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CHAPTER VIII 

AN IMPROVEMENTS OF DEEP LEARNER BASED HUMAN ACTIVITY 

RECOGNITION WITH THE AID OF GRAPH CONVOLUTION FEATURES 

One of the most important emerging areas of artificial intelligent is Human 

Action Recognition (HAR), which automatically detects and labels human actions in 

video. (Arshad et al. Audio-visual analysis (Hussain et al. 2022), virtual reality (Zhang 

et al. 2022), intelligent human-machine interactions, etc. (Kulsoom et al. 2022) are only 

a few examples of the fields where it is very useful. RGB and skeletons are only two 

examples of the many ways in which human actions might be identified. The skeletal 

structures embody condensed information about a single motion, which can serve as a 

robust example of the actions themselves. 

Advances in depth sensors will make it easy to record a person's skeletal data, 

which includes 3D coordinates of major joints. Thus, HAR systems based on a skeleton 

are currently very popular (Feng et al. 2022). In order to formulate the existence and 

the temporal dynamics of joints, many conventional skeleton-based HAR approaches 

manually construct information such the relative placements between joints, the angles 

between limbs, and the surfaces covered by the human body. Joint coordinates and the 

strong correlations between them are examples of skeletally based local characteristics. 

(Cao et al. 2018) argue that this means that methods can't be used to model and 

distinguish between activities that involve similar stances, movements, and human-

machine interfaces. Skeleton prediction is also crucial, because unintended mistakes in 

locating body joints were not prevented. Video-based HAR uses Convolutional Neural 

Networks (CNNs) to gather local-to-global features from RGB images and depth data 

to solve these problems. 

With this in mind, the 2-stream Convolutional 3D (C3D) network for HAR was 

modified to incorporate a Joint and Trajectory-pooled 3D convolutional Descriptor 

(JTDD) strategy for extracting and merging body joint coordinates and their 

trajectories. While the C3D network was able to spatially smooth over the neighboring 

kernels using the highly adaptable max-min pooling, the technique fails to account for 

the crucial spatial variations between distinct operations. To get around this, the max-

min pooling method was abandoned in favor of a Positional Attention-based 
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Bidirectional Recurrent Neural Network (PABRNN) in the JTDPABRD scheme. 

However, the BRNN's increased number of parameters makes it less effective in 

learning long-range joint relations between actions and increases the risk of the 

gradient vanishing. 

Therefore, the PAHBRNN, which segments the feature maps pertaining to the 

human skeleton in each clip into separate parts based on the body structure, was 

implemented to construct the JTDPAHBRD scheme. Separate PABRNNs learned these 

part-based features hierarchically to gather and combine the long-range spatiotemporal 

data associated to the various body parts. On the other hand, these JTDD variations for 

HAR relied on the video descriptor, which was built by combining only the joint and 

trajectory coordinates of various body components at each time step. In order to create 

more accurate descriptions, it was crucial to determine the geometric relationship 

between bodily joints. Because joint trajectories do not define contour or geometry 

relations, they merely express gesture information. 

Joints, edges, and surfaces were all taken into account, as were the trajectories 

of body joints, in order to establish the various forms of geometry using the skeleton 

graph. The C3D network was fed this information to better understand the temporal 

dynamics of different geometries through the use of its new View Conversion (VC) 

layer and Temporal Dropout (TD) layer in the attention and feature streams, 

respectively. Similarly, to utilized PAHBRNN to get an aggregated representation of 

features. Then, the bilinear pooling and fully-connected layer were applied to the 

combined results of the two streams, increasing those results by a factor of two. To 

classify human actions into their respective buckets, a full network was trained with the 

softmax loss function to produce frame-specific video descriptors. However, further 

investigation into the spatial-temporal dynamics of the various skeletal structure 

geometric aspects was lacking. 

The JTDGPAHBRD scheme for HAR is modified in this chapter to include the 

GCN. As a means of enhancing end-to-end learning and producing video descriptors 

for a given video sequence, the GCN picks up complementary information between 

consecutive frames, such as higher-level spatial-temporal properties. To better 

represent features, a search space is constructed out of many adaptive graph 

components. The space is then probed using a sampling and computation-efficient 
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evolution technique. To improve the HAR video descriptor, the GCN's temporal 

dynamics of the skeleton pattern are combined with the JTDGPAHBRD's geometric 

features of the skeleton body joints and trajectory coordinates. The SVM technique is 

then used to classify the collected descriptors in order to recognize various human 

behaviors. As a result, this approach greatly improves the precision with which various 

human actions may be identified. 

8.1 PROPOSED METHODOLOGY 

In-depth information about the GCN model implemented in the JTDGPAHBRD 

for HAR is provided below. The full research process is depicted in Figure 8.1. 

Figure 8.1. Overall Pipeline of the Study 

8.1.1 Graph Convolutional Network for Spatial-Temporal Feature Learning 

A spatial-temporal graph   (   ) with   skeleton geometries and   frames is 

utilized to represent the skeleton data in the GCN. Therefore,          represents 

the skeletal structure's feature map, where   channels define the joint coordinates. 

Typically, an adjacency matrix   and an identity matrix   are used in spatial 

graph convolutions to define the intra-body joint relations that can be partitioned into 

three sets   (relative to the group of adjacent resulting from the spatial alignment), with 

    ∑    . This is the definition of the graph convolution in a particular context: 
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To regularize   , let use the degree matrix   
   ∑ (  

  
)  as shown in Eq. (8.1), and the 

combined weight vectors for all  ,   , are shown as well.   

Based on the correlations between nodes, this research uses a dynamic and 

learnable GCN equipped with a search technique to generate dynamic graphs. This 

standardizes the trainable temporal   over the time-based receptive regions generated 

by the temporal graph convolutions. This means that the time dispersion between all 

frames is defined by the   correlation matrix. However, the raw integration of   would 

result in an inflexible and rigid temporal configuration to all layers, as numerous GCNs 

are layered to extract high-level spatial-temporal properties. This can be prevented, 

though, by elevating the geometric features to higher semantic planes. Therefore, the 

ideal temporal alignment for the hierarchical GCNs is trained using the convolutional 

layer over the correlation descriptor. The primary result is so described by 

   ((   )   )
         (8.2) 

Eq. (8.2) represents the temporal dynamics of the similarity matrix with respect 

to the temporal indices of the kernel patch  , with    being the appropriate matrix and 

   being an all-ones vector of dimension  . By adding (8.2) to (8.1) with the Hadamard 

product, to obtain the temporal descriptor for each feature channel in the graph 

convolution, allowing for dynamic optimization of the geometric descriptor. 

  ∑  
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8.1.2 Search Strategy for Dynamic Graph Generation in GCN 

Take a set of  s,   *       +, where each G defines a skeleton at a certain 

time interval, then expand them all together. The joints of the skeleton are defined by 

the nodes and edges of the graph  . The suggested GCN incorporates the graph 

structure search approach to automatically build graphs for multiple layers at different 

semantic levels. The search space for a GCN is initially determined, and then many  s 

are used in its construction. Then, an exploration policy was presented that minimizes 

the time and effort spent on sampling and calculation. 

GCN search space: What kinds of graph functions an investigating policy could use 

to build the GCN are defined by the graph search space employed by the graph 
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structure search method. Here, the optimum GCN for an adaptable   across all levels 

of interpretation is sought by searching a space constructed from multiple such GCNs. 

Here are some examples of correlation types used to compute the adaptive  : 

1. Topology interpretation relationship: Graph structure is planned using the 

topological relationship, which takes into account the existing connections 

between nodes. The degree of similarity between two nodes in a network can be 

calculated by applying a standard Gaussian function on the network's nodes; 

this function returns a relationship score. 

         (   )  
 

 . (  )/  ( .  /)

∑  
 . (  )/  ( .  /) 

   

     (8.4) 

Spatial   is the name for this element. The interpretations  (  ) and  (  ) of nodes 

  and   are used to determine the relationship score   (   ). In addition, the channel-

wise convolution filters use 2 estimation parameters, denoted by  ( ) and  ( ), and the 

matrix multiplication, denoted by  . From this, they can derive the inter-node 

correlation necessary to build an adaptive  . 

2. Temporal interpretation relationship: Before calculating node associations with 

Eq. (4), the temporal data of each node is extracted using two temporal 

convolutions. In this way, the node interfaces between neighboring frames are 

utilized during the computation of node relations. In addition, the node 

relationship is computed using a Gaussian function, as shown in Eq. (4). 

Temporal convolutions apply the functions  ( ) and  ( ) to this element, which 

is referred to as temporal  .  

An adaptive   is constructed with   and   in order to comprehend the spatial and 

temporal features. 

GCN Search Strategy: The optimal graph structure must be investigated in order 

to lessen the computing complexity of multiple graphs. However, a layer-definite 

approach is employed to construct a graph because it is claimed that different feature 

layers contain different depths of semantic information. Thus, the complete GCN 

network is probed using this computationally efficient method. By making educated 

guesses about the structural distribution, it locates the best possible layout. 
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Furthermore, by activating a single function element across all search steps, memory 

usage is reduced. The structure variables   are treated as a population, and this 

exploration policy with cross-entropy significance-mixing uses the Gaussian 

distribution to build the structure distribution. After that, the method selects pivotal 

examples from a pool of potential structures based on their efficiency, ultimately 

shifting the overall distribution of those structures. Thus, the optimal structure is drawn 

at random from the set of all possible structures. 

Initially, the structure distribution is modeled with a Gaussian distribution    (   ) 

and   structure examples      {  
 }

   

 
 are sampled as the populations for this 

scheme. After that, combining      with the past chosen populations      {  
 }

   

 
, 

an importance-mixing scheme is applied to each population to select structure 

examples. At last, the freshly chosen examples are utilized to modify the structure 

distribution  . 

For each population in      and     , the probability density in the pdfs for the      

and       populations are compared during the population selection process. Thus, in 

terms of the old population   
 ,  

   (  
 (  

      )

 (  
      )

)           (8.5)     

In Eq. (8.5),  (   ) is a pdf with a specific  , and    is a threshold chosen at random 

between 0 and 1. Similarly, for a new instance   
  drawn at random from the current 

distribution, 

   (0   
 (  

      )

 (  
      )

)           (8.6) 

The other threshold in ,0  - is denoted by    in Eq. (8.6). The examples selected in the 

previous phase are used to adjust the mean   and covariance   for the modification 

procedure. The model's parameters are adjusted in advance using the existing structure 

   . The parameters of the network are then set, and the selected examples are 

assigned to the current architecture. Each sample is evaluated based on how well it 

performs and ranked accordingly. Each instance      example is given a significance 

weight    based on its efficiency rank. 
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As a result, the distribution can be altered more drastically by giving greater weight to 

the example with good efficiency. Finally, the structural distribution is adjusted with 

the help of the weighted examples. 

     ∑    
  

           (8.8) 
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         (8.9) 

Eq. (8.9) includes the noise term    for more efficient graph search. Due to the 

complexity of determining and changing  , only a diagonal is allowed. Because the 

covariance matrix adaption evolution technique shows it to be highly effective, the 

mean   of the last iteration is employed to adjust in Eq. (8.9). Figure 8.2 shows the 

internal structure of the JTDGPAHBRD-GCN model used to generate video 

descriptors. Therefore, this GCN using dynamic graphs can represent the spatial-

temporal features of the skeletal geometries. 

 

Figure 8.2. Structure of proposed JTDGPAHBRD-GCN Model Video  

Descriptor Generation 
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8.1.3 Effective Video Descriptor Generation and Human Action Recognition 

The JTDGPAHBRD uses a bilinear product to extract the joints of the body and 

the coordinates of its trajectory after first retrieving complementing high-level spatial-

temporal characteristics from the GCN. To create efficient video descriptors for 

specific video sequences, the fused feature vectors are then passed to the fully linked 

layer. At last, the SVM classifier sorts the generated video descriptors into categories of 

human activities.  

8.2 EXPERIMENTAL RESULTS 

The JTDGPAHBRD-GCN model is tested on a dataset of 2326 video 

sequences, with each sequence categorized into 15 action classes, using the PAD in 

MATLAB 2017b. Each clip contains between 50 and 100 blocks, and all of the 

annotated body joints total 13. There are a total of 1861 training video sequences and 

465 test video sequences included in this dataset. Some examples of such data are C3D 

features, primitive geometry coordinates, trajectory coordinates, and spatial-temporal 

correlations. Several fusion configurations are used to assess JTDGPAHBRD-GCN's 

recognition accuracy in light of these features. 

Recognition accuracy is the proportion of an individual's action classes that are 

correctly labeled. 

         
                            

                              
  00     (8.10) 

Figure 8.3 depicts the video frame and skeleton image used as input for feature 

extraction. 

 

Figure 8.3. (a) Input frame  
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(b) 

Figure 8.3. (b) corresponding skeleton image 

Table 8.1 displays the results of the JTDGPAHBRD-GCN's recognition accuracy tests 

on the PAD. 

Table 8.1. Recognition Accuracy (%) of Sources and JTDGPAHBRD-GCN with 

Different Alignments on PAD 

 

Aggregate 

all the 

features 

JTDGPAHBRD-

GCN Ratio 

Scaling (1×1×1) 

JTDGPAHBRD-

GCN 

Coordinate 

Mapping 

(1×1×1) 

JTDGPAHBRD-

GCN Ratio 

Scaling (3×3×3) 

JTDGPAHBRD-

GCN 

Coordinate 

Mapping 

(3×3×3) 

Geometry 

features + 

trajectory 

coordinates 

+ spatial-

temporal 

features 

74.65 - - - - 

     83.96 - - - - 

     85.74 - - - - 

        82.41 90.11 94.86 89.96 93.08 

        73.68 85.35 88.78 84.15 85.44 

        65.31 87.19 85.97 88.66 89.23 

        54.02 80.54 79.08 80.73 79.67 
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Table 8.1's first column indicates how well various parameters (joint 

geometries, trajectory coordinates, and spatial-temporal information) can identify 

human actions. It finds that human action recognition accuracy is subpar when only a 

few features are aggregated. As a result, it is necessary to combine all of the features 

from the various levels to achieve higher precision. When compared to    ,   7 isn't 

quite as precise. It's promising because the real C3D-GCN can't modify   7, and that's 

a crucial feature for making a good video description. Results of PAHBRNN-based 

pooling at each 3D conv units in JTDGPAHBRD-GCN are analyzed because of the 

incorporation of body joint geometries and trajectory coordinates. 

The JTDGPAHBRD-GCN outperformed competing HAR systems on tasks that 

required it to group together spatial-temporal features in video patterns with the 

geometries and trajectories of body joints according to different sections of the human 

body (e.g., the right leg, right arm, trunk, left leg, and left arm). 

In addition, JTDGPAHBRD-GCNs from many conv units are averaged to see if 

they may be balanced. Table 8.2 shows the outcomes of the PAD SVM scores and the 

outcomes of the late merging setups. There is a comparison made between the 

JTDPAHBRD-GCN model's accuracy with that of the previously established models 

(JTDGPAHBRD, TSCN, Hyper-GNN, and Sybio-GNN). 

Table 8.2. Recognition Accuracy (%) of JTDGPAHBRD-GCN by Fusing Different 

Layers for PAD 

Concatenation 

Layers + GCN  

TSCN Hyper-

GNN 

Sybio-

GNN 

JTDGPAHB

RD 

JTDGPAHBRD

-GCN 

            84.36 86.91 88.25 90.60 93.14 

       
    4   

94.10 95.39 97.05 99.70 99.82 

       
         

83.64 85.26 87.48 90.40 92.51 
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Figure 8.4. Recognition Accuracy of JTDGPAHBRD-GCN on PAD 

As can be seen in Figure 8.4, the identification accuracy is highest when combining the 

           4  features in the JTDGPAHBRD with the GCN features. Therefore, it 

is concluded that the JTDGPAHBRD-GCN model is superior to previously known 

models in its ability to accurately categorize human behaviors in constrained video 

sequences.  

Precision, recall, and f-measure for fused layers on the Penn action dataset are shown in 

Table 8.3. 

Table 8.3. Precision, Recall, and F-measure of Fusing Multiple Layers Together 

on Penn Action Dataset 

Performance 

Metrics 

Fusion Layers 

                                       

JTDG-

PAHBRD 

JTDG-

PAHBRD-

GCN 

JTDG-

PAHBRD 

JTDG-

PAHBRD-GCN 

JTDG-

PAHBRD 

JTDG-

PAHBRD-GCN 

Precision 0.885 0.890 0.992 0.995 0.883 0.889 

Recall 0.890 0.896 0.996 0.998 0.890 0.896 

F-measure 0.888 0.893 0.994 0.997 0.887 0.893 
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Figure 8.5. Recognition of Precision of JTDGPAHBRD-GCN on PAD 

As can be seen in Figure 8.5, the identification precision is highest when 

combining the            4  features in the JTDGPAHBRD with the GCN 

features. Therefore, it is concluded that the JTDGPAHBRD-GCN model is superior to 

previously known models in its ability to accurately categorize human behaviors in 

constrained video sequences.  

 

Figure 8.6. Recognition of Recall of JTDGPAHBRD-GCN on PAD 
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As can be seen in Figure 8.6, the identification recall is highest when combining 

the            4  features in the JTDGPAHBRD with the GCN features. 

Therefore, it is concluded that the JTDGPAHBRD-GCN model is superior to 

previously known models in its ability to accurately categorize human behaviors in 

constrained video sequences.  

 

Figure 8.7. Recognition of F-measure of JTDGPAHBRD-GCN on PAD 

As can be seen in Figure 8.7, the identification F-measure is highest when 

combining the            4  features in the JTDGPAHBRD with the GCN 

features. Therefore, it is concluded that the JTDGPAHBRD-GCN model is superior to 

previously known models in its ability to accurately categorize human behaviors in 

constrained video sequences. 

Performance results of extracted Geometries+Trajectories+Spatial-Temporal 

(GTST) features versus ground-truth GTST features for several HAR models on the 

PAD are provided in Table 8.4. 
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Table 8.4. Effect of Extracted GTST vs. Ground-truth GTST for Different HAR 

Models on PAD 

Models Ground-truth Extracted Difference 

TSCN  0.826 0.801 0.025 

Hyper-GNN 0.849 0.833 0.016 

Sybio-GNN 0.865 0.851 0.014 

JTDGPAHBRD (      )  0.893 0.886 0.007 

JTDGPAHBRD (      )-GCN 0.927 0.922 0.005 

 

 

Figure 8.8. Effect of Extracted GTST vs. Ground-truth GTST for Different HAR 

Models on PAD 

As can be shown in Figure 8.8, the JTDGPAHBRD-GCN minimizes the gap 

between the extracted GTST and the true GTST. After conducting these tests, the PAD 

found that the proposed JTDGPAHBRD-GCN model had the best recognition 

performance of all of the HAR models it had tried. 
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8.3 CHAPTER SUMMARY 

This chapter introduces the JTDGPAHBRD, which combines the GCN model 

with the skeleton graph to learn spatial-temporal information. The GCN was used to 

capture high-resolution spatial and temporal information between frames. The GCN 

model's search space, which is made up of many dynamic graph structures, was 

generated and optimized using a computation-efficient evolution technique so that it 

could learn the temporal dynamics of the skeletal pattern. The JTDGPAHBRD learned 

geometric aspects of body joints and their trajectory coordinates, and these were 

combined with the newly developed spatial-temporal data to provide video descriptors. 

The SVM classifier for HAR was then used to assign a category to the resulting video 

description. Finally, the in-depth investigation revealed that, when compared to the 

other HAR models, the JTDGPAHBRD-GCN model on the PAD achieves a 

recognition rate of 99.82% through the combination of the features of the        and 

    4  layers with the GCN features. 

 

 

 

  

  


