ൌ ൣ𝑐ሺ௜:௜ାே,௝:௝ାெሻ
ᇱᇱ ൧ whose absolute

structure is as follows:

𝑐ሺ௜,௝ሻ
ᇱᇱ ൌ

⎣
⎢
⎢
⎢
⎡

𝑐ሺ௜,௝ሻ
ᇱᇱ 𝑐ሺ௜,௝ାଵሻ

ᇱᇱ … 𝑐ሺ௜,௝ାெିଵሻ
ᇱᇱ

𝑐ሺ௜ାଵ,௝ሻ
ᇱᇱ 𝑐ሺ௜ାଵ,௝ାଵሻ

ᇱᇱ … 𝑐ሺ௜ାଵ,௝ାெିଵሻ
ᇱᇱ

⋮ ⋮ ⋱ ⋮
𝑐ሺ௜ାேିଵ,௝ሻ

ᇱᇱ 𝑐ሺ௜ାேିଵ,௝ାଵሻ
ᇱᇱ … 𝑐ሺ௜ାேିଵ,௝ାெିଵሻ

ᇱᇱ
⎦
⎥
⎥
⎥
⎤

 (4.13)

 Equal time is spent sampling all possible combinations of 𝑐ሺ௜,௝ሻ
ᇱᇱ during PGAN

training. By training using 𝐺൫𝑧, 𝑐ሺ௜,௝ሻ
ᇱᇱ ൯, the 𝐺 is constrained to produce high-resolution

𝑥ሺ௜,௝ሻ
ᇱᇱ . By randomly scattering values of 𝑧 over 𝐶ሺ௜,௝ሻ

ᇱᇱ , the micro-patches matrix

𝑋ሺ௜,௝ሻ
ᇱᇱ ൌ 𝐺൫𝑧, 𝐶ሺ௜,௝ሻ

ᇱᇱ ൯ is produced independently. In order to produce 𝑐ሺ௜,௝ሻ
ᇱᇱ , it is assumed

that the 𝑋ሺ௜,௝ሻ
ᇱᇱ are physically closer to one another. Following this, micro-patches are

fused utilising 𝜑 to give an absolute 𝑥ሺ௜,௝ሻ
ᇱ ൌ 𝜑൫𝑋ሺ௜,௝ሻ

ᇱᇱ ൯ as a coarser preview of the pictures

complete-sight. Under the macro-coordinate structure for 𝑐ሺ௜,௝ሻ
ᇱ , 𝑥ሺ௜,௝ሻ

ᇱ is also constructed

with a produced 𝐶ሺ௜,௝ሻ
ᇱᇱ . Actual 𝑎ሺ௜,௝ሻ

ᇱ ൌ 𝜓൫𝑎, 𝑐ሺ௜,௝ሻ
ᇱᇱ ൯ is formed based on the sampled

macro-coordinates 𝑐ሺ௜,௝ሻ
ᇱ in the real-time image scenario. Also, note that the selection

of 𝐶ሺ௜,௝ሻ
ᇱᇱ is related with the topological aspect of the micro/macro-coordinate

structures.When the micro-coordinate structure is solved for, the matching spatial

coordinate matrix 𝐶௘௡௧௜௥௘
ᇱᇱ may be found. This matrix is used to independently generate

each micro-patch that makes up the final image. Several high-resolution micro-patches

are generated and then stitched together to provide an entire image of a leaf.

(ii) Loss Functions

The adversarial loss 𝐿௉ீ஺ே is used in this model so that 𝐷 can tell the difference

between the true 𝑎ᇱ and the forged 𝑥ᇱ. Moreover, it helps 𝐺 to deceive 𝐷 with fake

but functional micro-patches 𝑥ᇱᇱ. It is defined as:

𝐿௉ீ஺ே ൌ 𝔼
௔,௖ᇲ

ൣ𝐷൫𝜓ሺ𝑎, 𝑐ᇱሻ൯൧ െ 𝔼
௭,஼ᇲᇲ

ቂ𝐷 ቀ𝜑൫𝐺ሺ𝑧, 𝐶ᇱᇱሻ൯ቁቃ (4.14)

119

 Coordinates 𝑐ᇱ and 𝑐ᇱᇱ in Eq. (4.14), representing macro- and micro-patches

on 𝐷 and 𝐺, respectively. Note that the micro-patches, denoted by the expression

𝐺ሺ𝑧, 𝐶ᇱᇱሻ, are the result of distinct processes. Macro-patches' differentiation is also

subject to a gradient penalty:

𝐿ீ௉ ൌ 𝔼
௫ොᇲ

ሾሺ‖𝛻௫ොᇲ𝐷ሺ𝑥ොᇱሻ‖ଶ െ 1ሻଶሿ (4.15)

 Using a random value in the range 𝜀 ∈ ሾ0,1ሿ, Eq. (4.15), 𝑥ොᇱ ൌ 𝜀𝑥ᇱ ൅ ሺ1 െ 𝜀ሻ𝑥ᇱ is

calculated between the connected 𝑥ᇱ and 𝑎ᇱ. At end, the spatial uniformity loss 𝐿ௌ

is comparable to a GAN loss with an auxiliary classifier. The 𝐷 is performed with

the help of a supplementary estimator A that attempts to gauge the macro-coordinate of a

macro-patch along 𝐴ሺ𝑎ᇱሻ. In contrast to the discrete setup of an auxiliary classifier-like

GAN, the continuous ranges in 𝑐ᇱᇱ and 𝑐ᇱ are rather large. Therefore, 𝐿ௌ is subjected to a

measurement loss due to a gap. The goal is to master G such that similar micro-patches

may be generated using 𝐺ሺ𝑧, 𝑐ᇱᇱሻ in terms of the spatial criteria 𝑐ᇱᇱunder consideration.

In order to define the spatial uniformity loss, follows:

𝐿ௌ ൌ 𝔼
௖ᇲ

‖𝑐ᇱ െ 𝐴ሺ𝑎ᇱሻ‖ଶ (4.16)

(iii) Conditional Batch Normalization

 In order to regularize and modulate the features of this positionally-aware

GAN, to use CBN, which applies the same principles 𝛾 and 𝛽 as those of normal

BN's and provisional generators. It determines 𝑜௄ ൌ ቀሺ𝑖௄ െ 𝜇௄ሻ
𝜎௄

ൗ ቁ ∗ 𝛾 ൅ 𝛽 for the 𝐾௧௛

input feature 𝑖௄, output feature 𝑜௄, feature mean 𝜇௄ and feature variance 𝜎௄.

But, positional-aware GAN gives spatial coordinate and latent vector as uncertain inputs.

So, two MLPs: 𝑀𝐿𝑃ఊሺ𝑧, 𝑐ሻ and 𝑀𝐿𝑃ఉሺ𝑧, 𝑐ሻ are created for every CBN layer that

conditionally generates 𝛾 and 𝛽.

4.3.2 Leaf Disease Image Classification Techniques

Leaf disease image classification is a frequent computer vision task that involves

sorting pictures of leaves into healthy and unhealthy groups. The purpose of leaf disease

image classification is to create a computerized system that, given an image of a plant's

leaves, can correctly identify and categorize the illness or condition shown in the image

120

(Pujari et al., 2015). By attaining high accuracy of classifying leaf diseases and reducing

the necessity for improper prevention measures, pre-trained DL models have established

remarkable success in the crop management.

4.3.2.1 AlexNet

When it comes to image categorization, DL's meteoric rise may be directly

attributed to AlexNet, a groundbreaking DCNN architecture. In 2012, it was developed

by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, and it took first place in the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The development of

AlexNet was a major step forward in computer vision, and it paved the way for many

future CNN designs, including those employed for leaf disease image classification

(Krizhevsky et al., 2017).

In all, AlexNet has eight layers: three FC layers and five convolutional layers.

Fig. 4.10 demonstrates how this early DCNN design was able to capture hierarchical

features and complicated patterns in images. However, it is worth noting that since the

development of AlexNet, newer and more advanced CNN architectures have been

introduced, which might offer improved performance for leaf disease image

classification. These architectures include VGG16, ResNet, Inception, and more.

Fig. 4.10 Architecture of AlexNet

4.3.2.2 VGG16

Developed at Oxford University, the VGG16 is a DCNN design. It has had

significant impact on computer vision and is largely regarded as a powerful model.

121

It has been employed for numerous image classification applications, including

leaf disease image classification (Verma 2022). As shown in Fig 4.11, it has 16 layers,

13 of which are convolutional and 3 of which are completely linked.

Fig. 4.11 Architecture of VGG16

4.3.2.3 InceptionV3

InceptionV3 is a DCNN architecture that was introduced as part of the Inception

series of models. It was created to help with computer vision projects like image

categorization. The purpose of InceptionV3, which is based on the same ideas as the

original Inception architecture, is to be more effective in terms of computation and

parameter consumption. (Xia et al. 2017). This architecture is well-suited for tasks like

leaf disease image classification, where accuracy and efficiency are important factors.

Fig. 4.12 Architecture of InceptionV3

The InceptionV3 architecture comprises of 42 convolutional layers and various

auxiliary layers for training purposes. There are numerous Inception modules in the design,

122

each of which is a collection of convolutional layers with varying dimensionalities and kernel

sizes. These modules help capture features at different scales and levels of abstraction. As can

be seen in Fig. 4.12, it also has an FC layer, followed by a softmax layer, which generates the

final classification result. In addition, it uses batch normalization and dropout regularization

techniques to prevent overfitting and improve performance.

4.3.2.4 ResNet101

The ResNet (Residual Network) family of models includes the DCNN

architecture known as ResNet101 (or "Residual Network with 101 layers"). ResNet101 is

designed to overcome the challenges of training very deep neural networks by

introducing the concept of residual connections, which alleviate the degradation problem

caused by increasing network depth. He et al. (2016) found that this framework

performed very well in classifying images of leaf diseases and other computer vision

tasks. As can be seen in Fig 4.13, the ResNet-101 design is made up of 33 residual

blocks. There are two convolutional layers in each remaining block, then a bypass link.

Bypassing the convolutional layers, the shortcut connection links the residual block's

input and output immediately.

Fig. 4.13 Architecture of ResNet101

4.3.2.5 ResNeXt50

To boost its representational capacity and efficiency, ResNeXt50 is a variation of the

ResNet architecture that incorporates the idea of cardinality. It builds on the idea of grouped

convolutions, where multiple paths within a single layer learn different features in parallel.

This design allows ResNeXt50 to achieve strong performance while being more memory and

computationally efficient compared to other architectures (Xie et al. 2017).

123

ResNeXt50 uses a residual block with two convolutional layers and a bypass link.

In the residual block, however, a bottleneck layer comes after the convolutional layers.

The bottleneck layer is a small convolutional layer that reduces the number of channels

in the output.

In addition, ResNeXt50 uses a technique called "cardinality" to increase the

number of paths through the residual block. Cardinality is the number of parallel

branches that are used in the residual block. ResNeXt50 uses a cardinality of 32, which

means that there are 32 parallel branches in each residual block, as shown in Fig 4.14.

ResNeXt50's performance is enhanced by the cardinality approach since it is then

exposed to a more diverse set of characteristics from which to learn.

Fig. 4.14 Architecture of ResNeXt50. (a) ResNeXt Flow Diagram and

(b) Residual Block Structure of ResNet50 and ResNeXt50

4.3.2.6 ShuffleNetV2

 The channel split operator in ShuffleNetV2 divides the channels into two sets,

keeping one set intact as the identity. Figure 4.15 and Table 4.1 depict the SuffleNetV2's

topology and size, respectively. In contrast to 11 convolutions, which are not group-wise,

the other branch's 3 convolutions have an equal number of input and output channels.

ReLU, concat, and depth-wise convolutions are element-wise operations that can only be

performed on one branch (Ma et al., 2018).

124

Fig 4.15 Structure of ShuffleNetV2 Classifier

Table 4.1 Design of ShuffleNetV2 Classifier

Layer Outcome dimension Kernel size/Stride

Input 224 ൈ 224

Convolution (Conv1) 112 ൈ 112 3 ൈ 3 𝑐𝑜𝑛𝑣 / 2

Pooling 56 ൈ 56 3 ൈ 3 maxpool / 2

Stage 2
28 ൈ 28

28 ൈ 28

-- / 2

-- / 1

Stage 3
14 ൈ 14

14 ൈ 14

-- / 2

-- / 1

Stage 4
7 ൈ 7

7 ൈ 7

-- / 2

-- / 1

Conv5 7 ൈ 7 1 ൈ 1 𝑐𝑜𝑛𝑣 / 1, padding 0

4.3.2.7 DenseNet121

 It certainly demands fewer variables than traditional architectures since

its complicated connections prototype may not enable severe re-learning feature maps.

The structure is partitioned into compact units, where the feature map dimensions are

fixed within a given block but the number of filters is dynamic. It offers numerous

advantages, including significantly reducing the number of variables, retaining the

125

features, and decreasing the vanishing gradient. The structure of DenseNet121 and their

dimensions are presented in Fig 4.16 and Table 4.2, respectively. It has one convolution

(112×112) and 4 dense units (Huang et al. 2017).

Fig. 4.16 Structure of DenseNet121 Classifier

Table 4.2 Design of DenseNet121 Classifier

Layer Result dimension Patch size/Stride

Conv 112 ൈ 112 ൈ 64 7 ൈ 7 𝑐𝑜𝑛𝑣, stride 2, padding 3

Pooling 56 ൈ 56 ൈ 64 3 ൈ 3 maxpool, stride 2, padding 1

Dense_1 56 ൈ 56 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 6

Transition_1
56 ൈ 56 ൈ 128

28 ൈ 28 ൈ 128
1 ൈ 1 ൈ 128 𝑐𝑜𝑛𝑣

Dense_2 28 ൈ 28 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 12

Transition_2
28 ൈ 28 ൈ 256

14 ൈ 14 ൈ 256

1 ൈ 1 𝑐𝑜𝑛𝑣, stride 1, padding 0

Dense_3 14 ൈ 14 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 24

Transition_3
14 ൈ 14 ൈ 896

7 ൈ 7 ൈ 896

1 ൈ 1 𝑐𝑜𝑛𝑣, stride 1, padding 0

Dense-4 7 ൈ 7 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 16

126

4.3.2.8 MobileNetV2

 It progresses to MobileNetV1 and is used as the effective fundamental component

by depthwise separable convolutions. To minimize dimensionality, two types of units are

built in this structure: a residual unit with a stride 1 and another unit with a stride 2.

Further, it includes linear blocks among the layers, which are required since nonlinearities

prohibit more data from being affected. Such bottlenecks encode mid-level inputs and

outputs (Sandler et al. 2018).

The internal layer can aid in the conversion of lower-level concepts such as pixels

to higher-level descriptors. There are also shortcut links between bottlenecks. Figure 4.17

and Table 4.3 depict MobileNetV2's architecture and size, respectively.

Fig. 4.17 Structure of MobileNetV2 Classifier

127

Table 4.3 Layout of MobileNetV2 Classifier

Layer Outcome dimension Patch size/Stride

Conv layer 112 ൈ 112 ൈ 32 3 ൈ 3/2

Bottleneck – 1 112 ൈ 112 ൈ 16 െ/1

Bottleneck – 2 56 ൈ 56 ൈ 24 െ/2

Bottleneck – 3 28 ൈ 28 ൈ 32 െ/2

Bottleneck – 4 14 ൈ 14 ൈ 64 െ/2

Bottleneck – 5 14 ൈ 14 ൈ 96 െ/1

Bottleneck – 6 7 ൈ 7 ൈ 160 െ/2

Bottleneck – 7 7 ൈ 7 ൈ 320 െ/1

Conv layer 7 ൈ 7 ൈ 1280 1 ൈ 1/1

Mean pooling 1 ൈ 1 ൈ 1280 7 ൈ 7/െ

Conv layer 𝑘 1 ൈ 1/1

4.4 BUILDING THE PROPOSED MODEL

 To address the issue of generating high-resolution leaf disease images for

effective classification, the PDATFGAN model is proposed. The Positional-aware

GAN (PGAN) model in high-resolution leaf disease image generation has been

developed to build the model. The research works are carried out using the leaf disease

image dataset PVD discussed in Chapter 3. As can be seen in Fig 4.18, the development

of the Positional-aware Dual-Attention and Topology Fusion Generative Adversarial

Network (PDATFGAN) that is the subject of this proposal goes through a number of

stages. In addition, they are,

 Splitting the leaf disease image dataset into training and test sets

 High-resolution leaf disease image generation using PDATFGAN

 Leaf disease classification using pre-trained DCNN classification models

128

Fig. 4.18 Block Diagram of Proposed Model of PDATFGAN

4.4.1 Dataset Preparation

 Leaf images from the Plant Village Dataset (PVD) are first divided into a training

set and a test set, with both healthy and diseased examples included in each. The ratio

between practice and evaluation is 70:30. The sample leaf disease images for various

classes are shown in Chapter 3.

4.4.2 High-Resolution Leaf Disease Image Generation using PDATFGAN

 In the next stage, as per the steps described in the PDATFGAN model

given in section 4.3.1.4, the leaf images of distinct classes in the training image set are

enhanced from low-resolution to high-resolution for classification. In the PDATFGAN,

the network is built and trained using the hyperparameters listed in Table 4.4 with

training images.

r
bacterial

spot

Test
images

Potato
early
blight
Bell

peppe

High-resolution image
generation using

PDATFGAN

Pre-trained DCNN
classification models

Training
images

Potato
late

blight

Bell
pepper
health

y
Potato
healthy Tomato

target
spot

Tomato
mosaic
virus

Tomato
yellow

leaf
curl
virus

Tomato
bacterial

spot

Tomato
early
blight

Tomato
healthy

Tomat
o late
blight

Tomat
o leaf
mold

Tomat
o

septori
a leaf
spot

Tomat
o two

spotted
spider
mite

129

Table 4.4 Hyperparameters for PDATFGAN

Hyperparameters Range

Optimizer Adam

Learning rate 0.0001

Number of epochs 180

Momentum 0.9

Weight decay 0.0001

Mini-batch size 64

4.4.3 Leaf Disease Classification using Pre-trained DCNN Model

 After generating the high-resolution leaf images in different classes, ShuffleNetV2,

DenseNet121 and MobileNetV2 classifiers are performed as per the structure given in

Fig 4.15, 4.16, and 4.17, respectively. In these classification models, the networks are

built and trained using the parameters listed in Table 4.5. Finally, the trained classifiers

are utilized to assign illness classifications to test images of leaves.

Table 4.5 Training Parameters for Different Pre-trained DCNN Classifiers

Models Learning rate Batch size Epochs Optimizer Loss

DenseNet-121 0.0005

20

50

Adam Cross-entropy MobileNet V2

0.0001

60

ShuffleNet V2 70

130

4.5 RESULTS AND DISCUSSION

The measures used to evaluate the proposed PDATFGAN model's performance in

comparison to the state-of-the-art models are shown below. Chapter 3 explains the

datasets, assessment measures, and system settings in depth.

Table 4.6 displays the precision, recall, f-measure, and accuracy results obtained

from testing the ShuffleNetV2 classifier model with the PVD raw dataset, the PVD

augmented by the DATFGAN, and the PDATFGAN models.

Table 4.6 Comparison of the Proposed PDATFGAN Model Using ShuffleNetV2

Performance
Evaluation Metrics

Raw
dataset

Dataset enhanced by
DATFGAN

Dataset enhanced by
PDATFGAN

Precision 0.8954 0.9135 0.9148

Recall 0.8958 0.9140 0.9151

F-measure 0.8957 0.9142 0.9150

Accuracy 89.58% 91.38% 91.52%

Fig. 4.19 Result of Proposed PDATFGAN Model Using ShuffleNetV2

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

Precision Recall F-measure

S
co

re
 V

al
u

e

Performance Metrics

Raw dataset

DATFGAN

PDATFGAN

PDATFGAN Model

131

Precision, recall, and f-measure are compared for a number of different GAN

models used with the ShuffleNetV2 classifier on both raw and enriched PVD. Based on

these findings, it is clear that the PDATFGAN-enhanced PVD is superior to the raw

dataset and the DATFGAN-enhanced dataset for training the ShuffleNetV2. This is seen

in Fig. 4.19. The precision of PDATFGAN-ShuffleNetV2 is increased up to 2.17% and

0.14% compared to the ShuffleNetV2 using raw dataset and DATFGAN-ShuffleNetV2,

respectively. The recall of PDATFGAN-ShuffleNetV2 is improved by 2.15% and 0.12%

compared to the ShuffleNetV2 using the raw dataset and DATFGAN-ShuffleNetV2,

respectively. The f-measure of PDATFGAN-ShuffleNetV2 is raised to 2.15% and 0.09%

than the ShuffleNetV2 using raw dataset and DATFGAN-ShuffleNetV2, respectively.

Fig. 4.20 Accuracy Comparison of PDATFGAN Model Using ShuffleNetV2

A performance of the ShuffleNetV2 classifier tested using raw PVD and

enhanced PVD is depicted in terms of accuracy. It is shown that the accuracy of

PDATFGAN-ShuffleNetV2 is increased by 2.17% and 0.15% compared to the

ShuffleNetV2 using the raw dataset and DATFGAN-ShuffleNetV2, respectively as

shown in Fig 4.20. This is achieved due to enhancing the leaf image resolutions based on

the pixel’s positions and minimizing the loss values.

75

80

85

90

95

100

Accuracy

S
co

re
 V

al
u

e
(i

n
 %

)

Performance Metrics

Raw dataset

DATFGAN

PDATFGAN

PDATFGAN Model

132

Table 4.7 displays the results of a series of tests conducted on the DenseNet121

classifier model using the PVD raw dataset, the PVD augmented by the DATFGAN, and

the PDATFGAN models.

Table 4.7 Comparison of the Proposed PDATFGAN Model Using DenseNet12

Performance
Evaluation Metrics

Raw
dataset

Dataset enhanced by
DATFGAN

Dataset enhanced by
PDATFGAN

Precision 0.8841 0.9249 0.9270

Recall 0.8843 0.9252 0.9273

F-measure 0.8842 0.9251 0.9272

Accuracy 88.47% 92.54% 92.74%

Fig. 4.21 Result of Proposed PDATFGAN Model Using DenseNet121

The precision, recall, and f-measure of several GAN models compared using the

DenseNet121 classifier on the raw and improved PVD. DenseNet121 performs better on

the PDATFGAN-enhanced PVD than on the raw dataset or the DATFGAN-enhanced

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

Precision Recall F-measure

S
co

re
 V

al
u

e
(i

n
 %

)

Performance Metrics

Raw dataset

DATFGAN

PDATFGAN

PDATFGAN Model

133

dataset, as shown in Fig. 4.21. PDATFGAN-DenseNet121 improves over DenseNet121

trained on the raw dataset and DATFGAN-DenseNet121 by around 4.86% and 0.23%,

respectively, in terms of precision, recall, and f-measure.

Fig. 4.22 Accuracy Comparison of PDATFGAN Model Using DenseNet121

A performance of the DenseNet121 classifier tested using raw PVD and enhanced

PVD is depicted in terms of accuracy. It is noted that the accuracy of PDATFGAN-

DenseNet121 is improved by 4.83% and 0.22% compared to the DenseNet121 using the

raw dataset and DATFGAN-DenseNet121, respectively as shown in Fig 4.22. This is

since generating high-resolution leaf images according to the spatial coordinate system

i.e., knowledge about pixels’ positions.

The test results for the MobileNetV2 classifier model tested using the PVD raw

dataset, enhanced PVD by the DATFGAN and PDATFGAN models are given in Table 4.8.

75

80

85

90

95

100

Accuracy

S
co

re
 V

al
u

e
(i

n
 %

)

Performance Metrics

Raw dataset

DATFGAN

PDATFGAN

PDATFGAN Model

134

Table 4.8 Comparison of the Proposed PDATFGAN Model Using MobileNetV2

Performance
Evaluation Metrics

Raw
dataset

Dataset enhanced by
DATFGAN

Dataset enhanced by
PDATFGAN

Precision 0.9062 0.9264 0.9283

Recall 0.9065 0.9266 0.9287

F-measure 0.9064 0.9265 0.9285

Accuracy 90.66% 92.69% 92.87%

Fig 4.23 Result of Proposed PDATFGAN Model Using MobileNetV2

Precision, recall, and f-measure are compared for a number of different GAN

models used by the MobileNetV2 classifier on both raw and enriched PVD. It is

addressed that the MobileNetV2 implements well if utilizing the PVD enhanced by the

PDATFGAN than the raw dataset and the dataset enhanced by the DATFGAN model.

The precision of PDATFGAN-MobileNetV2 is increased up to 2.44% and 0.21%

compared to the MobileNetV2 using raw dataset and DATFGAN-MobileNetV2,

respectively as shown in Fig 4.23. The recall of PDATFGAN-MobileNetV2 is improved

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.99

Precision Recall F-measure

S
co

re
 V

al
u

e

Performance Metrics

Raw dataset

DATFGAN

PDATFGAN

PDATFGAN Model

135

by 2.45% and 0.23% compared to the MobileNetV2 using the raw dataset and

DATFGAN-MobileNetV2, respectively. Also, the f-measure of PDATFGAN-

MobileNetV2 is raised to 2.44% and 0.22% than the MobileNetV2 using raw dataset and

DATFGAN-MobileNetV2, respectively.

Fig 4.24 Accuracy Comparison of PDATFGAN Model Using MobileNetV2

A performance of the MobileNetV2 classifier tested using raw PVD and enhanced

PVD is depicted in terms of accuracy. It is noted that the accuracy of PDATFGAN-

MobileNetV2 is improved by 2.44% and 0.19% compared to the MobileNetV2 using the

raw dataset and DATFGAN-MobileNetV2, respectively. This is owing to the

development of positional-aware GAN for high-resolution leaf image creation, which

supports the classifier model to effectively classify leaf diseases from better visual quality

leaf images as shown in Fig 4.24

75

80

85

90

95

100

Accuracy

S
co

re
 V

al
u

e
(i

n
 %

)

Performance Metrics

Raw dataset

DATFGAN

PDATFGAN

PDATFGAN Model

136

These side-by-side evaluations demonstrate that the MobileNetV2 classifier

outperforms the competition on raw and improved PVD. When it comes to accurately

classifying leaf diseases, the MobileNetV2 with the PDATFGAN model performs better

than other methods.

4.6 SUMMARY

 To summarize, an overview of leaf disease image classification and its challenges

are discussed in this chapter. A detailed analysis of various techniques used for

high-resolution leaf disease image generation and leaf disease classification is provided.

The design and development of the PDATFGAN model using PGAN and different

pre-trained DCNN classifiers is described. Form leaf images with healthy and various

disease classes, the performance of the models are examined. Based to the results,

leaf disease image classification could make use of the PDATFGAN model that

has been developed.

