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CHAPTER VII 

AN ENHANCEMENT OF DEEP POSITIONAL ATTENTION-BASED  

HUMAN ACTION RECOGNITION BY USING GEOMETRIC  

POSITIONAL FEATURES 

Due to a wide range of events, perspectives, and other elements, developing an 

effective HAR can be challenging. In recent years, various HAR frameworks have been 

built employing deep learning algorithms. Deshpnande and Warhade (2021) improved 

upon a previous model for HAR by fusing the Histogram of Gradient (HOG) local 

feature descriptor with the Principal Component Analysis (PCA) global features and an 

improved support vector machine (SVM) classifier. However, it requires a huge 

number of input parameters and cannot understand the local relationship between 

image pixels. Based on the Bilinear Pooling and Attention Network (BPAN), Weiyao 

et al. (2021) created a multi-modal HAR framework. A multimodal fusion network was 

developed to generate fused attributes from the pre-processed RGB and skeletal data. 

However, the FC 3-unit perceptron's overall accuracy was affected by the weight value 

in the loss function, and the training database was small. With the help of a 

Bidirectional Long Short-Term Memory (BiLSTM), a widened Convolutional Neural 

Network (CNN) was constructed by (Muhammad et al. 2021). This network is able to 

choose important features from the input frame in order to differentiate between 

various human activities. The loss function in video-based HAR was also minimized 

using the center loss with softmax. However, it only used a single learning stream, 

which was insufficient for recognizing complicated actions in videos and learning from 

video frames in large-scale datasets. 

The deep learning model created by (Khan et al. 2021) includes the processes of 

feature mapping, feature fusion, and feature selection. DenseNet201 and InceptionV3 

were employed to perform the feature mapping. The serialized augmented model then 

extracted deep characteristics and combined them. The best features were selected 

using a kurtosis-aware weighted K-Nearest Neighbor (KNN) algorithm. Finally, many 

supervised learning systems classified those features. However, it requires a lot of 

processing power to generate the initial deep feature extraction. Skeleton Edge Motion 

Networks (SEMN) is a unique HAR approach developed by (Wang et al. 2021) for 

extracting gesture information. To provide a comprehensive understanding of skeletal 
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structures, the SEMN was developed by fusing many spatiotemporal segments 

together. It proved challenging to distinguish between individual activities and granular 

skeletal images despite the use of a novel advanced rank error to maintain sequential 

imperative data. 

To categorize human movements, (Saleem et al. 2022) employed an SVM 

classifier and used pre-trained VGG-19 to extract body joints from a 2D body skeleton. 

However, it was less accurate since it could not learn the temporal and spatial 

correlations between individual pixels. Regarding skeletonized For HAR, Yadav et al. 

(2022) built a network consisting of Convolutional Long Short-Term Memory nodes. 

Skeleton coordinates were estimated using human identification and pose estimation, 

and these were then utilized in conjunction with geometric and kinematic features to 

generate reference traits. Although a categorizer head was used, it did not take into 

account edges and surface-related geometric features, which could have improved HAR 

performance. A Deep Neural Network (DNN) for human action classification was 

developed using transfer learning and shared-weight methods (Putra et al., 2022). This 

model consisted of pre-trained CNNs, attention layers, LSTMs trained with residual 

learning, and softmax layers. However, it did not meet the requirements of the online 

examples that were investigated, which required the classification of confusing action 

sequences.  

A triboelectric gait sensor system was designed by (Li et al. 2023) for HAR. To 

improve HAR functionality, they extracted deep features from multichannel time-series 

gait data using long short-term memory (LSTM) and residual units. However, 

improved HAR functionality requires additional geometric details. To acquire 

additional discriminative characteristics from the video sequences and reliably 

recognize complicated behaviors, a two-stream learning technique has arisen in recent 

years, while the above-studied frameworks only used a single-stream learning strategy. 

(Nagarathinam et al. 2022) took this into account, and so they developed the Joints and 

Trajectory-pooled 3D-Deep Positional Attention-based Hierarchical Bidirectional 

Recurrent convolutional Descriptors (JTDPAHBRD) framework to improve the 

attribute concatenation task via the use of a Positional Attention-based Hierarchical 

Bidirectional Recurrent Neural Network (PAHBRNN). This PAHBRNN-based pooling 

separated the human skeleton-related attribute vectors across all clips into many 



110 
 

subsets. In order to capture and combine the long-term spatio-temporal characteristics 

hierarchically, these pieces were fed to numerous PABRNNs. Additionally, the FCL 

was used to supply the absolute Video Descriptor (VD) that was used in the SVM's 

classification of HAR. 

The geometric correlation between joints is not taken into account during 

feature extraction and concatenation. Instead, these frameworks simply fuse the joint 

and trajectory coordinates at each interval. Joint development in a fossil skeleton is a 

common occurrence. So, the relative joint geometries provide a useful description of 

actions. Joint trajectories only provide gesture information, not contour or geometrical 

information.  

Hence, the purpose of this research is to consider the relative geometries in the 

human body to improve HAR. In order to extract geometric features like joints, edges, 

and surfaces from the skeleton graph in addition to the coordinates of the points along 

the trajectory, a JTDGPAHBRD-based HAR framework is suggested. The joints are 

separate points of the body. The edges are bones that link 2 nearby joints and are 

represented via the related joint’s locations. The surfaces are the planes made through 2 

nearby articulated bones. To better learn discriminative high-level features, the 

PAHBRNN is implemented in a brand-new 3D-deep convolutional network with VC 

and TD layers. Next, to apply the FCL to a frame in order to obtain its VD. In addition, 

the SVM classifier is applied to the generated VD in order to identify distinct types of 

human behavior. Thus, this framework can increase the recognition rate of HAR 

systems. 

7.1 PROPOSED METHODOLOGY 

The JTDGPAHBRD framework for HAR is briefly described here. As shown in 

Fig. 7.1, the JTDGPAHBRD framework for HAR can be conceptualized as a 

generalized sketch. The primary objective is to provide a predicted activity label to a 

previously unseen video sequence. At first, a video is cut into individual frames. With 

the aid of a skeleton graph structure, elementary geometries like as joints, edges, and 

surfaces are defined for each frame. Each joint's position along the trajectory is also 

retrieved. Next, instead of using a max-min pooling technique, the PAHBRNN-based 

2-stream C3D network is fed the geometry and trajectory coordinates to begin the 
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pooling process. After that, the bilinear product combines the features from both 

streams (feature and attention, for example) and the FCL yields an absolute VD. In 

order to predict the action labels of test video sequences, the acquired VD is then 

trained by the SVM classifier. 

 

Figure 7.1. Schematic representation of JTDGPAHBRD-based HAR. 

7.1.1 Representation of Primitive Geometries from Skeleton Information 

The skeleton data is a list of coordinates in three dimensions that represent the 

deformed shape of the body at certain spots. The body can be manipulated to create a 

variety of motions at the spots. Connecting these places follows the same structure as 

the joints in the human body. When the human body is mapped onto a graph, the bones 

become nodes and the joints become edges. The skeletal data for a given individual is 

limited by two geometric constraints: (1) The distance between any two sites along a 

connected bone fragment is always the same because of the bone's constant size, and 

(2) Any three points that generate two overlapping pieces are on the same plane. 

According to these interpretations, the skeleton information carries 3 kinds of 

data: the remote joints, the edges that represent the linked fragments, and the surfaces 

covered by overlapping fragments. These are explained below. 

A. Joints 

Using   as the number of joints in the body, the     matrix that results from 

the coordinates of the points along the interval is obtained. A tensor   of dimensions 
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      represents the skeletal data when the length of the video stream is  . Time-

dependent shifts in joint coordinates reflect activity patterns across time. The rotation 

matrix maps one set of joint coordinates to the other set of coordinates in the scene. The 

define    as the coordinate vector of the joint at some instant in time, then obtain the 

subsequent coordinate vector by 

 ̃              (7.1) 

The     revolution matrix is denoted by   in Eq. (7.1). Assume that in a given video, 

  holds true across a wide range of joints and distances. So, the unique  ̃ identified 

from the other perspective for the joints tensor   is defined as 

 ̃                       (7.2) 

Multiplication by the 3-mode tensor    has equal magnitudes for  ̃ and   in Eq. (7.2). 

B. Edges 

Bone movement, in addition to the temporal characteristics of joints, shapes a variety of 

activities. Joints' physical connections are specified using a graph. Nodes indicate joints 

and edges represent bones in this skeletal system. 

There are     edges in a network with   nodes. The bone's orientation may be seen 

around the edge. Each node is represented by a vector of coordinates, and edges are 

named by subtracting the vectors of their respective starting and ending points. To 

clarify, 

                 (7.3) 

The edge, the endpoint, and the starting point are defined by the vectors          in Eq. 

(7.3). An edge of the skeleton is described by a tensor   of size   (   )   . The 

edge vector whose terminal point is at the node serves as a symbol for the node itself. A 

zero-length edge-free vector represents a node that does not contain edge-ends. By 

doing so,   is made one size larger, and   and   are both made to be the same size.   

A revolution matrix is used to transform the view's edge coordinate vectors into 

the other view's coordinate system. With the help of Eqns. (7.1) and (7.3), the 

transformation may be accomplished for the edge's vector of coordinates at a certain 

time interval.  
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 ̃   ̃   ̃             (7.4) 

 ̃   is the transformed vector of    in Eq. (7.4). Also, it is defined as: 

 ̃                (7.5) 

The tensor of edges after conversion is denoted by  ̃ in Eq. (7.5). The joint and 

edge revolution matrices are found to be similar when comparing Eqs. (7.2) and (7.5). 

C. Surfaces 

The edges show how the joints are correlated with one another in pairs. It can't 

depict the case where two joints with adjacent edges are physically close together. The 

motions of neighboring bones are similarly advantageous to HAR. The standard vector 

is used to represent the surface since a plane is formed by two adjacent edges. To 

illustrate, let's say       are the vectors representing two adjacent edges, and    is the 

normative vector. 

                 (7.6) 

The symbol   denotes the 3D cross product in Eq. (7.6). The magnitude of the 

vector represents the obliquity angle between the two edges, hence it is not normalized. 

The standard vector is multiplied by 100 to keep its size consistent with that of the 

coordinate vector. A body with   joints has (   ) possible planes. Two surfaces 

with redundant information (the standard vector is determined by another standard 

vector) were removed so that a correct relationship could be established between joints 

and edges. This yields   surfaces, allowing a tensor   of sizes       to determine 

a sequence's standard vectors.  

The other perspectives are used to infer the standard vector of the first. The novel 

standard vector of a plane at a certain interval is defined by Eq. (7.6) and Eq. (7.4). 

 ̃  (   )  (   )    ( )        (7.7) 

  ( ) stands for the cofactor matrix of R, which is the adjoint matrix's transpose in Eq. 

(7.7). For a matrix   that can be inverted, then;   

  ( )  (   ( ))(   )        (7.8) 
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Transpose of the inverse   is denoted by T in Eq. (7.8) as (   ) . A revolution matrix 

has a determinant of one and its transpose is    . Hence, it may derive Eq. (7.8) as   

  ( )  (   )           (7.9) 

This means that in the tensor interpretation of planes: 

 ̃                (7.10) 

 ̃ in Eq. (7.10) represents the tensor of surface standard vectors after conversion. Joints, 

edges, and planes are all found to have the same revolution matrix by relating 

Equations (7.2), (7.5), and (7.10). 

7.1.2 Recognition of Human Activities 

The 2-stream C3D network is supplied the three types of skeleton data 

necessary for HAR: joint, edge, and surface coordinates, as well as the trajectory 

coordinates. Fig. 7.2 depicts the entire network architecture of the HAR. The VC and 

TD layers are included in this architecture to better facilitate attribute mining and VD 

creation. 

 

Figure 7.2. Structure of proposed 2-stream bilinear C3D network for HAR. 

A. View conversion: In real life, human skeletons can be photographed from a random 

camera perspective. This framework plans on using the VC layer to translate the 

skeleton information into 3D space by collecting the joints, edges, and planes in order 

to generate view-invariant interpretations. 
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The video's       coordinates are transformed using a comparable transformation 

matrix,  .   is a combination of revolutions about the       axes, as described by 

Euler's rotation theory. 

    ( )  ( )  ( )       (7.11) 

The       rotation angles are denoted by       in Eq. (7.11).   is computed 

from three independent orientation variables given a skeletal structure by developing a 

small number of important hypotheses. In the learning task,   is calculated to transform 

the inputs once the orientations in a given value have been arbitrarily selected. Given 

that the surface is almost perpendicular to the z-axis, the coordinates and     are drawn 

from . 
 

 
 
 

 
/ and the   is set to 0. In the test phase,       are set as 0, and the actual 

tensors of joints, edges, and planes are utilized.   

B. Temporal dropout: The skeletons gathered might not often be accurate because of 

noise and pose variations. To solve this issue, a method is adopted depending on 

dropout, which enhances the framework’s robustness. For a typical dropout, all hidden 

units are arbitrarily neglected from the model with a chance of       in the learning. 

For the test stage, each activation is utilized and         is multiplied to consider the 

rise in the estimated bias. TD is marginally varied from the typical dropout. For     

matrix interpretation of a frame, where   denotes the frame size and   denotes the 

feature size, merely   dropout tests are executed, and the dropout range is extended 

among the feature size. The spatial dropout is the inspiration for this technique used to 

investigate the 4D tensor convolution feature. In this study, it is altered for 3D tensor 

and applied for attribute training from frames. As illustrated in Fig. 2, the TD is 

conducted before the PAHBRNN. 

Consequently, the 2-stream C3D network is educated to generate the absolute VD of a 

specified sequence. In order to categorize the behaviors of persons inside a video 

sequence, the resulting VD is put into a support vector machine algorithm (SVM). 

7.2 Results and Discussion 

The JTDGPAHBRD framework is evaluated based on its performance in 

MATLAB 2017b. This analysis makes use of the 2326 video sequences from the Penn 

Action Corpus, each of which is tagged with 15 different types of activities. Each clip 
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contains between 50 and 100 blocks, and all of the annotated body joints total 13. This 

dataset includes 1861 video sequences used for training and 465 video sequences used 

for evaluation. Some examples of data sources are C3D features, primitive geometry 

coordinates, and trajectory data. Several aggregation configurations are utilized to 

evaluate JTDGPAHBRD's recognition accuracy in light of these features. 

Recognition accuracy refers to the degree to which a person's behaviors are accurately 

interpreted. It can be calculated with Eq. (7.12). 

         
                            

                              
  00     (7.12) 

Input video frame and skeleton picture used to represent primitive geometry 

coordinates are shown in Fig. 7.3. 

 

Figure 7.3. Input image and its corresponding skeleton image for primitive 

geometry coordinates representation. 

 The Penn Action dataset's JTDGPAHBRD identification rates are shown in 

Table 7.1. 
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Table 7.1. Recognition Rate (%) of Sources and JTDGPAHBRD with Distinct  

Settings on Penn Action Database 

 

Cumulative 

all the 

activations 

JTDGPAHBRD 

Ratio Scaling 

(1×1×1) 

JTDGPAHBRD 

Coordinate 

Mapping 

(1×1×1) 

JTDGPAHBRD 

Ratio Scaling 

(3×3×3) 

JTDGPAHBRD 

Coordinate 

Mapping 

(3×3×3) 

Primitive 

geometries 

+ 

trajectory 

coordinates 

0.7018 - - - - 

  7  0.8045 - - - - 

     0.8298 - - - - 

        0.7931 0.8763 0.9231 0.8718 0.9042 

        0.7084 0.8251 0.8518 0.8146 0.8275 

    4   0.6102 0.8406 0.8227 0.8555 0.8633 

        0.5095 0.7794 0.7504 0.7791 0.7727 

 

The first column of Table 7.1 displays the accuracy with which coordinates for 

primitive geometries and trajectories can be identified. This research proves that it is 

not possible to reliably identify primitive geometries and trajectories by direct 

recognition alone. Therefore, to achieve higher accuracy, it is essential to concatenate 

all attributes inside a specific layer. The accuracy of   7 is somewhat lower than that 

of    . The real C3D can't alter   7, therefore this is a viable option for making a 

functional VD. Due to the incorporation of more primitive geometries and trajectory 

data, the outcomes of PAHBRNN-based pooling in JTDGPAHBRD are studied at a 

variety of 3D      units. It is evident that the JTDGPAHBRD outperforms the other 

HAR systems when video patterns are combined with primitive geometries and 

trajectory coordinates according to different sections of the human body (such as the 

right leg, right arm, trunk, left leg, and left arm).   

Furthermore, JTDGPAHBRDs from many      units are integrated to ascertain 

their compatibility with one another in terms of maintaining equilibrium. Figure 7.4 
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displays the results of implementing late merging in a variety of settings and the SVM 

scores on the Penn Action database. Existing frameworks like BPAN, SEMN, VGG19-

SVM, ConvLSTM, JTDD, JTDPABRD and JTDPAHBRD are compared to 

JTDPAHBRD in terms of accuracy. 

 

Figure 7.4. Recognition rate of JTDGPAHBRD by concatenating different layers 

for penn action dataset. 

Concatenating            4  in the JTDGPAHBRD has a higher 

recognition rate than other groupings, as seen in Fig. 7.4. This shows that the qualities 

are related. Therefore, it is argued that the JTDGPAHBRD framework is superior to the 

other current frameworks in its ability to reliably distinguish human activities across a 

variety of video sequences. 

Precision, recall, and f-measure for fusing multiple layers on the Penn action 

dataset are shown in Table 7.2. 

Table 7.2. Precision, Recall, and F-measure of Fusing Multiple Layers Together 

on Penn Action Dataset 

Performance 

Metrics 

Fusion Layers 

                                       

JTD-

PAHBRD 

JTD-

GPAHBRD  

JTD-

PAHBRD 

JTD-

GPAHBRD 

JTD-

PAHBRD 

JTD-

GPAHBRD 

Precision 0.881 0.885 0.989 0.992 0.879 0.883 

Recall 0.886 0.890 0.994 0.996 0.885 0.890 

F-measure 0.884 0.888 0.992 0.994 0.882 0.887 
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Figure 7.5. Recognition rate of Precision of JTDGPAHBRD by concatenating 

different layers for penn action dataset. 

Concatenating            4  in the JTDGPAHBRD has a higher 

recognition rate of precision, as seen in Fig. 7.5. This shows that the qualities are 

related. Therefore, it is argued that the JTDGPAHBRD framework is superior to the 

other current frameworks in its ability to reliably distinguish human activities across a 

variety of video sequences.  

 

Figure 7.6. Recognition rate of Recall of JTDGPAHBRD by concatenating 

different layers for penn action dataset. 
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Concatenating            4  in the JTDGPAHBRD has a higher 

recognition rate of recall, as seen in Fig. 7.6. This shows that the qualities are related. 

Therefore, it is argued that the JTDGPAHBRD framework is superior to the other 

current frameworks in its ability to reliably distinguish human activities across a variety 

of video sequences.  

 

 

Figure 7.7. Recognition rate of F-measure of JTDGPAHBRD by concatenating 

different layers for penn action dataset. 

Concatenating            4  in the JTDGPAHBRD has a higher 

recognition rate of F-measure, as seen in Fig. 7.7. This shows that the qualities are 

related. Therefore, it is argued that the JTDGPAHBRD framework is superior to the 

other current frameworks in its ability to reliably distinguish human activities across a 

variety of video sequences.  

 Table 7.3 compares the computed coordinates of the primitive geometries and 

trajectories to the Ground-Truth (GT) geometries + trajectory coordinates for a number 

of HAR frameworks on the Penn Action dataset. The suggested JTDGPAHBRD 

framework outperforms previously tested HAR frameworks, according to an analysis of 

the Penn Action database. 
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Table 7.3. Effect of Obtained Primitive Geometries + Trajectories vs. GT 

Geometries + Trajectories from        for Various HAR Frameworks  

on Penn Action Database 

Frameworks GT Obtained Variation 

VGG19-SVM  0.733 0.671 0.062 

ConvLSTM  0.751 0.694 0.057 

BPAN  0.784 0.735 0.049 

SEMN  0.819 0.777 0.042 

JTDD  0.835 0.810 0.025 

JTDPABRD  0.847 0.828 0.019 

JTDPAHBRD  0.860 0.849 0.011 

JTDGPAHBRD 0.893 0.886 0.007 

 

 

Figure 7.8 Effect of Extracted GTST vs. Ground-truth GTST for Different HAR 

Models on PAD 
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As can be shown in Figure 7.8, the JTDGPAHBRD minimizes the gap between the 

extracted GTST and the true GTST. After conducting these tests, the PAD found that 

the proposed JTDGPAHBRD model had the best recognition performance of all of the 

HAR models it had tried. 

7.3 CHAPTER SUMMARY 

In this research, the JTDGPAHBRD framework was created to learn HAR 

trajectories and body joint coordinates from many video frames. An impressive 

recognition rate of 99.7% was attained using this approach. This framework has 

potential applications in video surveillance systems, sports, military, etc., where 

accurate action recognition is required. Improved HAR functionality in large-scale 

video sequences was achieved through the extraction of joint geometry and trajectories. 

Despite its ability to identify a wide range of human activities, it has been unable to 

effectively learn the spatiotemporal correlations between distinct geometries, and 

manual extraction of geometries from long-range video sequences remains a 

challenging task. In order to develop more reliable video descriptors, researchers plan 

to implement a graph-based neural network for automatically learning spatiotemporal 

correlations among geometric data. 

 

 

 

 

 

 

 

 

 

 

 


