PERFORMANCE ANALYSIS OF DEEP LEARNING ALGORITHMS FOR HUMAN ACTION RECOGNITION USING SPATIO TEMPORAL FEATURES FROM VIDEO IMAGES

Thesis submitted to Bharathiar University

in partial fulfillment of the requirements for the award of the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

By

N. SRI LAKSHMI

Under the Guidance and Supervision of

Dr. (Mrs.) N. RADHA, M.Sc., M.Phil., Ph.D.,

Associate Professor and Head Department of Data Analytics (PG) PSGR Krishnammal College for Women, Coimbatore-641004

DEPARTMENT OF COMPUTER SCIENCE PSGR KRISHNAMMAL COLLEGE FOR WOMEN College of Excellence-Awarded by UGC (An Autonomous Institution - Affiliated to Bharathiar University) (Reaccredited with "A++" Grade by NAAC- 4th Rank in NIRF 2023 by MHRD) (An ISO 9001:2015 Certified Institution) COIMBATORE - 641004 TAMIL NADU, INDIA

SEPTEMBER 2023

CERTIFICATE

This is certify that the thesis, entitled "PERFORMANCE ANALYSIS OF DEEP LEARNING ALGORITHMS FOR HUMAN ACTION RECOGNITION USING SPATIO TEMPORAL FEATURES FROM VIDEO IMAGES" submitted to the Bharathiar University, in Partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in COMPUTER SCIENCE is a record of original research work done by Mrs. N. SRI LAKSHMI during the period of 2018-2023 her research in the DEPARTMENT OF COMPUTER SCIENCE at PSGR KRISHNAMMAL COLLEGE FOR WOMEN, COIMBATORE-641004 (College / Research Institute / Bharathiar University) under my supervision and guidance and the thesis has not formed the basis for the award of any Degree / Diploma / Associateship / Fellowship or other similar title of any candidate of any University.

Countersigned

Head of the Department

Dr. (Mrs.) S. KARPAGAVALU MCA.M.FHB, PhD, Account informer & Head Department Consister Science, PSGR Kristian College for Women, Peclamedu, Combatore - 641 004.

JL

Signature of the Guide

Dr. N. RADHA, M.Sc., M.Phil., Ph.D., Associate Professor & Head Department of Data Analytics (PG) PSGR Krishnammal College for Women COIMBATORE - 641 004.

price Principal

Dr.P. MEENA, M.Sc., M, Phil., Ph.D. PRINCIPAL PSGR KRISHNAMMAL COLLEGE FOR WOMEN PEELAMEDU, COIMBATORE - 641 004.

DECLARATION

I N. SRI LAKSHMI hereby declare that the thesis, entitled "PERFORMANCE ANALYSIS OF DEEP LEARNING ALGORITHMS FOR HUMAN ACTION RECOGNITION USING SPATIO TEMPORAL FEATURES FROM VIDEO IMAGES", submitted to the Bharathiar University, in partial fulfillment of the requirements for the award of the DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE is a record of original and independent research work done by me during 2018-2023 under the Supervision and Guidance of Dr.N.RADHA, Associate Professor and Head, Department of Data Analytics (PG), PSGR Krishnammal College for Women, Coimbatore-641004 and it has not formed the basis for the award of any Degree/Diploma/Associateship/Fellowship or other similar title to any candidate in any University

Place: COIMBATORE

Signature of the Candidate

Date: 13.09.2023

CERTIFICATE OF GENUINESS OF THE PUBLICATION

This is to certify that the Ph.D. candidate Mrs. N. SRI LAKSHMI working under my supervision has published a research articles in the refereed journal as below. The contents of the publication incorporates part of the results presented in his/her thesis.

LIST OF PUBLICATIONS

- Srilakshmi, N., & Radha, N. (2019). Body joints and trajectory guided 3D deep convolutional descriptors for human activity identification. International Journal of Innovative Technology and Exploring Engineering, 8(12), 1016-1021. (SCOPUS INDEXED)
- Srilakshmi, N., & Radha, N. (2021). Deep Positional Attention-based Bidirectional RNN with 3D Convolutional Video Descriptors for Human Action Recognition, IOP Conference Series.: Materials Science Engineering. 1022 012017 (SCOPUS INDEXED)
- Srilakshmi Nagarathinam1* Radha Narayanan .(2022). Deep Positional Attention-Based Hierarchical Bidirectional RNN with CNN Based Video Descriptors for Human Action Recognition., International Journal of Intelligent Engineering and Systems, Vol.15, No.3, DOI: 10.22266/ijies2022.0630.34 (SCOPUS INDEXED)
- N Srilakshmi^{1*}, N Radha² (2023). An Enhancement of Deep Positional Attention-Based Human Action Recognition by Using Geometric Positional Features Indian Journal of Science and Technology 2023;16(29):2190–2197 (WEB OF SCIENCE)
- N Srilakshmi^{1*}, N Radha² (2023). An Improvements of Deep Learner Based Human Activity Recognition with the Aid of Graph Convolution Features Accepted in International Journal on Recent and Innovation Trends in Computing and Communication (SCOPUS INDEXED)

Countersigned

Head of the Department

Dr. (Mrs.) S. KARPAGAVALLI MCA, M.Phil, Phil), Associate Professor & Head Department of Computer Science, PSGR Krishnammal College for Women, Peelamedu, Colmbatore - 641 004.

Principal (Head of the Institution)

DEP. MEENA, M SE, M, Phil, Ph.D. PRINCIPAL PSGR KRISHMMMUL OF FOR WOMEN PEELAMEDU, COMMON OF GATOR

Research Supervisor

Dr. N. RADHA, M.Sc., M.Phil., Ph.D., Associate Professor & Head Department of Data Analytics (PG) PSGR Krishnammal College for Women COIMBATORE - 641 004.

பாரதியார் பல்கலைக்கழகம் BHARATHIAR UNIVERSITY

COIMBATORE - 641 046, TAMILNADU, INDIA

State University | Accredited With A++ Grade - 3.63 CGPA by NAAC |15th Rank among Indian Universities by MoE-NIRF

	CERTIFICATE OF	PLAGIARISM CHECK
1	Name of the Research Scholar	SRI LAKSHMI N
2	Course of study	M.Phil., / Ph.D.,
3	Title of the Thesis / Dissertation	PERFORMANCE ANALYSIS OF DEEP LEARNING ALGORITHMS FOR HUMAN ACTION RECOGNITION USING SPATIO TEMPORAL FEATURES FROM VIDED IMAGES
4	Name of the Supervisor	Dr. N. RADHA
5	Department / Institution/ Research Centre	COMPUTER SCIENCE PSGIR KRISHNAMMAL COLLEGE FOR WOMEN COIMBATORE - BUIDON
6	% of Similarity of content Identified	02 %
7	Acceptable Maximum Limit	10 %
8	Software Use	OURIGINAL
9	Date of verification	11/09/2023

Report on plagiarism check, items with % of similarity is attached

Signature of the Supervisor (Seal)

lalthin ?? Signature of the Researcher

Head of the Department Dr. (Mrs.) S. KASEADAVALLI MCA.,M.Phil., Ph.D, Associate Professor & Head Department of Computer Science, PSGR Krishnammal College for Women, Peelamedu, Coimbatore - 641 004.

> Director i/c Center for Research & Evaluation (BU) (Seal)

Dr. N. RADHA, M.Sc., M.Phil., Ph.D., Associate Professor & Head Department of Data Analytics (PG) PSGR Krishnammal College for Women COIMBATORE - 641 004.

University Librarian (BU)

University Elbrarian Arignar Anna Central Library Bharathiar University, Coimbatore - 641 046.

Ouriginal

Document Information

	Analyzed document	Sri Lakshmi. N.docx (D173689491)		
	Submitted	2023-09-11 09:23:00		
	Submitted by			
	Submitter email	buaacl.urkund@gmail.com		
	Similarity	2%		
	Analysis address	bhauni.urkund.buaacl.bhauni@analysis.urkund.com	ł	
Sour	ces included in the rep	ort		
SA	Dessartation APA.docx Document Dessartation AP	PA.docx (D172337911)		1
SA	20001502012_shubham_ Document 20001502012_	jain.docx shubham_jain.docx (D143107886)	BB	1
SA	For_plagiat_PhD_Manus Document For_plagiat_Phl	cript-14-124.pdf D_Manuscript-14-124.pdf (D123759334)		1
W	URL: https://arxiv.org/pdf/1 Fetched: 2022-01-17 13:20	1412.0767 0:30		1
w	URL: https://arxiv.org/pdf/1 Fetched: 2022-04-25 08:5	1811.07555 5:44		18

Entire Document

115123 University Librarian Arignar Anna Central Library Bharathiar University, Coimbatore - 641 046

ACKNOWLEDGEMENT

First and foremost I thank the God Almighty for giving me the strength, knowledge, ability, opportunity to undertake this research work and to persevere and complete it successfully.

I express my thanks to **Dr. (Mrs.) R. Nandini, Chairperson**, PSGR Krishnammal College for Women, Coimbatore for having given me the opportunity to undertake this research work in this esteemed institution.

I express my whole hearted thanks to **Dr. (Mrs.) N. Yesodha Devi, M. Com, M.Phil, Ph.D., Secretary**, PSGR Krishnammal College for Women, Coimbatore for her continuous motivation and encouragement.

My heartfelt thanks to **Dr. (Mrs.) P. Meena, M.Sc., M.Phil., Ph.D., Principal**, PSGR Krishnammal College for Women, Coimbatore for her support and for all the resources provided.

My sincere thanks to **Dr.** (**Mrs.**) **S.Karpagavalli, M.Sc., M.Phil., Ph.D., Associate Professor and Head**, Department of Computer Science, PSGR Krishnammal College for Women, Coimbatore, for her endless support, timely suggestions and motivation gave me enough confidence in completing my research work productively.

I place on record my deep sense of gratitude to my research supervisor **Dr.** (**Mrs.**) **N. Radha M.Sc., M.Phil., Ph.D., Assosiate Professor and Head, Department of Data Analytics (PG),** PSGR Krishnammal College for Women, Coimbatore for her sustained interest and advice that have contributed to a great extent to the completion of this work. I am thankful for her appropriate guidance, insightful suggestions and support in the completion of this research work. Her patience and immense knowledge have helped me during the tenure of research and writing of thesis.

My sincere thanks to the faculty members of Department of Computer Science for their co-operation rendered.

I express my heartfelt gratitude to my **family members** and my **Friends** for their cooperation for offering valuable suggestions.

(N.SRI LAKSHMI)

LIST OF TABLES

Table No	Title	Page No
2.1	Comparison of Skeleton- based methods for Human Activity Recognition	31
2.2	Comparison of human activity recognition using deep leaning methods	40
2.3	Comparison of Human Activity Recognition Using Spatio and Temporal Features	49
2.4	Comparison of Human Activity Recognition Methods Using Graph Convolutional Network	53
4.1	Recognition Accuracy of Baselines and JTDD with Different Configurations on Penn Action Dataset	70
4.2	Recognition Accuracy of Fusing JTDD from Multiple Layers Together on Penn Action Dataset	71
4.3	Precision, Recall, and F-measure of Fusing JTDD from Multiple Layers Together on Penn Action Dataset	72
4.4	Impact of Estimated Body Joints + Trajectories Versus Ground-Truth Body Joints + Trajectories for JDD and JTDD On Penn Action Dataset	74
5.1	Recognition Accuracy of Baselines and JTDPABRD with Various Configurations on Penn Action Dataset	87
5.2	Activity Recognition Accuracy for Fusing Multiple Layers for Penn Action Dataset	88
5.3	Precision, Recall, and F- Precision, Recall, and F-measure of Fusing Multiple Layers Together on Penn Action Dataset measure of Fusing Multiple Layers Together on Penn Action Dataset	89
5.4	Impact of Estimated Body Joints + Trajectories versus GT Body Joints + Trajectories for Different Methods on Penn Action Dataset	91
6.1	Recognition accuracy (%) of sources and JTDPAHBRD with different settings on Penn action dataset	102

Table No	Title	Page No
6.2	Recognition accuracy (%) of aggregating JTDPAHBRDs from different units on penn action dataset	103
6.3	Precision, Recall, and F-measure of Fusing Multiple Layers Together on Penn Action Dataset	104
6.4	Effect of extracted joints + trajectories vs. GT joints + trajectories for proposed and existing approaches on Penn action dataset	106
7.1	Recognition Rate (%) of Sources and JTDGPAHBRD with Distinct Settings on Penn Action Database	117
7.2	Precision, Recall, and F-measure of Fusing Multiple Layers Together on Penn Action Dataset	118
7.3	Effect of Obtained Primitive Geometries + Trajectories vs. GT Geometries + Trajectories from conv5b for Various HAR Frameworks on Penn Action Database	121
8.1	Recognition Accuracy (%) of Sources and JTDGPAHBRD-GCN with Different Alignments on PAD	131
8.2	Recognition Accuracy (%) of JTDGPAHBRD-GCN by Fusing Different Layers for PAD	132
8.3	Precision, Recall, and F-measure of Fusing Multiple Layers Together on Penn Action Dataset	133
8.4	Effect of Extracted GTST vs. Ground-truth GTST for Different HAR Models on PAD	136
9.1	Performance Analysis of Accuracy of Existing and Proposed HAR Models	139

LIST OF FIGURES

Figure No	Title	Page No
1.1	Variations and similarity in feature space	4
1.2	Picture with different backgrounds	4
1.3	Action frames for long-distance video and low-quality videos	5
1.4	Action videos with different illuminations	6
1.5	Types of Human Activities	7
1.6	Types of human activity recognition	8
1.7	Action based activities	11
1.8	Overview of Action Based Human Action Recognition	11
1.9	Motion-based activities, such as path tracking, asset tracking, and recognizing movement in office environments.	14
1.10	Human Computer Interaction	17
3.1	Structure of the of Proposed Research	57
3.2	Examples from the Penn Action dataset for a sequence of frames	60
4.1	Architecture of C3D Network	63
4.2	Results for Extraction of Body Joints and Trajectory Points	70
4.3	Recognition Accuracy of Fusing JTDD from Multiple Layers together on Penn Action Dataset	71
4.4	Recognition precision of Fusing JTDD from Multiple Layers together on Penn Action Dataset	72
4.5	Recognition recall of Fusing JTDD from Multiple Layers together on Penn Action Dataset	73
4.6	Recognition F-measure of Fusing JTDD from Multiple Layers together on Penn Action Dataset	73

Figure No	Title	Page No
4.7	Impact of Estimated Body Joints + Trajectories versus Ground-Truth Body Joints + Trajectories for JDD and JTDD on Penn Action Dataset	74
5.1	Block Diagram of JTDPABRD based HAR System	78
5.2	Block Diagram of Two-stream Bilinear C3D with PABRNN-based Feature Aggregation Method	80
5.3	Feature Vector Representation with PABRNN Framework	81
5.4 (a)	Sample Input Video Sequence	86
5.4 (b)	Image for Body Joints Extraction from Input Video Sequence	86
5.4 (c)	Results for Trajectory Points Extraction of Input Video Sequence	86
5.5	Recognition Accuracy of Fusing JTDPABRD from Multiple Layers together on Penn Action Dataset	88
5.6	Recognition Precision of Fusing JTDPABRD from Multiple Layers together on Penn Action Dataset	89
5.7	Recognition Recall of Fusing JTDPABRD from Multiple90Layers together on Penn Action Dataset90	
5.8	Recognition F-measure of Fusing JTDPABRD from Multiple Layers together on Penn Action Dataset	91
5.9	Impact of Estimated Body Joints + Trajectories versus GT Body Joints + Trajectories for Different Methods on Penn Action Dataset	92
6.1	Schematic representation of JTDPAHBRD-based HAR	97
6.2	Architecture of 2-stream bilinear C3D with PAHBRNN- based feature aggregation approach	97
6.3	Aggregated feature vector representation for entire human skeleton using PAHBRNN model	98
6.4(a)	Sample input video block	101
6.4 (b)	Outcomes of joint and trajectory coordinate extraction	101

Figure No	Title	Page No
6.5	Accuracy of aggregating JTDPAHBRD from different units on Penn action dataset	103
6.6	Precision of aggregating JTDPAHBRD from different units on Penn action dataset	104
6.7	Recall of aggregating JTDPAHBRD from different units on 105 Penn action dataset	
6.8	F-measure of aggregating JTDPAHBRD from different units on Penn action dataset	105
6.9	Influence of identified joints + trajectories vs. GT joints + trajectories for various approaches on Penn action dataset	106
7.1	Schematic representation of JTDGPAHBRD-based HAR	111
7.2	Structure of proposed 2-stream bilinear C3D network for HAR	114
7.3	Input image and its corresponding skeleton image for primitive geometry coordinates representation	116
7.4	Recognition rate of JTDGPAHBRD by concatenating different layers for penn action dataset	118
7.5	Recognition rate of Precision of JTDGPAHBRD by concatenating different layers for penn action dataset.	119
7.6	Recognition rate of Recall of JTDGPAHBRD by concatenating different layers for penn action dataset.	119
7.7	Recognition rate of F-measure of JTDGPAHBRD by concatenating different layers for penn action dataset.	120
7.8	Effect of Extracted GTST vs. Ground-truth GTST for Different HAR Models on PAD	121
8.1	Overall Pipeline of the Study	125
8.2	Structure of proposed JTDGPAHBRD-GCN Model Video Descriptor Generation	129
8.3(a)	Input frame	130
8.3 (b)	corresponding skeleton image	131

Figure No	Title	Page No
8.4	Recognition Accuracy of JTDGPAHBRD-GCN on PAD	133
8.5	Recognition of Precision of JTDGPAHBRD-GCN on PAD	134
8.6	Recognition of Recall of JTDGPAHBRD-GCN on PAD	134
8.7	Recognition of F-measure of JTDGPAHBRD-GCN on PAD	135
8.8	Effect of Extracted GTST vs. Ground-truth GTST for Different HAR Models on PAD	136
9.1	Overall Comparison of proposed method	139
9.2	Overall Comparison of precision of proposed method	140
9.3	Overall Comparison of recall of proposed method	141
9.4	Overall Comparison of F-measure of proposed method	141

LIST OF ABBREVIATION

1D-CNN	1-D convolutional neural networks
2T-GCN	Two-task graph convolutional network
3D	Three dimensions
3D-CNN	3D deep Convolutional Neural Network
AAL	Ambient Assisted Living
AMC-CNN	A multi-channel convolutional neural network
Bi-GRU	Bidirectional-Gated Recurrent Unit
BLSTM	Bidirectional long short-term memory
BPAN	Bilinear Pooling and Attention Network
BRNN	Bidirectional Recurrent Neural Network
C2LSTM	Correlational Convolutional LSTM
C3D	Convolutional 3D network
CGFA	Convolution Gated Fusion Algorithm
CMFA	Convolution Memory Fusion Algorithm
CNN-IMU	CNN- inertial measurement unit
CNN-LSTM	convolutional neural network long short-term memory network
CNNs	Convolutional Neural Networks
CRFs	Conditional Random Fields
CSI	Channel State Information
DAML	Deep Appearance and Motion Learning
DCNN	Deep Convolutional Neural Network
DFT	Discrete Fourier Transform
Dis	Dynamic Images
DL	Deep Learning

DNN	Deep Neural Network
DRNN	deep recurrent neural networks
E2EDLF	End-To-End Deep Learning Framework
EE	Energy Expenditure
ELM	Extreme Learning Machine
EMOD	Efficient motion detection
FCL	Fully Connected Layer
FCN	Fully Convolutional Network
FN	False Negative
FP	False Positive
GAF	Gramian angular field
GCN	Graph Convolutional Network
GMM	Gaussian Mixture Model
GPS	Global Positioning System
GRU	Gated recurrent units
HAR	Human Action Recognition
НСІ	Human-Computer Interaction
HHIs	Human-to-Human Interactions
HLA	Hybrid Learning Algorithms
НММ	Hidden Markov model
HOG	Histogram of Gradient
HSMM	Hidden Semi-Markov Models
Hyper-GNN	Hyper-Graph Neural network
ICA	Independent Components Analysis
JCA	joint-wise channel attention

JDD	Joints-pooled 3D-Deep Convolutional Descriptors
JTDD	Joints and Trajectory-pooled 3D-Deep Convolutional Descriptor
JTDGPAHBRD	JTD-Geometric and PAHBRD
JTDGPAHBRD- GCN	Graph Convolutional Network with the Joints and Trajectory-pooled 3D-Deep Positional Attention - based Hierarchical Bidirectional Recurrent Convolutional Descriptors
JTDPAHBRD	Joints and Trajectory-pooled 3D-Deep Positional Attention -based Hierarchical Bidirectional Recurrent Convolutional Descriptors
JTPADBRD	Joints and Trajectory-pooled 3D-Deep Positional Attention-based Bidirectional Recurrent Convolutional Descriptor
KF	Kalman Filter
LCRF	Linear Conditional Random Field
LL	Left Leg
LR	Left Arm
LSTM	Long Short-Term Memory
Mdk-ResNet	multi-dilated kernel residual
METs	Metabolic Equivalents
ML	Machine Learning
MLP	multilayer-perceptron
MRDGCN	Manifold Regularized Dynamic Graph Convolutional Network
NB	Naive Bayes
РА	Physical Activity
PAD	Penn Action Data Set
PABRNN	Positional Attention-based Bidirectional Recurrent Neural Network

PABRNN	PA-Bidirectional RNN
PAHBRNN	Positional Attention-based Hierarchical BRNN
PCA	Principal Component Analysis
RA	Right Arm
Res-Bidir- LSTM	Residual-Bidirectional-LSTM
RFID	Radio frequency identification
RFIG	Recognize Fluid Intake Gestures
RL	Right Leg
RNN	Recurrent Neural Network
SEMN	Skeleton Edge Motion Networks
SGP	structure-based graph pooling
SPI	Skeletal Pose Image
SRU	Simple recurrent units
STDDCN	Spatio-Temporal Distilled Dense-Connectivity Network
STSIs	Skeletal Trajectory Shape Images
SVM	Support vector machine
Sybio-GNN	Symbiotic GNN
TD	Temporal Dropout
ТК	Trunk
TN	True Negative
TP	True Positive
VC	View Conversion
VD	Video Descriptor
VRNN	Vanilla RNNs

LIST OF SYMBOLS

$\overline{(\cdot)}$	Rounding operator
$\left(x_{c}^{i},y_{c}^{i},t_{c}^{i} ight)$	Point coordinates in the i^{th} 3D convolutional feature maps
(x_v, y_v, t_v)	Body joint coordinates from the original video sequence
$\left(r_{x}^{i},r_{y}^{i},r_{t}^{i} ight)$	Size ratio of the i^{th} 3D convolutional feature maps
(l_v, m_v, n_v)	Trajectory point coordinates in the original video sequence
(s_i^x)	X —axis components of stride
(k_i^x)	Kernel size
Ν	Total number of body joints
0	Total number of trajectory points in each frame
L	Total duration of the video series
k	Total number of frames in the videos
l	Length
h	Height
w	Weight
${\cal P}$	$M \times C$ matrix
\mathcal{B}^{T}	Transposition of \mathcal{B}
W	Matrix of parameters
е	Gradient of the loss function
$rac{\partial e}{\partial \mathcal{A}}$	Back-propagation
w	Weight of the training sequences x_i
<i>C</i> > 0	Penalty parameter
$\ \cdot\ _1$	l ₁ -norm
F	Original feature vector

Fa	Aggregated feature vector
d	Distance between the original and aggregated features
σ	Parameter that constrains the propagation scope
Kernel(d)	Guidance linked to the distance of d based on the kernel
Ν	Normal density with a predicted value of $Kernel(d)$
σ'	Standard variance
G(i,d)	Guidance related to the distance of d in the i^{th} position
Cj	Distance count vector
Aj	Aggregated guidance vector for the feature located at location j
$c_j(d)$	Number of body joint and trajectory point features
F	Body joint location or a trajectory point feature in F
pos(f)	Collection of f 's occurrence positions across clips
[·]	Indictor function that equals 1 if the criteria is met and 0 otherwise
l	Length of the video sequence
h_j	Hidden vector at position <i>j</i> based on BRNN
Aj	Aggregated position-aware guidance vector
tanh	Hyperbolic tangent function
v	Global vector
v^{T}	Transpose vector
d	Difference between the actual and averaged feature vectors
σ	Variable that controls the range of the propagation
G	Guidance base matrix
cj	Distance count vector
Aj	Aggregated guidance vector for the feature at position <i>j</i>

f	Body joint location or a trajectory point feature in F
pos(f)	Set of f 's occurrence positions throughout all clips
[·]	Indication function
(α_j)	Attentive weight
F _a	Final aggregated feature vector for the entire human skeleton
h_j	Hidden vector at position <i>j</i>
Aj	Aggregated position-aware guidance vector generated
$e(\cdot)$	Score function
${ ilde e}_k$	Transformed vector of e_k
$ ilde{Y}$	Tensor of edges after conversion
×	3D cross product
Co(R)	Cofactor matrix of R
Т	Transpose of the inverse <i>R</i>
Ĩ	Tensor of surface standard vectors after conversion
α,β,γ	<i>x</i> , <i>y</i> , <i>z</i> rotation angles
K	Kernel patch
m	Name for this element
8	Matrix multiplication
$p(\cdot;\pi)$	pdf with a specific π
r_1	Threshold chosen at random between 0 and 1
$lpha_n^i$	New instance
μ	Mean
Σ	Covariance
ϵJ	Noise term