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CHAPTER 4 

PROPOSED MODEL: A POSITIONAL-AWARE  

DUAL-ATTENTION AND TOPOLOGY-FUSION WITH 

GENERATIVE ADVERSARIAL NETWORK-BASED  

HIGH-RESOLUTION FRAMEWORK FOR LEAF  

DISEASE IMAGE CLASSIFICATION 

4.1 INTRODUCTION 

This chapter presents a quick summary of the difficulties in classifying leaf 

disease images. It also discusses the role of leaf disease image restoration and 

classification techniques. Using the Plant Village Dataset (PVD), The state-of-the-art 

models are compared and contrasted, including DATFGAN using ShuffleNetV2, 

DenseNet121, and MobileNetV2 classifiers, against the proposed Positional-aware  

Dual-Attention and Topology-Fusion with Generative Adversarial Network (PDATFGAN). 

4.2 OVERVIEW OF LEAF DISEASE IMAGE CLASSIFICATION 

 Nowadays, crop management put importance on leaf disease classification 

because of more frequency of different kinds of leaf diseases. Leaf disease detection is 

more difficult task because of diagnosis impacts and discrepancies in atmospheric 

conditions. The classification of many leaf diseases, which affect several plant species is 

problematic and manual detection is not appropriate for proper diagnosis. Automated leaf 

disease image classification has been developed to solve this problem. It's a subfield of 

plant pathology where computer vision is used to develop methods for the purpose of 

automatically classifying images of plant leaf diseases (Kaur et al., 2019). It intends to 

computerize the classification procedure by training different algorithms on huge datasets 

of labelled images, allowing them to capture different visual characteristics related to the 

leaf disease symptoms. It is essential for the agriculture field since cultivators may apply 

it to make precise decisions on preventing leaf diseases that enhances crop yield  

quality and productivity. 

On the other hand, poor quality leaf images can pose significant challenges to leaf 

disease classification models (Wen et al. 2020). These challenges arise from the fact that 
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low-quality images might lack essential visual features and information needed for 

accurate disease detection. Some specific problems that can occur in leaf disease 

classification due to poor quality leaf images are the following: 

 Lack of clear features: Image quality issues such as low resolution, blurriness, and 

noise might hinder the model's ability to differentiate between healthy and sick 

leaves. Clear and distinct visual features are crucial for accurate classification 

(Dhaka et al. 2021) 

 Ambiguous visual cues: Some diseases might manifest as subtle colour changes 

or minor textural differences on leaves. Poor quality images can obscure these 

cues, leading to misclassifications or difficulties in distinguishing between classes 

 Limited textural information: Texture plays a crucial role in leaf disease 

identification. Low-quality images might lack the necessary texture details, 

making it challenging for the model to differentiate between different disease 

types (Singh et al. 2020) 

 Colour distortions: Inaccurate colour reproduction, lighting variations, or colour 

shifts in images can misrepresent the true colour of leaves. Since colour is a vital 

visual feature, these distortions can lead to incorrect disease classification 

 Occlusions and background noise: Cluttered backgrounds, occluded leaves, or other 

objects in the image can interfere with leaf disease detection (Wang et al. 2021).  

Poor quality images might contain more noise and distractions, making it harder 

for the model to focus on the leaf itself 

 Limited diversity: Poor quality images might not capture the full diversity of 

disease symptoms, leading to biased or incomplete training data. The model might 

struggle to generalize to unseen disease variations 

 Loss of structural information: Poor quality images might lack the structural 

details of leaves such as vein patterns or leaf shape (Azlah et al. 2019).  

These details are important for distinguishing between different plant species  

and diseases 
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Pre-trained DCNNs like AlexNet, VGG, and GoogLeNet have been used in a 

number of automated leaf disease image detection systems reported in recent decades 

(Thenmozhi & Reddy 2019). Those DCNNs are helpful for identifying and categorizing 

leaf diseases. Instead, most farm-based leaf disease images are fuzzy, low-resolution 

affairs. Low-quality images significantly degrade the classification performance of  

pre-trained DCNN classifiers, which are typically trained on clear high-resolution 

datasets. In order to improve the accuracy of agricultural disease image classification, 

low-resolution images must be high-resolved to increase spatial resolution and replicate 

the high-frequency characteristics of sharp edges. 

To better diagnose agricultural leaf diseases, a novel Dual-Attention and 

Topology-Fusion with Generative Adversarial Network (DATFGAN) (Dai et al., 2020) 

can up-resolution low-resolution leaf images. They used the weight allocation policy to 

train deeper structures that classify leaf diseases according to texture features while 

reducing the number of parameters. However, the goal of a GAN was to train a generator 

that adapts a prior latent distribution to actual data. By improving algorithms to 

coordinate the generator and discriminator networks, its training time was increased. 

Also, the diseases could have affected the leaf partially or completely.  

There is a need for the Positional-aware Generative Adversarial Network (PGAN) 

model to learn the spatial relationships among multiple leaf image observations and 

increase the accuracy of classifying leaf diseases. 

4.3 HIGH-RESOLUTION LEAF DISEASE IMAGE GENERATION 

CLASSIFICATION 

4.3.1 High-Resolution Leaf Disease Image Generation 

 Generating high-resolution leaf disease image is a technique used to enhance the 

resolution of low-quality or low-resolution leaf images. This process involves generating 

high-resolution versions of images while preserving important details and features.  

It is useful for various purposes, such as creating realistic training datasets, generating 

synthetic data for research, or enhancing the visual quality of diagnostic tools  

(Abayomi-Alli et al. 2021). We'll go over a few methods for creating images of excellent 

quality of leaf diseases. 
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4.3.1.1 Data Augmentation 

"data augmentation" describes an approach to expanding the variety of information 

available from a dataset by altering its current images. This is commonly done by introducing 

small variations to the images while preserving their semantic content. In the context of high-

resolution leaf disease image creation, data augmentation is used to generate new images 

with the same disease characteristics but slightly different visual properties. This technique 

helps improvement in model generalization and performance may be achieved by expanding 

the amount and variety of the dataset (Liu et al. 2020).  

Augmentations such as rotation, flipping, cropping, zooming, deblurring, 

denoising, colour variations (brightness, contrast, Hue and saturation), and resolution 

adjustments (Downscaling and upscaling) can simulate different viewing angles and 

lighting conditions, effectively increasing the effective resolution of leaf disease image 

dataset (Shorten & Khoshgoftaar 2019). 

By applying these augmentations, variations of high-resolution leaf disease 

images can be generated that resemble real-world conditions. This augmented dataset can 

then be used for training DL models, improving their ability to generalize to different 

scenarios and variations. To keep the produced images realistic and useful for appropriate 

diagnosis, however, a balance must be struck between augmentation and keeping the 

integrity of the underlying illness patterns. 

4.3.1.2 Texture Synthesis 

Texture synthesis is a technique used to generate new images with textures that 

resemble those found in existing images. In the context of high-resolution leaf disease 

image generation, texture synthesis involves creating new images that exhibit the same or 

similar textural patterns as real disease-affected leaves (Hasan et al. 2022).  

This technique can be particularly useful for generating high-resolution images of leaf 

diseases with intricate and distinctive texture details. 

Texture synthesis methods, like patch-based or example-based approaches,  

can generate high-resolution textures that mimic the appearance of real leaf diseases.  

These techniques extract texture patterns from existing images and apply them to 
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generate new high-resolution textures (Wei et al. 2009). But it might not capture the 

underlying structural and semantic information of the original disease. This could lead to 

generated images that lack accurate disease features. Also, these techniques can be 

computationally intensive, resulting in long processing time and less practical for  

large-scale image generation. 

Texture synthesis might not consider the contextual information present in the 

original image, such as the spatial relationships between textures or their interactions 

with other image components. Some disease patterns are inherently complex and involve 

interactions between different textures and structures. Capturing such complex patterns 

accurately through texture synthesis can be challenging. 

4.3.1.3 Data Fusion 

Integrating information from several sources or forms of analysis, as is done in 

data fusion, provides a more comprehensive images of the data at hand. Data fusion may 

be utilized to improve the quality, accuracy, and realism of produced high-resolution leaf 

disease images by combining data from many sources (Ouhami et al. 2021). For instance, 

combining colour and multispectral data can result in high-resolution images that capture 

both colour and spectral information. Some data fusion techniques applied to create  

high-resolution leaf disease images include: 

 Combining spatial and spectral information: Leaf diseases often manifest in both 

the spatial and spectral domains. Data fusion can leverage spatial and spectral 

information to generate high-resolution images that reflect the intricate spatial 

patterns of diseases and their spectral signatures 

 Enhancing texture and detail: Fusion techniques can integrate texture information 

from one image source with structural details from another. This can result in 

generated images that exhibit more realistic and visually appealing textures, 

making them suitable for classification 

 Super-resolution fusion: Super-resolution methods may be used with other data 

sources to boost the resolution of produced images. For instance, a low-resolution 

image of a diseased leaf can be fused with high-resolution texture patterns to 

create a more detailed and high-quality image 
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 Feature-level fusion: It involves extracting relevant features from different data 

sources and combining them to create a more informative representation. In the 

context of high-resolution leaf disease image generation, this can lead to images 

that accurately capture disease-specific features 

 Neural network fusion: DL methods, such as neural networks, may be used to 

combine data from several sources. They can learn to extract and combine 

relevant features, resulting in high-resolution images that effectively leverage the 

strengths of each data source 

 Semantic information fusion: Data fusion can incorporate semantic information, such 

as disease labels or regions of interest, to guide the generation process. This can lead 

to high-resolution images that accurately represent specific disease patterns 

4.3.1.4 Image-to-Image Translation Using GAN Variants 

The purpose of the image-to-image translation method is to transfer images from 

one domain to another without losing their significance. In the context of creating high-

resolution images of leaves, image-to-image translation is used to convert images of 

healthy leaves (the source domain) into images of diseased leaves (the destination 

domain). This technique is often employed using DL models, such as Generative 

Adversarial Network (GAN) and its variants, to achieve realistic and accurate 

transformations (Lu et al. 2022). 

A. GAN 

High-resolution images of leaf diseases may be synthesized using GANs, and they 

will seem quite similar to the original data. To make synthetic images, GANs use a 

generator network, and to tell the difference between genuine and artificial images, 

GANs use a discriminator network (Liu et al. 2020). By iteratively training these 

networks, GANs can produce high-quality, high-resolution images. 

Since its introduction by Goodfellow et al. (2020), GANs have been used by 

several scholars across many disciplines. The generator and discriminator of a GAN are 

two antagonistic components that engage in a minimax game to achieve their respective 

goals. The goal of the generator is to mimic the distribution of actual data and provide 
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convincing fake samples to the discriminator. Alternatively, discriminator goals are 

sample origin determination. The cost of each network is proportional to the success of 

the competing component, and this competition between the discriminator and the generator 

may be described using the following formulation (Eq. 4.1) with value function 𝑉ሺ𝐺, 𝐷ሻ. 

𝑚𝑖𝑛
ீ

𝑚𝑖𝑛
஽

𝑉ሺ𝐷, 𝐺ሻ ൌ 𝐸௫ሾ𝑙𝑜𝑔 𝐷ሺ𝑥ሻሿ ൅ 𝐸௭ሾ𝑙𝑜𝑔ሺ1 െ 𝐷ሺ𝐺ሺ𝑧ሻሻሻሿ (4.1) 

 𝐷ሺ𝑥ሻ in Eq. (4.1) is the discriminator's assessment of the probability that data 

instance x is authentic, while the generator's response to noise 𝑧 is denoted by G(z),  

The probability that a false instance is genuine, as determined by the discriminator, is 

represented by 𝐷ሺ𝐺ሺ𝑧ሻሻ, 𝐸௫ irepresents the average value of all occurrences of actual 

data, and 𝐸௭ is the average value of the generator given a set of random inputs. Fig 4.1 

depicts an overarching framework for the GAN training process. Digital Elevation 

Models (DEMs) of poor resolution may be upgraded using the Generator. To determine if 

high-resolution DEMs are genuine or false, the discriminator compares them to examples 

from the training set. 

 

Fig. 4.1 Architecture of the GAN Training Procedure (Demiray et al. 2021) 

Based on the discriminator's performance, the adversarial loss is computed, and 

the weights of the discriminator and the generator are adjusted. While feeding back to the 

generator, the content loss is determined by comparing the created DEMs to the original 

high-resolution ones pixel-by-pixel. 
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B. Super-Resolution GANs 

Super-Resolution GAN (SRGAN) is a specialized type of GAN designed to 

enhance the resolution of images, including high-resolution leaf disease images. 

SRGANs use DL approaches to produce high-quality, high-resolution imagery from  

low-resolution inputs, essentially "super-resolving" the images while keeping realistic and 

visually correct features (Wang et al. 2022). Medical imaging and remote sensing are only 

two examples of the many applications of this method for creating and improving images. 

A SRGAN consists of a generator and a discriminator, as shown in Fig. 4.2. 

 Generator: In order to generate a high-resolution image, the generator must first 

receive a low-resolution image as input. It employs DCNNs to upscale the image 

while adding high-frequency details that are consistent with the high-resolution 

data distribution 

 Discriminator: It is a method for verifying the authenticity of high-resolution 

images. It directs the generator to create images that seem just like actual  

high-resolution ones. 

 

Fig. 4.2 Architecture of Generator and Discriminator Network (Ledig et al. 2017) 



107 

SRGAN training follows the standard GAN training process: 

 The generator attempts to create high-resolution images that can "fool" the 

discriminator into categorizing them as actual images. 

 The discriminator seeks to accurately categorize images of excellent quality as 

either authentic or fraudulent, given just their resolution. 

As the generator learns to create more convincing high-resolution images, the 

discriminator becomes better at telling genuine from produced images, and the training 

loop continues. To help direct the training process and guarantee the quality of produced 

images, SRGAN makes use of a number of loss functions (Ledig et al., 2022). 

 Adversarial loss: promotes the generation of images with excellent resolution that 

may deceive the discriminator into thinking they are genuine. 

 Perceptual loss: Calculates the degree to which a pre-trained CNN can distinguish 

between genuine and synthetic visual features. Because of this, the creator is 

incentivized to protect crucial structural and visual aspects. 

 Content loss: Similar to perceptual loss, content loss focuses on the preservation 

of image content and texture details 

Disadvantages of SRGAN 

SRGANs also have specific disadvantages and challenges when applied to  

high-resolution leaf disease image generation. The diagnostic, research, and training 

applications of the produced images may suffer as a result of these drawbacks. 

 Loss of disease-specific details: SRGANs might prioritize general texture 

enhancement over disease-specific details. This could result in generated images 

that lack accurate disease patterns and characteristics, limiting their usefulness for 

accurate disease detection and analysis 

 Unrealistic disease manifestations: Generated images might exaggerate disease 

patterns or create unrealistic manifestations that do not accurately represent the 

variations found in real-world leaf diseases 
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 Difficulty in capturing subtle features: Some leaf diseases exhibit subtle  

colour changes, minor texture variations, or small lesions. SRGANs might 

struggle to faithfully capture these fine-grained features, leading to inaccuracies in 

generated images 

 Dependency on high-quality low-resolution inputs: SRGANs heavily rely on the 

quality of low-resolution inputs. If the low-resolution images are of poor quality 

or do not accurately represent the disease patterns, the generated high-resolution 

images might not be reliable 

 Complex disease interactions: Some leaf diseases interact with each other or 

exhibit complex patterns that are challenging to model accurately using SRGANs. 

This can lead to inconsistencies or inaccuracies in generated images 

 Evaluation challenges: Accurately evaluating the quality and realism of  

generated high-resolution leaf disease images can be difficult. Conventional 

metrics might not capture disease-specific features, and subjective evaluation by 

experts is often necessary 

 Data artifacts: If the low-resolution images used for training contain artifacts or 

noise, the SRGAN might inadvertently amplify these artifacts when generating 

high-resolution images 

 Limited interpretability: The generated images might lack interpretability, making 

it challenging to understand the underlying disease patterns that contributed to 

their creation 

Combining SRGANs with other techniques, such as data fusion or attention, can also 

help address some of these limitations. Ultimately, understanding the potential disadvantages 

of using SRGANs for high-resolution leaf disease image generation is essential for making 

informed decisions about their deployment and interpreting their results. 

C. Dual-Attention and Topology Fusion Generative Adversarial Network 

The Deep Attention and Topology Fusion Generative Adversarial Network 

(DATFGAN) model was developed by Dai, et al., in 2020. It's made up of a network for 

extracting deep features, one for fusing attention to topologies, and another for 
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reconstructing images, all of which share parameters. To create high-resolution images, 

the reconstruction network makes advantage of global residual learning, whereas the 

generator network, as illustrated in Fig 4.3, comprises two convolutional layers for 

shallow features.  

 

Fig. 4.3 Generator Network in DATFGAN 

 

 

Fig. 4.4 Discriminator Network in DATFGAN 

 The discriminator network is seven convolutional layers deep, where the filter 

kernels increase in size with each layer. It is trained to maximise a target variable.  

To improve the probability of image classification, researchers first reduce the image 

resolution using striding convolutions, and then feed the resulting 512 feature maps into a 

LeakyReLU activation function and two linear layers (Fig. 4.4). 
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 Parameter Sharing 

 It is the local information extracted by convolution processes that may be utilized 

in various places throughout an image. The CNN uses a convolution kernel to extract 

features from the input data one at a time. However, parameter explosion in the 

convolution layer is a common occurrence if the input data contains numerous 

dimensions. Without taking into account local correlations, the convolution kernels each 

extract their own unique set of characteristics. Parameter sharing enables each feature to 

appear in many places in different data, hence reducing the number of parameters 

required in the convolutional layer (Dai et al., 2020). 

 The number of convolutional layer parameters may be reduced via weight sharing. 

Parameter-sharing attention may be used to reduce the number of network parameters, reduce 

the likelihood of overfitting, and improve the trainability of deeper structures."-improved 

topology"The DATFGAN generating network made use of fusion networks. 

 Topology Fusion 

 ResNet (He et al. 2016) was developed to address the degradation problem  

in DL by reducing error rates and optimizing complex models. ResNet's residual  

block, implemented through residual connections, increases training speed without 

additional parameters or calculations. By building residual connections between the front 

and rear layers, this architecture enhances the overall training efficiency of deep CNNs.  

 Like ResNet, DenseNet (Huang et al. 2017) makes advantage of dense connections 

between layers to improve performance while decreasing the quantity of inputs and the 

amount of processing time. It also accomplishes direct fusion of feature maps, improving 

feature reuse. 

 Contiguous memory for DATFGAN is supplied by the generator's mix of residual 

and dense connections in a single layer, which halves the channel formation rate. It improves 

information flow and gradients while decreasing network parameters and making deeper 

structures trainable. Mixed-link connections' inner structure is seen in Fig 4.5. 
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Fig. 4.5 Topology Fusion 

 Mixed-link operations are computed as follows: 

𝐹௜ିଵ
ଵ , 𝐹௜ିଵ

ଶ ൌ 𝑆𝑙𝑖𝑐𝑒ሺ𝐹௜ିଵሻ       (4.2) 

 𝑆𝑙𝑖𝑐𝑒ሺ. ሻ is a slicing operation, and it is used to split the input channels  

in half in Eq. (4.2). Since 𝐹௜ିଵ is an 𝑁 -channel feature map, 𝐹௜ିଵ
ଵ  and 𝐹௜ିଵ

ଶ  may each 

contain up to 
ே

ଶ
 channels as a result of the slicing procedure. 

𝐹௜
ଵ, 𝐹௜

ଶ ൌ 𝑆𝑙𝑖𝑐𝑒ሺ𝑊ሺ𝐹௜ିଵሻ ൅ 𝑏ሻ      (4.3) 

 In Eq. (4.3), where 𝑊 is a convolution layer's weight and 𝑏 is the bias, the result 

of a single layer or unit is split in half along the channel dimension.  

𝐹௜ାଵ ൌ 𝐶ሺ𝐶ሺ𝐹௜
ଵ ൅ 𝐹௜ିଵ

ଶ , 𝐹௜
ଶሻ, 𝐹௜ିଵ

ଵ ሻ      (4.4) 

 With respect to Eq. (4.4), 𝐶ሺ. ሻ is a fusion operation, 𝐹௜ିଵ
ଵ  and 𝐹௜ିଵ

ଶ  represent 

subsets of the characteristics used in the previous layer, and 𝐹௜
ଵ and 𝐹௜

ଶ include 

characteristics extracted from the current layer in subsets. When 𝐹௜
ଵ and 𝐹௜ିଵ

ଶ  are added 

together, the resulting topology is residual, whereas when 𝐹௜
ଵ ൅ 𝐹௜ିଵ

ଶ , 𝐹௜
ଶ and 𝐹௜ିଵ

ଵ  are 

fused, the resulting topology is dense. 
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 As demonstrated in Eq. (4.5), the number of channels may be reduced by 

concatenating features across blocks using a transition convolution, where 𝑊௧ is the 

weight of an 1×1 convolution for block-feature concatenation, 𝐹௝ିଵ is the characteristics 

of the previous mixed-link section, and 𝐹௝ shows the output characteristics of the active 

mixed-link block. This mixed-link strategy allows the DATFGAN to quickly build 

residual and dense connections, both of which control parameter expansion and improve 

network performance. 

𝐹௝ ൌ 𝑊௧൫𝐹௝ିଵ൯ ൅ 𝑏        (4.5) 

 Dual Attention 

 Image transformation is made more effective by using channel and texture attention 

algorithms (Dai et al., 2020). 

 Channel attention: Topology fusion is used to represent the interdependencies 

across convolution channels, learning independently how to emphasize relevant 

channels while downplaying noise. To rebalance the information and gradient 

flow across networks, it acts as a filter. To provide self-trained channel-wise 

attention, the module uses a global pooling layer, convolutions, and a sigmoid 

layer, as shown in Fig 4.6. 

 Eqns. (4.6) and (4.7) are the basis for the operation of channel focus: 

𝑆ሺ𝐹ሻ ൌ ଵ

ுௐ
∑ ∑ 𝐹ሺ𝑖, 𝑗ሻௐ

௝
ு
௜        (4.6) 

 In Eq. (4.6), 𝐻 and 𝑊 stand for the width and height of the feature map used as 

input, respectively; 𝑆ሺ. ሻ is a squeeze operation that pools the features in all channels  

into a global mean. 

𝐴ሺ𝐹ሻ ൌ 𝛿 ቀ𝑊௨𝜎൫𝑊ௗ𝑆ሺ𝐹ሻ൯ቁ ∗ 𝐹      (4.7) 

 Channel attention is denoted by 𝐴ሺ. ሻ in Eq. (4.7), whereas ReLU is  

denoted by 𝜎, and 𝑊௨ and 𝑊ௗ are two 1×1 convolutions. First, the channels are  

shrunk by a factor of 
ଵ

ଵ଺

௧௛
 by 𝑊ௗ, and then a bottleneck is produced by the expansion of  
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the tensor to its true form by 𝑊௨. In addition, 𝛿 is the sigmoid function that scales all 

channel weights to a value between 0 and 1. These weights are used to highlight relevant 

data and hide irrelevant data. 

 

Fig. 4.6 Channel Attention 

 Texture attention: High-frequency features in plant photos are often situated 

near the borders, making texture critical for image high-resolution 

applications. Eqns. (4.8) and (4.9), where 𝑊௘௫௣ signifies extending the actual 

number of channels, are utilized to design a reconstruction network that 

focuses on textures by paying attention to edges at the global spatial level.  

The number of global characteristics is doubled for this challenge. Only some 

of the channels have their weights adjusted based on global data; the others 

use only local data. As seen in Fig. 4.7, the two parts are combined by adding 

and averaging them.  

𝐹௜
ଵ, 𝐹௜

ଶ ൌ 𝑆𝑙𝑖𝑐𝑒 ቀ𝑊௘௫௣ሺ𝐹௜ିଵሻቁ       (4.8) 

𝐹௜ାଵ ൌ 𝑈𝑝൫𝐶𝑎𝑛𝑛𝑦ሺ𝐹଴ሻ൯ ∗ 𝐹௜
ଵ ൅ 𝐹௜

ଶ      (4.9) 
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 𝑈𝑝 is an upsampling operation, 𝐶𝑎𝑛𝑛𝑦 is an edge feature extraction operator, and  

𝐹଴ is the original input features in Eqn. (4.9). divided by two utilising large-scale pixel  

maps for feature multiplication, and then combined with the other half of the input features.  

 

Fig. 4.7 Texture Attention 

 Adversarial Training 

 Adversarial training is a kind of model improvement that uses competition to 

landscape loss function refinement for improved model performance. Although not 

expected to improve generalization ability, it can simplify prediction functions for real 

data, making them more smooth and simple. 

 Comparable inputs will provide comparable results in this strategy (Dai et al., 2020). 

For regularization to work, equivalent results must be achieved using a variety of inputs. 

In order to construct a confrontation sample and lower cross-entropy, it is essential to identify 

the most harmful disruption. To create more aesthetically pleasing pictures, adversarial 

training is used rather than minimising the MSE between input images and targets. 

 Adversarial loss is defined by 

𝐿ீ஺ே ൌ 𝔼ൣ𝐷൫𝐺ሺ𝐼௅ோሻ൯൧ െ 𝔼ሾ𝐷ሺ𝐼ுோሻሿ      (4.10) 
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 Eq. (4.10) uses the DATFGAN discriminator 𝐷ሺ. ሻ, the generator 𝐺ሺ. ሻ, the 

produced pseudo-high-resolution pictures 𝐼௅ோ, and the real-time high-resolution images 

𝐼ுோ. The sum of loss and the adversarial loss is defined by 

𝐿 ൌ 𝛼𝐿ீ஺ே ൅ 𝐿௖௢௡௧௘௡௧       (4.11) 

 Eq. (4.11), where 𝐿 is the overall loss, 𝐿ீ஺ே is the adversarial loss, 𝐿௖௢௡௧௘௡௧ is the 

overall perceptual loss for the target content, and 𝛼 is a constant value. 

D. Positional-aware Dual-Attention and Topology Fusion Generative Adversarial 

Network 

Because traditional GANs automatically produce entire images, memory and 

computing constraints dictate the maximum picture resolution that can be achieved.  

This work proposes the Positional-aware GAN (PGAN) as a solution to this problem by 

only producing a small region of an image based on its coordinates. The resulting 

pictures are then combined to form a single absolute global image. There are two 

networks that make up the PGAN: a generator ሺ𝐺ሻ and a discriminator ሺ𝐷ሻ.  

The G integrates a micro-coordinate structure on a finer scale for 𝐺, a coarse-grained 

macro-coordinate structure for 𝐷, and images in three dimensions: full images  

(actual ሺ𝑎ሻ and generated ሺ𝑥ሻ), macro-patches (actual ሺ𝑎ᇱሻ and generated ሺ𝑥ᇱሻ),  

and micro-patches (generated ሺ𝑥ᇱᇱሻ). An enhanced topology-merging and re-creation 

network with a flexible attention distribution is also included. Using the coordinate 

structure of the shallow-feature selection, 𝐺 is mined for its shallow features and the 

location of the image patch. The structure of 𝐺 in PDATFGAN is shown in Fig 4.8.  

In the first step, 𝐺 is fed a collection of low-resolution picture patches that are 

then divided in half. An upscaling unit is given the first subset, then the first 

convolutional layer in 𝐺. After the second convolutional layer, a subset is sent to the 

topology merging unit for prediction. In order to construct high-resolution picture 

patches, the Restoration Network (RestoreNet) uses the global residual training to mix 

the upscaled patches with approximated information. The leaf image patches' feature 

vectors are then normalized using Conditional Batch Normalization (CBN). 
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Fig. 4.8 Structure of 𝑮 in PDATFGAN 

  

 𝑥ᇱᇱ ൌ 𝐺ሺ𝑧, 𝑐ᇱᇱሻ, where z is the latent vector and 𝑐ᇱᇱ is a micro-coordinate condition 

denoting the spatial location of 𝑥ᇱᇱ to be constructed, is a constrained framework inside 

PGAN that generates high-resolution micro-patches. The ultimate goal of 𝐺 is to produce 

reasonable and faultless whole images by entirely gathering a set of 𝑥ᇱᇱ with a fusion 

factor 𝜑. For high-resolution image patches, it is sufficient to configure 𝜑 as  

an aggregation factor with no overlap, since this is PGAN does automatically.  

To learn 𝐷, a partition conversion 𝜑, in which a macro-patch 𝑎ᇱ is created by dividing  

an actual image 𝑎 into smaller patches, 𝜑is used to simulate real macro-patches.  



117 

 

Fig. 4.9 Structure of 𝑫 in PDATFGAN 

 In this layout, the ridges between consecutive patches are the main  

hindrance to positive identification. 𝐷 is then taught with these larger macro-patches, 

which are compiled from many smaller micro-patches, to solve the issue. The goal  

of this model is to guarantee, relative to adversarial loss, the stability and consistency  

of a large number of consecutive or nearby micro-patches. For the 𝐺 to manipulate 𝐷,  

it has to close the gaps between the patches it creates. The following loss factors  

are used to train this PGAN: adversarial loss ሺ𝐿௉ீ஺ேሻ, total perceptual loss ሺ𝐿஼௢௡௧௘௡௧ሻ, 

spatial consistency loss ሺ𝐿ௌሻ and gradient penalty loss ሺ𝐿ீ௉ሻ. This PGAN only  

works with macro- and micro-patches for 𝐿௉ீ஺ே and 𝐿ீ௉, whereas traditional  

GAN makes use of whole pictures for both 𝐺 and 𝐷 training. 𝐿ௌ is a GAN loss factor  

that acts similarly to an auxiliary classifier. Fig. 4.9 depicts the organization of 𝐷  

inside PDATFGAN. 

The macro-coordinate 𝑐ᇱ of the macro-patches 𝑎ᇱ is determined according to the 

set-up of 𝜑. In addition, 𝐿ௌ and 𝐿஼௢௡௧௘௡௧ want to lessen the disparity between 𝑐ᇱ and the 

𝐷-approximated 𝑐̂ᇱ by closing the gap between the two values. Here are some of  

PGAN's losing factors:  

 ൜
𝐿௉ீ஺ே ൅ 𝐿஼௢௡௧௘௡௧ ൅ 𝜆𝐿ீ௉ ൅ 𝛼𝐿ௌ, 𝑓𝑜𝑟 𝐷

െ𝐿௉ீ஺ே ൅ 𝛼𝐿ௌ, 𝑓𝑜𝑟 𝐺     (4.12) 
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(i) Spatial Coordinate System 

 Create a micro-coordinate framework for 𝐺 and framework for large-scale 

coordination of 𝐷 are the first steps. The matrix of microcoordinates is connected to  

each macrocoordinate 𝑐ሺ௜,௝ሻ
ᇱ  by the expression: 𝐶ሺ௜,௝ሻ

ᇱᇱ ൌ ൣ𝑐ሺ௜:௜ାே,௝:௝ାெሻ
ᇱᇱ ൧ whose absolute 

structure is as follows: 

𝑐ሺ௜,௝ሻ
ᇱᇱ ൌ

⎣
⎢
⎢
⎢
⎡

𝑐ሺ௜,௝ሻ
ᇱᇱ  𝑐ሺ௜,௝ାଵሻ

ᇱᇱ  … 𝑐ሺ௜,௝ାெିଵሻ
ᇱᇱ

𝑐ሺ௜ାଵ,௝ሻ
ᇱᇱ  𝑐ሺ௜ାଵ,௝ାଵሻ

ᇱᇱ … 𝑐ሺ௜ାଵ,௝ାெିଵሻ
ᇱᇱ

⋮ ⋮ ⋱ ⋮ 
𝑐ሺ௜ାேିଵ,௝ሻ

ᇱᇱ  𝑐ሺ௜ାேିଵ,௝ାଵሻ
ᇱᇱ … 𝑐ሺ௜ାேିଵ,௝ାெିଵሻ

ᇱᇱ
⎦
⎥
⎥
⎥
⎤

    (4.13) 

 Equal time is spent sampling all possible combinations of 𝑐ሺ௜,௝ሻ
ᇱᇱ  during PGAN 

training. By training using 𝐺൫𝑧, 𝑐ሺ௜,௝ሻ
ᇱᇱ ൯, the 𝐺 is constrained to produce high-resolution 

𝑥ሺ௜,௝ሻ
ᇱᇱ . By randomly scattering values of 𝑧 over 𝐶ሺ௜,௝ሻ

ᇱᇱ , the micro-patches matrix  

𝑋ሺ௜,௝ሻ
ᇱᇱ ൌ 𝐺൫𝑧, 𝐶ሺ௜,௝ሻ

ᇱᇱ ൯ is produced independently. In order to produce 𝑐ሺ௜,௝ሻ
ᇱᇱ , it is assumed 

that the 𝑋ሺ௜,௝ሻ
ᇱᇱ  are physically closer to one another. Following this, micro-patches are 

fused utilising 𝜑 to give an absolute 𝑥ሺ௜,௝ሻ
ᇱ ൌ 𝜑൫𝑋ሺ௜,௝ሻ

ᇱᇱ ൯ as a coarser preview of the pictures 

complete-sight. Under the macro-coordinate structure for 𝑐ሺ௜,௝ሻ
ᇱ , 𝑥ሺ௜,௝ሻ

ᇱ  is also constructed 

with a produced 𝐶ሺ௜,௝ሻ
ᇱᇱ . Actual 𝑎ሺ௜,௝ሻ

ᇱ ൌ 𝜓൫𝑎, 𝑐ሺ௜,௝ሻ
ᇱᇱ ൯ is formed based on the sampled  

macro-coordinates 𝑐ሺ௜,௝ሻ
ᇱ  in the real-time image scenario. Also, note that the selection  

of 𝐶ሺ௜,௝ሻ
ᇱᇱ  is related with the topological aspect of the micro/macro-coordinate 

structures.When the micro-coordinate structure is solved for, the matching spatial 

coordinate matrix 𝐶௘௡௧௜௥௘
ᇱᇱ  may be found. This matrix is used to independently generate 

each micro-patch that makes up the final image. Several high-resolution micro-patches 

are generated and then stitched together to provide an entire image of a leaf.  

(ii) Loss Functions 

The adversarial loss 𝐿௉ீ஺ே is used in this model so that 𝐷 can tell the difference 

between the true 𝑎ᇱ and the forged 𝑥ᇱ. Moreover, it helps 𝐺 to deceive 𝐷 with fake  

but functional micro-patches 𝑥ᇱᇱ. It is defined as: 

𝐿௉ீ஺ே ൌ 𝔼
௔,௖ᇲ

ൣ𝐷൫𝜓ሺ𝑎, 𝑐ᇱሻ൯൧ െ 𝔼
௭,஼ᇲᇲ

ቂ𝐷 ቀ𝜑൫𝐺ሺ𝑧, 𝐶ᇱᇱሻ൯ቁቃ   (4.14) 
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 Coordinates 𝑐ᇱ and 𝑐ᇱᇱ in Eq. (4.14), representing macro- and micro-patches  

on 𝐷 and 𝐺, respectively. Note that the micro-patches, denoted by the expression 

𝐺ሺ𝑧, 𝐶ᇱᇱሻ, are the result of distinct processes. Macro-patches' differentiation is also 

subject to a gradient penalty: 

𝐿ீ௉ ൌ 𝔼
௫ොᇲ

ሾሺ‖𝛻௫ොᇲ𝐷ሺ𝑥ොᇱሻ‖ଶ െ 1ሻଶሿ      (4.15) 

 Using a random value in the range 𝜀 ∈ ሾ0,1ሿ, Eq. (4.15), 𝑥ොᇱ ൌ 𝜀𝑥ᇱ ൅ ሺ1 െ 𝜀ሻ𝑥ᇱ is 

calculated between the connected 𝑥ᇱ and 𝑎ᇱ. At end, the spatial uniformity loss 𝐿ௌ  

is comparable to a GAN loss with an auxiliary classifier. The 𝐷 is performed with  

the help of a supplementary estimator A that attempts to gauge the macro-coordinate of a 

macro-patch along 𝐴ሺ𝑎ᇱሻ. In contrast to the discrete setup of an auxiliary classifier-like 

GAN, the continuous ranges in 𝑐ᇱᇱ and 𝑐ᇱ are rather large. Therefore, 𝐿ௌ is subjected to a 

measurement loss due to a gap. The goal is to master G such that similar micro-patches 

may be generated using 𝐺ሺ𝑧, 𝑐ᇱᇱሻ in terms of the spatial criteria 𝑐ᇱᇱunder consideration.  

In order to define the spatial uniformity loss, follows:  

𝐿ௌ ൌ 𝔼
௖ᇲ

‖𝑐ᇱ െ 𝐴ሺ𝑎ᇱሻ‖ଶ        (4.16) 

(iii) Conditional Batch Normalization 

 In order to regularize and modulate the features of this positionally-aware  

GAN, to use CBN, which applies the same principles 𝛾 and 𝛽 as those of normal  

BN's and provisional generators. It determines 𝑜௄ ൌ ቀሺ𝑖௄ െ 𝜇௄ሻ
𝜎௄

ൗ ቁ ∗ 𝛾 ൅ 𝛽 for the 𝐾௧௛  

input feature 𝑖௄, output feature 𝑜௄, feature mean 𝜇௄ and feature variance 𝜎௄.  

But, positional-aware GAN gives spatial coordinate and latent vector as uncertain inputs. 

So, two MLPs: 𝑀𝐿𝑃ఊሺ𝑧, 𝑐ሻ and 𝑀𝐿𝑃ఉሺ𝑧, 𝑐ሻ are created for every CBN layer that 

conditionally generates 𝛾 and 𝛽. 

4.3.2 Leaf Disease Image Classification Techniques 

Leaf disease image classification is a frequent computer vision task that involves 

sorting pictures of leaves into healthy and unhealthy groups. The purpose of leaf disease 

image classification is to create a computerized system that, given an image of a plant's 

leaves, can correctly identify and categorize the illness or condition shown in the image 
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(Pujari et al., 2015). By attaining high accuracy of classifying leaf diseases and reducing 

the necessity for improper prevention measures, pre-trained DL models have established 

remarkable success in the crop management. 

4.3.2.1 AlexNet 

When it comes to image categorization, DL's meteoric rise may be directly 

attributed to AlexNet, a groundbreaking DCNN architecture. In 2012, it was developed 

by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, and it took first place in the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The development of 

AlexNet was a major step forward in computer vision, and it paved the way for many 

future CNN designs, including those employed for leaf disease image classification 

(Krizhevsky et al., 2017). 

In all, AlexNet has eight layers: three FC layers and five convolutional layers. 

Fig. 4.10 demonstrates how this early DCNN design was able to capture hierarchical 

features and complicated patterns in images. However, it is worth noting that since the 

development of AlexNet, newer and more advanced CNN architectures have been 

introduced, which might offer improved performance for leaf disease image 

classification. These architectures include VGG16, ResNet, Inception, and more. 

 

Fig. 4.10 Architecture of AlexNet 

4.3.2.2 VGG16 

Developed at Oxford University, the VGG16 is a DCNN design. It has had 

significant impact on computer vision and is largely regarded as a powerful model.  
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It has been employed for numerous image classification applications, including  

leaf disease image classification (Verma 2022). As shown in Fig 4.11, it has 16 layers,  

13 of which are convolutional and 3 of which are completely linked. 

 

Fig. 4.11 Architecture of VGG16 

4.3.2.3 InceptionV3 

InceptionV3 is a DCNN architecture that was introduced as part of the Inception 

series of models. It was created to help with computer vision projects like image 

categorization. The purpose of InceptionV3, which is based on the same ideas as the 

original Inception architecture, is to be more effective in terms of computation and 

parameter consumption. (Xia et al. 2017). This architecture is well-suited for tasks like 

leaf disease image classification, where accuracy and efficiency are important factors. 

 

Fig. 4.12 Architecture of InceptionV3 

The InceptionV3 architecture comprises of 42 convolutional layers and various 

auxiliary layers for training purposes. There are numerous Inception modules in the design, 
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each of which is a collection of convolutional layers with varying dimensionalities and kernel 

sizes. These modules help capture features at different scales and levels of abstraction. As can 

be seen in Fig. 4.12, it also has an FC layer, followed by a softmax layer, which generates the 

final classification result. In addition, it uses batch normalization and dropout regularization 

techniques to prevent overfitting and improve performance. 

4.3.2.4 ResNet101 

The ResNet (Residual Network) family of models includes the DCNN 

architecture known as ResNet101 (or "Residual Network with 101 layers"). ResNet101 is 

designed to overcome the challenges of training very deep neural networks by 

introducing the concept of residual connections, which alleviate the degradation problem 

caused by increasing network depth. He et al. (2016) found that this framework 

performed very well in classifying images of leaf diseases and other computer vision 

tasks. As can be seen in Fig 4.13, the ResNet-101 design is made up of 33 residual 

blocks. There are two convolutional layers in each remaining block, then a bypass link. 

Bypassing the convolutional layers, the shortcut connection links the residual block's 

input and output immediately. 

 

Fig. 4.13 Architecture of ResNet101 

4.3.2.5 ResNeXt50 

To boost its representational capacity and efficiency, ResNeXt50 is a variation of the 

ResNet architecture that incorporates the idea of cardinality. It builds on the idea of grouped 

convolutions, where multiple paths within a single layer learn different features in parallel. 

This design allows ResNeXt50 to achieve strong performance while being more memory and 

computationally efficient compared to other architectures (Xie et al. 2017). 
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ResNeXt50 uses a residual block with two convolutional layers and a bypass link. 

In the residual block, however, a bottleneck layer comes after the convolutional layers. 

The bottleneck layer is a small convolutional layer that reduces the number of channels  

in the output. 

In addition, ResNeXt50 uses a technique called "cardinality" to increase the 

number of paths through the residual block. Cardinality is the number of parallel 

branches that are used in the residual block. ResNeXt50 uses a cardinality of 32, which 

means that there are 32 parallel branches in each residual block, as shown in Fig 4.14. 

ResNeXt50's performance is enhanced by the cardinality approach since it is then 

exposed to a more diverse set of characteristics from which to learn. 

 

Fig. 4.14 Architecture of ResNeXt50. (a) ResNeXt Flow Diagram and  

(b) Residual Block Structure of ResNet50 and ResNeXt50 

4.3.2.6 ShuffleNetV2 

 The channel split operator in ShuffleNetV2 divides the channels into two sets, 

keeping one set intact as the identity. Figure 4.15 and Table 4.1 depict the SuffleNetV2's 

topology and size, respectively. In contrast to 11 convolutions, which are not group-wise, 

the other branch's 3 convolutions have an equal number of input and output channels. 

ReLU, concat, and depth-wise convolutions are element-wise operations that can only be 

performed on one branch (Ma et al., 2018). 
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Fig 4.15 Structure of ShuffleNetV2 Classifier 

 

Table 4.1 Design of ShuffleNetV2 Classifier 

Layer Outcome dimension Kernel size/Stride 

Input 224 ൈ 224  

Convolution (Conv1) 112 ൈ 112 3 ൈ 3 𝑐𝑜𝑛𝑣 / 2 

Pooling 56 ൈ 56 3 ൈ 3 maxpool / 2 

Stage 2 
28 ൈ 28 

28 ൈ 28 

-- / 2 

-- / 1 

Stage 3 
14 ൈ 14 

14 ൈ 14 

-- / 2 

-- / 1 

Stage 4 
7 ൈ 7 

7 ൈ 7 

-- / 2 

-- / 1 

Conv5 7 ൈ 7 1 ൈ 1 𝑐𝑜𝑛𝑣 / 1, padding 0 

4.3.2.7 DenseNet121 

 It certainly demands fewer variables than traditional architectures since  

its complicated connections prototype may not enable severe re-learning feature maps. 

The structure is partitioned into compact units, where the feature map dimensions are 

fixed within a given block but the number of filters is dynamic. It offers numerous 

advantages, including significantly reducing the number of variables, retaining the 
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features, and decreasing the vanishing gradient. The structure of DenseNet121 and their 

dimensions are presented in Fig 4.16 and Table 4.2, respectively. It has one convolution 

(112×112) and 4 dense units (Huang et al. 2017). 

 

Fig. 4.16 Structure of DenseNet121 Classifier 

 

Table 4.2 Design of DenseNet121 Classifier 

Layer Result dimension Patch size/Stride 

Conv 112 ൈ 112 ൈ 64 7 ൈ 7 𝑐𝑜𝑛𝑣, stride 2, padding 3 

Pooling 56 ൈ 56 ൈ 64 3 ൈ 3 maxpool, stride 2, padding 1 

Dense_1 56 ൈ 56 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 6 

Transition_1 
56 ൈ 56 ൈ 128 

28 ൈ 28 ൈ 128 
1 ൈ 1 ൈ 128 𝑐𝑜𝑛𝑣 

Dense_2 28 ൈ 28 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 12 

Transition_2 
28 ൈ 28 ൈ 256 

14 ൈ 14 ൈ 256 

1 ൈ 1 𝑐𝑜𝑛𝑣, stride 1, padding 0 

 

Dense_3 14 ൈ 14 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 24 

Transition_3 
14 ൈ 14 ൈ 896 

7 ൈ 7 ൈ 896 

1 ൈ 1 𝑐𝑜𝑛𝑣, stride 1, padding 0 

 

Dense-4 7 ൈ 7 ൈ 32 ൤
1 ൈ 1 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 0
3 ൈ 3 𝑐𝑜𝑛𝑣, 𝑠𝑡𝑟𝑖𝑑𝑒 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 1൨ ൈ 16 
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4.3.2.8 MobileNetV2 

 It progresses to MobileNetV1 and is used as the effective fundamental component 

by depthwise separable convolutions. To minimize dimensionality, two types of units are 

built in this structure: a residual unit with a stride 1 and another unit with a stride 2. 

Further, it includes linear blocks among the layers, which are required since nonlinearities 

prohibit more data from being affected. Such bottlenecks encode mid-level inputs and 

outputs (Sandler et al. 2018).  

The internal layer can aid in the conversion of lower-level concepts such as pixels 

to higher-level descriptors. There are also shortcut links between bottlenecks. Figure 4.17 

and Table 4.3 depict MobileNetV2's architecture and size, respectively. 

 

Fig. 4.17 Structure of MobileNetV2 Classifier 
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Table 4.3 Layout of MobileNetV2 Classifier 

Layer Outcome dimension Patch size/Stride 

Conv layer 112 ൈ 112 ൈ 32 3 ൈ 3/2 

Bottleneck – 1 112 ൈ 112 ൈ 16 െ/1 

Bottleneck – 2 56 ൈ 56 ൈ 24 െ/2 

Bottleneck – 3 28 ൈ 28 ൈ 32 െ/2 

Bottleneck – 4 14 ൈ 14 ൈ 64 െ/2 

Bottleneck – 5 14 ൈ 14 ൈ 96 െ/1 

Bottleneck – 6 7 ൈ 7 ൈ 160 െ/2 

Bottleneck – 7 7 ൈ 7 ൈ 320 െ/1 

Conv layer 7 ൈ 7 ൈ 1280 1 ൈ 1/1 

Mean pooling 1 ൈ 1 ൈ 1280 7 ൈ 7/െ 

Conv layer 𝑘 1 ൈ 1/1 

4.4 BUILDING THE PROPOSED MODEL 

 To address the issue of generating high-resolution leaf disease images for 

effective classification, the PDATFGAN model is proposed. The Positional-aware  

GAN (PGAN) model in high-resolution leaf disease image generation has been 

developed to build the model. The research works are carried out using the leaf disease 

image dataset PVD discussed in Chapter 3. As can be seen in Fig 4.18, the development 

of the Positional-aware Dual-Attention and Topology Fusion Generative Adversarial 

Network (PDATFGAN) that is the subject of this proposal goes through a number of 

stages. In addition, they are, 

 Splitting the leaf disease image dataset into training and test sets 

 High-resolution leaf disease image generation using PDATFGAN 

 Leaf disease classification using pre-trained DCNN classification models 
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Fig. 4.18 Block Diagram of Proposed Model of PDATFGAN 

 

4.4.1 Dataset Preparation 

 Leaf images from the Plant Village Dataset (PVD) are first divided into a training 

set and a test set, with both healthy and diseased examples included in each. The ratio 

between practice and evaluation is 70:30. The sample leaf disease images for various 

classes are shown in Chapter 3. 

4.4.2 High-Resolution Leaf Disease Image Generation using PDATFGAN 

 In the next stage, as per the steps described in the PDATFGAN model  

given in section 4.3.1.4, the leaf images of distinct classes in the training image set are 

enhanced from low-resolution to high-resolution for classification. In the PDATFGAN, 

the network is built and trained using the hyperparameters listed in Table 4.4 with 

training images. 
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Table 4.4 Hyperparameters for PDATFGAN 

Hyperparameters Range 

Optimizer Adam 

Learning rate 0.0001 

Number of epochs 180 

Momentum 0.9 

Weight decay 0.0001 

Mini-batch size 64 

 

4.4.3 Leaf Disease Classification using Pre-trained DCNN Model 

 After generating the high-resolution leaf images in different classes, ShuffleNetV2, 

DenseNet121 and MobileNetV2 classifiers are performed as per the structure given in  

Fig 4.15, 4.16, and 4.17, respectively. In these classification models, the networks are 

built and trained using the parameters listed in Table 4.5. Finally, the trained classifiers 

are utilized to assign illness classifications to test images of leaves. 

 

Table 4.5 Training Parameters for Different Pre-trained DCNN Classifiers 

Models Learning rate Batch size Epochs Optimizer Loss 

DenseNet-121 0.0005 

20 

50 

Adam Cross-entropy MobileNet V2 

0.0001 

60 

ShuffleNet V2 70 
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4.5 RESULTS AND DISCUSSION 

The measures used to evaluate the proposed PDATFGAN model's performance in 

comparison to the state-of-the-art models are shown below. Chapter 3 explains the 

datasets, assessment measures, and system settings in depth.  

Table 4.6 displays the precision, recall, f-measure, and accuracy results obtained 

from testing the ShuffleNetV2 classifier model with the PVD raw dataset, the PVD 

augmented by the DATFGAN, and the PDATFGAN models. 

Table 4.6 Comparison of the Proposed PDATFGAN Model Using ShuffleNetV2 

Performance 
Evaluation Metrics 

Raw 
dataset 

Dataset enhanced by 
DATFGAN 

Dataset enhanced by 
PDATFGAN 

Precision 0.8954 0.9135 0.9148 

Recall 0.8958 0.9140 0.9151 

F-measure 0.8957 0.9142 0.9150 

Accuracy 89.58% 91.38% 91.52% 

 

 
 

Fig. 4.19 Result of Proposed PDATFGAN Model Using ShuffleNetV2  
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Precision, recall, and f-measure are compared for a number of different GAN 

models used with the ShuffleNetV2 classifier on both raw and enriched PVD. Based on 

these findings, it is clear that the PDATFGAN-enhanced PVD is superior to the raw 

dataset and the DATFGAN-enhanced dataset for training the ShuffleNetV2. This is seen 

in Fig. 4.19. The precision of PDATFGAN-ShuffleNetV2 is increased up to 2.17% and 

0.14% compared to the ShuffleNetV2 using raw dataset and DATFGAN-ShuffleNetV2, 

respectively. The recall of PDATFGAN-ShuffleNetV2 is improved by 2.15% and 0.12% 

compared to the ShuffleNetV2 using the raw dataset and DATFGAN-ShuffleNetV2, 

respectively. The f-measure of PDATFGAN-ShuffleNetV2 is raised to 2.15% and 0.09% 

than the ShuffleNetV2 using raw dataset and DATFGAN-ShuffleNetV2, respectively. 

 

Fig. 4.20 Accuracy Comparison of PDATFGAN Model Using ShuffleNetV2  

A performance of the ShuffleNetV2 classifier tested using raw PVD and 

enhanced PVD is depicted in terms of accuracy. It is shown that the accuracy of 

PDATFGAN-ShuffleNetV2 is increased by 2.17% and 0.15% compared to the 

ShuffleNetV2 using the raw dataset and DATFGAN-ShuffleNetV2, respectively as 

shown in Fig 4.20. This is achieved due to enhancing the leaf image resolutions based on 

the pixel’s positions and minimizing the loss values.  
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Table 4.7 displays the results of a series of tests conducted on the DenseNet121 

classifier model using the PVD raw dataset, the PVD augmented by the DATFGAN, and 

the PDATFGAN models. 

Table 4.7 Comparison of the Proposed PDATFGAN Model Using DenseNet12 

Performance 
Evaluation Metrics 

Raw 
dataset 

Dataset enhanced by 
DATFGAN 

Dataset enhanced by 
PDATFGAN 

Precision 0.8841 0.9249 0.9270 

Recall 0.8843 0.9252 0.9273 

F-measure 0.8842 0.9251 0.9272 

Accuracy 88.47% 92.54% 92.74% 

 

 

Fig. 4.21 Result of Proposed PDATFGAN Model Using DenseNet121  

The precision, recall, and f-measure of several GAN models compared using the 

DenseNet121 classifier on the raw and improved PVD. DenseNet121 performs better on 

the PDATFGAN-enhanced PVD than on the raw dataset or the DATFGAN-enhanced  
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dataset, as shown in Fig. 4.21. PDATFGAN-DenseNet121 improves over DenseNet121 

trained on the raw dataset and DATFGAN-DenseNet121 by around 4.86% and 0.23%, 

respectively, in terms of precision, recall, and f-measure. 

 

 

Fig. 4.22 Accuracy Comparison of PDATFGAN Model Using DenseNet121  

A performance of the DenseNet121 classifier tested using raw PVD and enhanced 

PVD is depicted in terms of accuracy. It is noted that the accuracy of PDATFGAN-

DenseNet121 is improved by 4.83% and 0.22% compared to the DenseNet121 using the 

raw dataset and DATFGAN-DenseNet121, respectively as shown in Fig 4.22. This is 

since generating high-resolution leaf images according to the spatial coordinate system 

i.e., knowledge about pixels’ positions.  

The test results for the MobileNetV2 classifier model tested using the PVD raw 

dataset, enhanced PVD by the DATFGAN and PDATFGAN models are given in Table 4.8. 
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Table 4.8 Comparison of the Proposed PDATFGAN Model Using MobileNetV2 

Performance 
Evaluation Metrics 

Raw 
dataset 

Dataset enhanced by 
DATFGAN 

Dataset enhanced by 
PDATFGAN 

Precision 0.9062 0.9264 0.9283 

Recall 0.9065 0.9266 0.9287 

F-measure 0.9064 0.9265 0.9285 

Accuracy 90.66% 92.69% 92.87% 

 

 

Fig 4.23 Result of Proposed PDATFGAN Model Using MobileNetV2  

Precision, recall, and f-measure are compared for a number of different GAN 

models used by the MobileNetV2 classifier on both raw and enriched PVD. It is 

addressed that the MobileNetV2 implements well if utilizing the PVD enhanced by the 

PDATFGAN than the raw dataset and the dataset enhanced by the DATFGAN model. 

The precision of PDATFGAN-MobileNetV2 is increased up to 2.44% and 0.21% 

compared to the MobileNetV2 using raw dataset and DATFGAN-MobileNetV2, 

respectively as shown in Fig 4.23. The recall of PDATFGAN-MobileNetV2 is improved 
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by 2.45% and 0.23% compared to the MobileNetV2 using the raw dataset and 

DATFGAN-MobileNetV2, respectively. Also, the f-measure of PDATFGAN-

MobileNetV2 is raised to 2.44% and 0.22% than the MobileNetV2 using raw dataset and 

DATFGAN-MobileNetV2, respectively. 

 

 

Fig 4.24 Accuracy Comparison of PDATFGAN Model Using MobileNetV2  

 

A performance of the MobileNetV2 classifier tested using raw PVD and enhanced 

PVD is depicted in terms of accuracy. It is noted that the accuracy of PDATFGAN-

MobileNetV2 is improved by 2.44% and 0.19% compared to the MobileNetV2 using the 

raw dataset and DATFGAN-MobileNetV2, respectively. This is owing to the 

development of positional-aware GAN for high-resolution leaf image creation, which 

supports the classifier model to effectively classify leaf diseases from better visual quality 

leaf images as shown in Fig 4.24 
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These side-by-side evaluations demonstrate that the MobileNetV2 classifier 

outperforms the competition on raw and improved PVD. When it comes to accurately 

classifying leaf diseases, the MobileNetV2 with the PDATFGAN model performs better 

than other methods. 

4.6 SUMMARY 

 To summarize, an overview of leaf disease image classification and its challenges 

are discussed in this chapter. A detailed analysis of various techniques used for  

high-resolution leaf disease image generation and leaf disease classification is provided. 

The design and development of the PDATFGAN model using PGAN and different  

pre-trained DCNN classifiers is described. Form leaf images with healthy and various 

disease classes, the performance of the models are examined. Based to the results,  

leaf disease image classification could make use of the PDATFGAN model that  

has been developed. 

  


