
62

CHAPTER IV

BODY JOINTS AND TRAJECTORY GUIDED 3D DEEP

CONVOLUTIONAL DESCRIPTORS FOR HUMAN ACTIVITY

IDENTIFICATION

Among the many exciting areas of study in computer vision, action recognition

in video is at the forefront. Videos, in contrast to still photos, which only include spatial

information, are spatio-temporal streams in three dimensions (3D). Much research has

focussed on how to take into consideration both appearance and motion data for video-

based action recognition. Cao et al. (2016) used a 3D deep Convolutional Neural

Network (3D-CNN) to aggregate convolutional activations into discriminative

descriptors based on the joint positions, demonstrating HAR with JDD. Using this

procedure, the video was cut into equal-length segments. In order to further analyze the

video, a three-dimensional convolutional feature map was generated. After that, they

combined the activations at each matching spot and the combined activations into a

single clip. The approach was then used to pool the attributes of all the clips and

normalize them. To complete the classification process, a linear SVM was used.

Further, the positions of the body's joints were identified using either manual

annotation or a commercially available skeleton estimate method (Cao et al., 2017).

Motivated by the need to concurrently learn direction from the body's joints and collect

spatiotemporal data, researchers developed a proposed model. The body-joint guided

feature pooling was achieved using a sampling strategy after modeling the pooling

process as a bilinear product operation. It was however extremely expensive to

calculate the positions of body joints from a large dataset using the skeleton estimation

approach, and it took a significant amount of time to perform. Furthermore, it was

imperative that recognition accuracy be dramatically improved.

To improve recognition accuracy, this procedure combines an optical flow

extraction with a bilinear model with two streams. By employing this technique, optical

flows can be extracted automatically. Optical flows are locations along trajectories

connecting body joint in 2 videos. The bilinear product of two C3D streams allows for

the simultaneous capture of spatiotemporal information, feature extraction, and the

63

generation of pooling descriptors for video sequences. At last, a linear support vector

machine is used to classify the human-trained video descriptors.

4.1 PROPOSED METHODOLOGY

By monitoring body joints with optical flow, or trajectory points in the video

sequence, a two-stream bilinear C3D network model is used to automatically predict

the spatiotemporal critical places in 3D convolutional feature maps. Next, a general

bilinear formulation is employed to do forward and inverse computations for this

model.

4.1.1 Joints and Trajectory-Pooled 3D Deep Convolutional Descriptors

The Fig. 4.3 architecture of the C3D network is used in this process.

Figure 4.1. Architecture of C3D Network

Parenthesis denote the total number of convolutional filters. After each

convolutional () layer, a ReLu layer is added. With stride and padding of 1 in

both dimensions, the 3D convolution kernel is (), where is the

temporal depth and k is the spatial size. Except for pool1, which uses a

pooling kernel, all other kernels are . C3D accepts a 20-frame clip as input

and scales each frame down to pixels (width×height).

4.1.1.1 Body Joints and Optical Flow Mapping Schemes:

 Methods for JTDD that use 3D convolutional feature maps to map body joints

and optical flow to points are compared and contrasted here. Using a ratio scaling

technique, in which the output of the network is multiplied by the input in both space

and time, the original video frame's body joint and optical flow coordinates can be

converted into feature maps.

𝑐𝑜
𝑛
𝑣

𝑎

 (
6

4
)

𝑐𝑜
𝑛
𝑣

𝑎

 (
1

2
8

)

v

(2

5
6

)

v

(

)

v
4

(5
1

2
)

v
4

 (
5

1
2

)

v

(5

1
2

)

v

 (

5
1

2
)

f
7

 (
4
0
9

)

f

(4

0
9

)

𝑝
𝑜
𝑜
𝑙

𝑝
𝑜
𝑜
𝑙

𝑝
𝑜
𝑜
𝑙

𝑝
𝑜
𝑜
𝑙4

𝑝
𝑜
𝑜
𝑙

𝑠𝑜
𝑓
𝑡𝑚

𝑎
𝑥

64

(

) .(

)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ / (4.1)

(

) ((

)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (
)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (

)̅̅ ̅̅ ̅̅ ̅̅ ̅̅) (4.2)

Point coordinates in the 3D convolutional feature maps are represented by

(

), while the rounding operator in (4.1) and (4.2) is represented by ()̅̅ ̅. where

() are the body joint coordinates from the original video sequence and

(

) are the size ratios of the 3D convolutional feature maps to the video clip.

Similarly, () are the original video sequence's trajectory point coordinates,

while (

) are the size ratios of the 3D convolutional feature maps,

respectively.

 The exact location of the point on the convolutional feature map that

corresponds to the body joint and trajectory point is determined by considering the

kernel size, stride, and padding of each layer. This method is known as coordinate

mapping. To calculate the mapping connection layer by layer between points. Suppose

 is a point on the layer, and its coordinates are () and (),

respectively. Point is found by projecting onto the next layer deeper. Following

is the notation for the coordinate mapping from the convolutional layer to the

() pooling layer:

 .

/ (4.3)

 (

) (4.4)

 .

/ (4.5)

 (

) (4.6)

 .

/ (4.7)

 .

/ (4.8)

65

All of these formulas rely on the coordinates of the layer's stride (
),

kernel size (
), and padding (

). Similar considerations are given to the

 and , dimensions.

 For ReLU layers, the coordinate mapping relationship is maintained as the size

of the feature maps is not changed during the operations. The formula for this mapping

between coordinate systems is as follows:

() () (4.9)

() () (4.10)

The coordinate mapping connection between feature maps and the video

sequence cannot be determined without considering the layers that came before it.

Following the application of the values of C3D kernel sizes, strides, and paddings into

(4.3)-(4.5) and (4.9), the following relationship is created between point coordinates in

the convolutional feature maps and the locations of body joints in the input video

sequence:

(

)

 .

/ (4.11)

 .

/ (4.12)

 The following description of the relationship between the coordinates of points

in the convolutional feature map and the points of trajectories in the input video

sequence can be tweaked by repeatedly substituting different values for the kernel size,

the stride length, and the padding length into equations (4.6)-(4.8), and (4.10).

(

)

 .

/ (4.13)

 .

/ (4.14)

4.1.1.2 Aggregation of Body Joint Points and Optical Flow

The video descriptor is utilized for categorization after the obtained features of

frames throughout time have been aggregated. specified that C3D takes frames from

the specified video as input, this makes sense. Points in 3D feature maps can be

localized using body joints and trajectory points in video frames, hence revealing the

66

best spots to pool. Each body joint and trajectory point in a video frame is represented

as a -dimensional feature vector, where is the number of feature map channels. -

dimensional feature vector

 for the frame of the clip is the outcome of a

pooling operation directed by the i-th body joint. In a similar vein,

 represents the -

dimensional feature vector gathered under the guidance of the trajectory point at the

 frame of the clip.

These methods are applied to the combined feature vectors from each frame of a

video in order to provide a descriptor for the video. To create a representation of a

frame, one joins together the feature vectors from that frame's pool. This characteristic

of the dimensions is expressed as:

 [

] (4.15)

In the equation (4.15), is the total number of body joints, is the total

number of trajectory points in each frame, and is the total duration of the video series.

Then, a video descriptor is constructed normalization by averaging the frame

representations * +, where is the total amount of video clips that

have been counted. This method of aggregating JTDD yields the

dimension.

Another method of data aggregation involves transforming the feature vectors

of each body joint and trajectory point in a single frame into a dimensional

representation.

 [

] (4.16)

 After that, representations *

 + within the same frame

define that frame. It uses max + min pooling, where max + min pooling is defined as

choosing the maximum value and the minimum value of each feature dimension, to

merge these representations into a frame descriptor. There are a total of frames.

Finally, a video descriptor is constructed from a max + min pooled and normalized

set of frame descriptors.

67

4.1.2 Two-Stream Bilinear C3D Model using Body Joints and Optical Flow

Selecting activations on convolutional feature maps at the relevant sites of body

joints and trajectory points is equivalent to assigning hard weights to the activations,

and this is how JTDD's novel body joint and optical flow driven feature pooling is

implemented. An individual convolutional feature map is created for each body joint

and trajectory point in a given video sequence, and then all of that information is

integrated into a single heat map with the same spatiotemporal dimensions as the

feature maps. The dimensions are written as , where represents length,

represents height, and represents weight. Each point is represented by a 1 in the body

joint location and trajectory, whereas all other positions are represented by 0. Pooling

on a single feature map guided by the heat map of a single body joint and trajectory

point can be described as a pixel-wise product between the 3D feature map and the 3D

heat map, followed by a sum over all pixels.

JTDD makes use of () heat maps. The original

 heat maps are then transformed into a 2D matrix with rows and

columns. C3D data is converted into a 2D matrix with rows and

columns using the feature mapping. The resulting expression for the

bilinear product is as follows:

 (4.17)

In equation (4.17), is an matrix and is the transposition of . All

the values in the product matrix are strung together as a long vector to achieve

functionality similar to JTDD for video sequence. Similarly to JTDD, the feature can be

expressed as representations in dimensions.

It is possible that it will automatically zero in on discriminative regions of

feature maps using a 3D convolutional neural network (CNN) that has been pre-trained

utilizing the guidance of body joint locations and trajectory data. After convolutional

layer 5b () and fully connected () layers, a C3D without ReLU is used to

regress the corresponding points' heat maps. Training sigmoid cross entropy loss, on a

pixel-by-pixel basis, is defined as

∑ ∑ ∑ ∑ (

 ̂
 (

) (̂
))

 (4.18)

68

In equation (4.18), ̂
 is the ground-truth heat map value of the mth channel at

location () and are the indices in width, height, and length, and
 is the

sigmoid value of conv5b's output at location () of the channel. For every

body joint and trajectory node, the 3D attention model creates heat maps of soft weight.

In order to generate video sequence descriptors, the convolutional feature maps from

the original C3D are combined with the bilinear product using heat maps.

After that, the body's joint positions and trajectories are used to train a two-

stream bilinear C3D model that automatically captures the spatiotemporal features and

provides guidance. Both the attention stream (which employs the parameters from the

pre-trained 3D attention model) and the feature stream (which employs the layer

from the original C3D) are combined using the bilinear product. The whole network is

trained using the class label as input. Forward and inverse calculations using a general

bilinear product used in this model are presented. The following is an explicit formula

for computing a general form of the bilinear product:

 (4.19)

The network is given a matrix of parameters, denoted by , of the form

 . In contrast to (4.17), it is not required

that and have the same number of columns here. In addition, is used to learn

additional statistical properties shared by and . With its two independent streams,

attention, feature extraction, keypoint pooling, and classification are all seamlessly

integrated into this bilinear C3D network model. Using softmax loss and the provided

class label, the complete network may be trained from the ground up. Using back

propagation, it can calculate the bilinear layer's gradients as follows:

 (4.20)

 .

/

 (4.21)

 (4.22)

As the loss function is back-propagated, its gradient with respect to the

activation function is indicated by

. With the two-stream bilinear model, video

69

descriptors are generated by combining trajectory points and body joint locations.

Finally, video descriptors are classified using linear support vector machines (Fan et al.,

2008) to facilitate accurate action detection from video sequences. The SVM is often

built as a hyperplane in an infinite-dimensional metric space. The hyperplane with the

biggest functional margin (distance to nearest training sequences of any class) yields

the most accurate HAR. Where represents the video descriptors (instances) and

represents the labels (-1,+1), the training dataset is represented as a collection of

instance-label pairs () * +. For each class, the

following unconstrained optimization problem must be solved in order to determine the

hyperplane with the highest margin.

 ∑ ()

 (4.23)

The weight of the training sequences is denoted by in (4.23), while the

penalty parameter is denoted by 0 . Human actions can be identified once this

optimization challenge is solved.

4.2 RESULTS AND DISCUSSIONS

 Matlab2017b was used to evaluate the proposed JTDD model's recognition

accuracy in contrast to that of the baseline JDD model. In order to measure

effectiveness, the Penn Action dataset's 2326 video sequences from 15 action classes

are used. The average number of annotated body joints each frame is 13, but there are

videos in which not all of the marked body joints are in the frame or visible. The

suggested model is trained on one half of the dataset, while the other half is used for

testing. In order to train an attention model, the dataset is split into a training set of 84

and a testing set of 16 occurrences. The videos are compiled from a wide range of

online sources. There are typically between 50 and 100 frames in a video. C3D

features, points on a trajectory, and body joint coordinates are employed as starting

points. As a result, they assess JTDD with these enhancements and compare it to other

pooling schemes. The recognition accuracy is defined as the percentage of accurate

identifications (TPs) in comparison to the total number of cases. Calculated as:

 (4.24)

70

To clarify, refers to a False Positive result and to a False Negative one. Joint

and trajectory point extraction is shown in Fig. 4.4.

a). Input video sequence

b). Body joints extraction

c). Trajectory points extraction

Figure 4.2. Results for Extraction of Body Joints and Trajectory Points

Table 4.1 displays the outcomes on the Penn Action dataset.

Table 4.1. Recognition Accuracy of Baselines and JTDD with Different

Configurations on Penn Action Dataset

Concatenate

all the

activations

JTDD Ratio

Scaling

(1×1×1)

JTDD

Coordinate

Mapping

(1×1×1)

JTDD Ratio

Scaling

(3×3×3)

JTDD

Coordinate

Mapping

(3×3×3)

Joint

coordinates +

trajectory

coordinates

0.6120 - - - -

 7 0.7211 - - - -

 0.7368 - - - -

 0.7052 0.8014 0.8599 0.8086 0.8367

 0.6305 0.7583 0.7834 0.7533 0.7628

 4 0.5324 0.7697 0.7601 0.7847 0.7993

 0.4297 0.7136 0.6845 0.7021 0.7014

71

 In Table 4.1, the first column displays the recognition accuracies achieved by

employing body joint coordinates with trajectory coordinates as a feature, as well as

C3D features. Using only the locations of body joints and optical flow (in the form of

trajectory points) is shown to be wasteful in this research. There is an improvement in

discriminative power when using C3D features, which concatenate all activations in a

given layer into a single long vector. 7 has somewhat lower recognition accuracy

than . Since the original C3D on Penn Action dataset does not fine-tune, the second

fc layer is probably more suitable for the classification of the pre-trained dataset.

Pooling experiments at different 3D layers for JTDD are presented, as are body

joint and trajectory point mapping strategies.

In Table 4.2, the benefits of body joint and trajectory point driven pooling are

shown to be superior to those of C3D features. Further, JTDDs across several

layers are pooled together to test for mutual compensation. Table 4.2 and Fig. 4.5

display the outcomes of several late fusion combinations with SVM scores on the Penn

Action dataset.

Table 4.2. Recognition Accuracy of Fusing JTDD from Multiple Layers together

on Penn Action Dataset

Fusion Layers

JDD JTDD JDD JTDD JDD JTDD

Accuracy 0.855 0.867 0.981 0.987 0.860 0.873

Figure. 4.3 Recognition Accuracy of Fusing JTDD from Multiple Layers together

on Penn Action Dataset

72

Figure 4.3 shows that combining JTDDs from multiple layers almost likely

improves recognition results. When JTDDs from conv5b and conv4b are used together,

recognition performance is much improved. Accuracy improves as more qualities that

complement one another are fused together.

 The results of combining JTDD from different layers on the Penn action dataset

are shown in Table 4.3 in terms of precision, recall, and f-measure.

Table 4.3. Precision, Recall, and F-measure of Fusing JTDD from Multiple Layers

Together on Penn Action Dataset

Performance

Metrics

Fusion Layers

JDD JTDD JDD JTDD JDD JTDD

Precision 0.839 0.855 0.968 0.975 0.841 0.856

Recall 0.844 0.861 0.976 0.982 0.848 0.869

F-measure 0.842 0.858 0.972 0.979 0.845 0.863

Figure. 4.4 Recognition precision of Fusing JTDD from Multiple Layers together

on Penn Action Dataset

0.75

0.8

0.85

0.9

0.95

1

conv5b+fc6 conv5b+conv4b conv5b+conv3b

P
re

ci
si

o
n

JDD JTDD

73

Figure 4.4 shows that combining JTDDs from multiple layers almost likely improves

recognition results. When JTDDs from conv5b and conv4b are used together,

recognition performance is much improved. Precision improves as more qualities that

complement one another are fused together.

Figure. 4.5 Recognition recall of Fusing JTDD from Multiple Layers together on

Penn Action Dataset

Figure 4.5 shows that combining JTDDs from multiple layers almost likely improves

recognition results. When JTDDs from conv5b and conv4b are used together,

recognition performance is much improved. Recall improves as more qualities that

complement one another are fused together.

Figure. 4.6 Recognition F-measure of Fusing JTDD from Multiple Layers together

on Penn Action Dataset

0.75

0.8

0.85

0.9

0.95

1

conv5b+fc6 conv5b+conv4b conv5b+conv3b

R
ec

a
ll

JDD JTDD

0.75

0.8

0.85

0.9

0.95

1

conv5b+fc6 conv5b+conv4b conv5b+conv3b

F
-m

ea
su

re

JDD JTDD

74

Figure 4.6 shows that combining JTDDs from multiple layers almost likely

improves recognition results. When JTDDs from conv5b and conv4b are used together,

recognition performance is much improved. F-measure improves as more qualities that

complement one another are fused together.

Table 4.4 and Figure 4.3 show the results of comparing the use of estimated

versus ground-truth body joints and trajectory points for evaluating JDD and JTDD on

the Penn Action dataset.

TABLE 4.4. Impact of Estimated Body Joints + Trajectories Versus Ground-

Truth Body Joints + Trajectories for JDD and JTDD On Penn Action Dataset

Method GT Estimated Difference

JDD () 0.819 0.777 0.042

JTDD () 0.835 0.810 0.025

Figure. 4.7 Impact of Estimated Body Joints + Trajectories versus Ground-Truth

Body Joints + Trajectories for JDD and JTDD on Penn Action Dataset

Figure 4.7 illustrates JTDD's top performance on the Penn Action Dataset

compared to other methods. When using both ground-truth joints and points and

anticipated body joints and trajectory points, JTDD improves on JDD by roughly 10%.

0

0.2

0.4

0.6

0.8

1

1.2

GT Estimated Difference

V
a
lu

e

JTDD (conv5b) JTDRD(convb)

75

4.3 CHAPTER SUMMARY

Using the two-stream bilinear model, i.e. JTDD, this chapter optimizes HAR by

extracting both body joints with the optical flow. In this approach, a C3D network is

fed two streams of data, and a bilinear product is used to extract a trajectory point for

each body joint location. As a result, the spatiotemporal features of video sequences

can be created jointly using pooled descriptors. The class label from the bilinear C3D

model with two input streams is then combined with the video descriptors in a full-

network training approach. In order to classify the video descriptors used in HAR, the

linear support vector machine is employed. Experiments demonstrate that the suggested

JTDD model's recognition accuracy improves to 0.987 on the Penn Action dataset by

merging JTDDs from conv5b and conv4b with GT body joints and trajectory points.

