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CHAPTER VI 

DEEP POSITIONAL ATTENTION-BASED HIERARCHICAL 

BIDIRECTIONAL RNN WITH CNN-BASED VIDEO DESCRIPTORS FOR 

HUMAN ACTION RECOGNITION 

HAR is a method for obtaining videos that are relevant to a task and identifying 

a person's unique actions within them. It finds widespread application in fields as 

diverse as object monitoring, human-computer interface design, and medical aid. 

Numerous hours of video are captured every day as a result of technologies like 

surveillance cameras, the web, Livestream, etc. The field of computer vision is likewise 

increasingly dependent on HAR nowadays (Zhang et al., 2014). Automated 

identification of certain suspect actions in surveillance systems can accomplish things 

like automatically identify a person loitering in public places like airports, subway 

stations, and so on, in addition to helping with the comprehension of inappropriate or 

irrelevant acts. Different features, such the automatic recognition of many gamers' 

actions, may become possible with the use of motion recognition. In the medical field, 

automatic recognition of patient actions can aid in rehabilitation (Ranasinghe et al., 

2016).  

Low-level HAR, moderate-level HAR, and high-level HAR are the three most 

common classifications. Edge detection, feature extraction, and action recognition are 

all carried out in low-level recognition. Human-machine interface identification and 

deviant behavior recognition are both tasks performed during mid-level recognition. 

High-level recognitions are also applicable to a variety of complex uses. Different types 

of HAR systems have been proposed based on the many findings that have been 

reported over the past few decades. On the other hand, successful action recognition is 

surprisingly difficult due to factors such as context, individual differences in 

perception, and so on. Recent methods include video recording in specific scenarios. 

There has been no implementation of those concepts, however. Additionally, original 

video streams' attributes are learned and identified in two stages using different 

classification models. Since feature selection is tough, it is sometimes difficult to 

identify the features that are crucial for many applications. In particular, the HAR may 

contain many scenes with completely diverse orientations and paths. 
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To this end, low- and high-level data extraction has been employed in conjunction with 

numerous deep learning algorithms for training hierarchical characteristics (Vrigkas et 

al., 2015). In contrast, action recognition has its own unique set of difficulties due to 

contextual factors, differences in perspective, and so on. In a number of cutting-edge 

methods, video is recorded in certain scenarios. However, those concepts have not yet 

been used in practical settings (Thongrak et al. 2019). 

Additionally, several different types of classification models are used in a two-

stage learning and identification process to determine what characteristics of the source 

video streams are being used. Because feature selection is so difficult, many of the 

qualities that are crucial in many contexts go unnoticed. Specifically, the HAR can 

contain scenes with wildly varying orientations and trajectories (Basavaiah et al., 

2020).  

Many deep learning methods, such as feature extraction at varying levels of 

granularity, have been used to train such hierarchical characteristics (Kim et al., 2019). 

To ensure sufficient HAR functionality, such techniques are guided by supervised or 

unsupervised classifiers. Cao et al. (2016) created Joints-pooled 3D-Deep 

Convolutional Descriptors (JDD) to pool the convolutional activations of the 3D-deep 

Convolutional Neural Network (3DCNN) into the discriminating descriptors based on 

the joint coordinates. To begin, they segmented the entire video into smaller, fixed-size 

pieces and created 3D convolutional attribute maps for each one. Later, the stable joint 

coordinates were incorporated into the 3D attribute maps of a convolutional unit. They 

also combined and resampled the activations of each joint coordinate in distinct blocks. 

These features were then pooled using the mean and   -norm to create video 

descriptors, which were then categorized using a linear support vector machine. 

The 2-stream C3D model further developed this strategy by permitting 

simultaneous joint reference training and spatial-temporal feature extraction. Both 

preprocessing and skeleton extraction were used to determine the joint coordinates in 

C3D (Ji et al., 2012). The joint-guided feature vector descriptions of the body were 

pooled using a max-min method. The resulting video descriptor was computed by 

feeding the bilinear product of the feature and attention streams into the Fully 

Connected (FC) layers. However, extracting skeletons was difficult, and finding the 

joint coordinates was time-consuming for complicated datasets. 
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Joints and Trajectory-pooled 3D Descriptors (JTDD) have been created (Srilakshmi et 

al. 2019) to extract and integrate the trajectory coordinates or optical flow between any 

video streams with the joint coordinates in the C3D approach. The pooled feature 

descriptors were employed during training, and the generated video descriptor was 

supplied into the SVM to categorize human activities. Max-min pooling, on the other 

hand, was used to combine features that are more adaptable to spatial perfection than 

neighbouring filters. As a result, the necessary differences in location and time across 

social groups have vanished. 

The PA-Bidirectional RNN (PABRNN) model has been incorporated in 

JTDPABRD (Srilakshmi et al., 2021) to replace max-min pooling for feature 

aggregation in the two streams of a bilinear C3D network. Combining the body joint 

and trajectory point coordinates from two independent streams, PABRNN was able to 

obtain the final video description for HAR. On the other hand, more parameters led to 

the vanishing gradient issue. In addition, it must take into account previous input 

sequences in order to properly extract spatiotemporal information from extended video 

sequences. 

In order to better aggregate features, this chapter suggests training a PA-based 

Hierarchical Bidirectional Recurrent Neural Network (PAHBRNN) on a 3D pool of 

Joints and Trajectories. Joints and Trajectories Pooled 3D-Deep Positional Attention 

(PA) based Hierarchical convolutional Recurrent descriptors (JTDPAHBRD) describes 

this approach. The 2-stream C3D model initially receives the full video pattern in a 

block-by-block format. After the convolutional layer has recovered the joint and 

trajectory coordinates, the PAHBRNN is utilized to do feature aggregation instead of 

max-min pooling. PAHBRNN hierarchically collects the feature vectors corresponding 

to the different parts of the human skeleton in a given clip using the position-aware 

guiding vector. Multiplying two streams in a C3D network by their bilinear product 

during end-to-end training with the softmax loss yields the final video descriptor for a 

given video sequence. Then, the SVM is fed the video description it has developed in 

order to identify the person's activities. As a result, it retains sequence information 

throughout time and is capable of extracting long-term spatiotemporal properties. Back-

propagation into the past does not typically result in its disappearance either. This 
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effectively increases the accuracy with which human actions can be recognized in video 

sequences. 

6.1 PROPOSED METHODOLOGY 

An abbreviated explanation of the JTDPAHBRD method is provided below. To 

begin, each video pattern is split up into many segments and then supplied into the 2-

stream C3D model. The attention and feature streams, via the convolutional layer, mine 

the joint and trajectory coordinates and the spatiotemporal aspects of different human 

skeleton sections in each clip. After that, data from all of the channels is combined to 

reveal how activations at different joints and along different trajectories, as well as their 

associated spatiotemporal properties, affect different body parts. Instead of using max-

min pooling, PAHBRNN is used for this purpose. PAHBRNN analyzes five different 

skeleton-related feature vectors: left arm (LR) and left leg (LL), trunk (TK), right arm 

(RA) and right leg (RL), and head (HB). These, along with the deep features, are first 

taken from the C3D model's convolutional layer. The collected characteristics are then 

sent into five separate PABRNNs after the convolution layer. Motions from nearby 

skeletal features are generated by combining the interpretation of the trunk feature with 

those of four other feature types. Then, the locations of features in all the videos that 

belong to the sequence are compiled. A position-aware guiding vector is assigned to 

each extracted feature vector related to the human skeleton, and this method is then 

utilized to propagate the feature vectors to all other positions. For this reason, the 

position-aware guidance vector offers distinct vectors for each skeletal area. In 

addition, the resulting aggregated feature vectors are calculated by multiplying each 

individual feature vector by its appropriate attention weight. Therefore, features can be 

extracted and the dimensionality reduced by the CNN with PAHBRNN. 

Also, the full human skeleton's position is automatically retrieved as a 

guidance-based feature vector that is then utilized to train a bilinear C3D network. 

Multiplying the two streams by the bilinear product. Using softmax loss and class 

labels as supervision, the complete network is trained. So, in order to determine the 

character of the person's behaviors, the SVM extracts the feature descriptor for a given 

video sequence and classes it. The JTDPAHBRD-based HAR is depicted in Figure 6.1, 

while the 2-stream C3D built with PAHBRNN is depicted in Figure 6.2. 
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Figure 6.1. Schematic representation of JTDPAHBRD-based HAR 

 

 

 

Figure 6.2. Architecture of 2-stream bilinear C3D with PAHBRNN-based 

feature aggregation approach 

 

6.1.1. Positional attention-based Hierarchical BRNN 

Only a subset of humans can perform even the most basic of activities. For 

example, hitting and kicking forwards require only a slight tilt of the arms and legs. 

Changing the position of the upper or lower body is rarely necessary for accomplishing 

most tasks. In addition, the coordinated actions of these 5 body parts create 

extraordinarily complex activities; for example, both jogging and sailing require the use 

of complex body movements. 

In order to correctly identify a wide range of human activities, it is essential to 

model the motions of such segments and their combinations. This is why they introduce 
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the PAHBRNN to extract spatiotemporal patterns from long-term context data. The 

human skeleton is depicted in Figure 6.3 as a PAHBRNN feature vector representation. 

 

 

Figure 6.3. Aggregated feature vector representation for entire human skeleton 

using PAHBRNN model 

Taking into account the many feature embeddings (body joints and trajectory 

points derived from various regions of the human skeleton, including the LA, RA, TK, 

LL, and RL), PAHBRNN employs the HBRNN with positional attention technique to 

represent the feature vectors. Keep in mind that the Gaussian kernel is used to direct 

successive video clips based on positional advice included in the features. 

 

      ( )   
.   

   ⁄ /
       (6.1) 

 

Where   is the dissimilarity between the true and averaged feature vectors and 

  is the variable that determines the extent of the propagation. Given a distance   and 

an initial point  , it may be define the guidance base matrix   as follows:    

 (   )  (      ( )   )       (6.2) 
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For a given estimate of       ( ) and standard deviation   , the mean density is 

defined by  . A feature's position-specific guidance vector (i.e. LA, RA, TK, LL, and 

RL) is likewise generated by summarizing the guidance of all features collected from 

the videos. 

               (6.3) 

Where  

  ( )  ∑ ,(   )     ( )-  ,(   )     ( )-      (6.4) 

 

The number of features at different distances can be estimated with the help of 

the distance count vector   , which is implemented in Eqns. (6.3) and (6.4), where    

represents the summed direction vector for the feature located at coordinate  . As an 

added bonus, let   denote a body joint location or a trajectory point feature in  , let 

   ( ) denote the set of  ’s occurrence positions throughout all clips, and let , -  

denote an indication function equal to 1 if the criteria satisfy; else equal to 0.    

Additionally, the attentive weight (  ) of the aggregated feature at the location   is 

incorporated with the position-aware guiding vector for the specific feature as: 

   ∑     
 
           (6.5) 

Where 

   
 

( .     /)

∑  
. (     )/ 

   

        (6.6) 

 (     )        (           )     (6.7) 

Eqns. (6.5) and (6.6) utilize the video series length,  , the aggregated feature 

vector    for the full human skeleton in a given clip, the hidden vector    at position  , 

and the aggregated position-aware guidance vector    from Eq. (6.3). The matrices    

and   , the bias vector  , the hyperbolic tangent function tanh, the global vector  , and 

its transpose    are all used in Eq. (6.7). The hidden vector and the position-aware 

guiding vector are used in the score function  ( ), which determines the importance of 

the features.  
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To properly exploit the diverse components of the human skeleton, this 

PAHBRNN employs five individual PABRNNs to generate feature vectors. In addition, 

the bilinear product of the two streams in C3D is used to calculate the final video 

descriptor, which is then combined with the aggregated feature vectors for all blocks 

(Vrigkas et al., 2015). To learn to recognize human behaviors, the video descriptors are 

fed into a support vector machine (SVM). 

Algorithm: 

Input: Training video patterns 

Output: Human actions 

Begin 

Split video sequences into blocks; 

   (          )  

Set CNN variables for attention and feature streams; 

Extract the features from different parts of the entire human skeleton such as LA, RA, 

TK, LL and RL at convolutional layers; 

Concatenate the features extracted from each convolutional layer using PAHBRNN; 

//PAHBRNN 

Create the position-aware guidance propagation through Gaussian filter using Eq. (6.1); 

Compute  (   ) by Eq. (6.2); 

Aggregate the guidance of (i) RA and LA, (ii) RL and LL with TK features; 

Aggregate the guidance of the upper and lower body to get the resultant aggregated 

position-aware guidance vector using Eqns. (6.3) (6.4); 

Get the final combined feature vector belonging to a human skeleton in a single clip by 

calculating    and  (     ) using Eqns. (6.5), (6.6) & (6.7); 

Fuse attention and feature streams in C3D network with the aid of bilinear product; 

Train the two-stream C3D network end-to-end using softmax loss for a whole video 

sequence; 

Obtain the final video descriptors; 

Apply the SVM classification; 

Identify the human actions from a specified video; 

         

End 
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6.2 EXPERIMENTAL RESULTS  

This section uses a MATLAB 2017b implementation of the JTDPAHBRD 

method to examine its performance on the Penn Action dataset. There are a total of 

2326 video clips with 15 different labels in this dataset. Annotations for 50–100 blocks, 

comprising 13 body joints per block, are applied to each video that has been culled 

from various web video archives. There are a total of 1861 training video sequences 

and 465 testing video sequences in this trial. C3D characteristics, together with the joint 

and trajectory coordinates, are also taken into account. Different configurations of 

feature aggregation are investigated in order to determine how they affect 

JTDPAHBRD's recognition accuracy.  

Accuracy refers to the percentage of accurately identified human actions. 

         
                        

                          
  00      (6.8) 

Figure 6.4 depicts the experimental outcomes of joint extraction and trajectory 

coordinate extraction. 

 

 

Figure 6.4. (a) Sample input video image 

 

Figure 6.4. (b) Outcomes of joint and trajectory coordinate extraction 
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Table 6.1 shows the results of JTDPAHBRD's recognition accuracy tests on the Penn 

Action dataset. 

 

Table 6.1. Recognition accuracy (%) of sources and JTDPAHBRD with different 

settings on Penn action dataset. 

 Aggregate 

all the 

activations 

JTDPAH

BRD 

Ratio 

Scaling 

(1×1×1) 

JTDPAHB

RD 

Coordinate 

Mapping 

(1×1×1) 

JTDPAH

BRD 

Ratio 

Scaling 

(3×3×3) 

JTDPAH

BRD 

Coordinat

e Mapping 

(3×3×3) 

Joint + 

trajectory 

coordinat

es 

0.6621 - - - - 

  7 0.7758 - - - - 

    0.7983 - - - - 

       0.7605 0.8533 0.9064 0.8542 0.8885 

       0.6834 0.7956 0.8257 0.7961 0.8032 

    4  0.5817 0.8134 0.8015 0.8385 0.8471 

       0.4826 0.7517 0.7293 0.7554 0.7566 

 

Joint and trajectory coordinate recognition accuracy, including C3D 

characteristics, are shown in the first column of Table 6.1. The feature of directly 

recognizing joint and trajectory coordinates shows a lack of appropriate accuracy. In 

order to maximize efficiency, it is necessary for all the features in a given layer to 

aggregate.   7 is marginally less precise than    . Since the true C3D can't tweak the 

  7 codec needed to make a good video description, this is doable. Results of 

PAHBRNN-based pooling at different 3D      units in JTDPAHBRD are analyzed to 

account for the larger number of joints and trajectory coordinates. The JTDPAHBRD 

beats the JTDPABRD, JTDD, and JDD when training on a video pattern comprised of 

5 individual segments using only the directed feature vectors of joint and trajectory 

coordinates. 

Additionally, JTDPAHBRDs from various      units are added together to see 

whether or not they can achieve balance. Table 6.2 displays the outcomes of late fusion 

using SVM scores on the Penn Action dataset. Existing methods including JDD, 
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STDDCN, DWnet, CorNet, JTDD, and JTDPABRD are compared against 

JTDPAHBRD's accuracy. 

Table 6.2. Recognition accuracy (%) of aggregating JTDPAHBRDs from different 

units on penn action dataset 

Aggregation 

Layers 
JDD STDDCN Dwnet CorNet JTDD JTDPABRD JTDPAHBRD 

      
     

85.5 85.8 86.1 86.3 86.7 88.3 88.9 

      
     4  

98.1 98.2 98.4 98.5 98.7 99.4 99.6 

      
        

86.0 86.2 86.5 86.8 87.3 88.3 88.6 

 

 

Figure 6.5. Accuracy of aggregating JTDPAHBRD from different units on Penn 

action dataset 

 

Figure 6.5 depicts the interrelated nature of the characteristics, and evidence suggests 

that            4  provides the highest accuracy when fusing JTDPAHBRD. 

Therefore, the JTDPAHBRD method successfully increases the accuracy of all 

previous methods for recognizing human actions from video sequences. 

Fusing many layers together on the Penn action dataset yielded the following values for 

precision, recall, and f-measure: 
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Table 6.3. Precision, Recall, and F-measure of Fusing Multiple Layers Together 

on Penn Action Dataset 

Performance 

Metrics 

Fusion Layers 

                                       

JTDPABRD JTDPAHBRD JTDPABRD JTDPAHBRD JTDPABRD JTDPAHBRD 

Precision 0.874 0.881 0.983 0.989 0.871 0.879 

Recall 0.880 0.886 0.991 0.994 0.878 0.885 

F-measure 0.877 0.884 0.987 0.992 0.875 0.882 

 

 

Figure 6.6 Precision of aggregating JTDPAHBRD from different units on Penn 

action dataset 

 

The features are interconnected, as shown in Figure 6.6, and the precision of fusing 

JTDPAHBRD from            4  is greater than that of other combinations. 

Therefore, the JTDPAHBRD method successfully increases the precision of all 

previous methods for recognizing human actions from video sequences. 
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Figure 6.7 Recall of aggregating JTDPAHBRD from different units on Penn 

action dataset 

The features are interconnected, as shown in Figure 6.7, and the recall of fusing 

JTDPAHBRD from            4  is greater than that of other combinations. 

Therefore, the JTDPAHBRD method successfully increases the recall of all previous 

methods for recognizing human actions from video sequences. 

 

 

Figure 6.8 F-measure of aggregating JTDPAHBRD from different units  

on Penn action dataset 
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The features are interconnected, as shown in Figure 6.8, and the recall of fusing 

JTDPAHBRD from            4  is greater than that of other combinations. As a 

result, the F-measure of all prior approaches for identifying human movements from 

video sequences is significantly improved by the JTDPAHBRD approach. 

Table 6.4 compares the impact of extracted joints + trajectory coordinates to Ground-

Truth (GT) joints + trajectory coordinates, as well as the results of proposed and 

existing HAR approaches aggregated from        on the Penn Action dataset. 

Table 6.4.Effect of extracted joints + trajectories vs. GT joints + trajectories for 

proposed and existing approaches on Penn action dataset 

JTDPABRD 

Approaches Pooled from        GT Extracted Variance 

JTDPABRD  0.847 0.828 0.019 

JTDPAHBRD 0.860 0.849 0.011 

 

 

 

Figure 6.9. Influence of identified joints + trajectories vs. GT joints + trajectories 

for various approaches on Penn action dataset 
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As shown in Figure 6.9, the JTDPAHBRD successfully reduces the discrepancy 

between the GT joints+ trajectory coordinates and the derived joints+ trajectory 

coordinates to an extremely small value. Comparing its results to those of its peers, 

such as the JDD, STDDCN, DWnet, CorNet, JTDD, and JTDPABRD, it is clear that it 

achieves better results on the Penn Action dataset. 

6.3 CHAPTER SUMMARY  

In this research, PAHBRNN is used to propose the JTDPAHBRD technique, 

which aggregates features from many video sequences. To begin, the human skeleton is 

broken down into its component parts and supplied into a 2-stream C3D model. When 

the PAHBRNN receives this information, it uses a hierarchical structure to combine all 

of the features into a single vector. To top it all off, the softmax loss is employed 

throughout the C3D network's training to obtain the final video descriptor. The 

gathered video description is then used to train a support vector machine (SVM) to 

recognize the person's actions. The study's findings concluded that JTDPAHBRD 

coupled with        and     4  outperformed all other methods on the Penn Action 

dataset by 1.07%, improving accuracy to 99.6%. Using a mixture of            

layers, the JTDPAHBRD outperforms the competition on the Penn Action dataset with 

an accuracy of 88.9%. On the Penn Action dataset, the JTDPAHBRD outperforms all 

other methods by 2.01% thanks to the use of a combination of               

layers, resulting in an accuracy of 88.6%.   

 

 

 

 

 

 

 

 

 


