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CHAPTER IV 

BODY JOINTS AND TRAJECTORY GUIDED 3D DEEP 

CONVOLUTIONAL DESCRIPTORS FOR HUMAN ACTIVITY 

IDENTIFICATION 

Among the many exciting areas of study in computer vision, action recognition 

in video is at the forefront. Videos, in contrast to still photos, which only include spatial 

information, are spatio-temporal streams in three dimensions (3D). Much research has 

focussed on how to take into consideration both appearance and motion data for video-

based action recognition. Cao et al. (2016) used a 3D deep Convolutional Neural 

Network (3D-CNN) to aggregate convolutional activations into discriminative 

descriptors based on the joint positions, demonstrating HAR with JDD. Using this 

procedure, the video was cut into equal-length segments. In order to further analyze the 

video, a three-dimensional convolutional feature map was generated. After that, they 

combined the activations at each matching spot and the combined activations into a 

single clip. The    approach was then used to pool the attributes of all the clips and 

normalize them. To complete the classification process, a linear SVM was used. 

Further, the positions of the body's joints were identified using either manual 

annotation or a commercially available skeleton estimate method (Cao et al., 2017). 

Motivated by the need to concurrently learn direction from the body's joints and collect 

spatiotemporal data, researchers developed a proposed model. The body-joint guided 

feature pooling was achieved using a sampling strategy after modeling the pooling 

process as a bilinear product operation. It was however extremely expensive to 

calculate the positions of body joints from a large dataset using the skeleton estimation 

approach, and it took a significant amount of time to perform. Furthermore, it was 

imperative that recognition accuracy be dramatically improved. 

To improve recognition accuracy, this procedure combines an optical flow 

extraction with a bilinear model with two streams. By employing this technique, optical 

flows can be extracted automatically. Optical flows are locations along trajectories 

connecting body joint in 2 videos. The bilinear product of two C3D streams allows for 

the simultaneous capture of spatiotemporal information, feature extraction, and the 
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generation of pooling descriptors for video sequences. At last, a linear support vector 

machine is used to classify the human-trained video descriptors.  

4.1 PROPOSED METHODOLOGY 

By monitoring body joints with optical flow, or trajectory points in the video 

sequence, a two-stream bilinear C3D network model is used to automatically predict 

the spatiotemporal critical places in 3D convolutional feature maps. Next, a general 

bilinear formulation is employed to do forward and inverse computations for this 

model. 

4.1.1 Joints and Trajectory-Pooled 3D Deep Convolutional Descriptors 

The Fig. 4.3 architecture of the C3D network is used in this process. 

 

Figure 4.1. Architecture of C3D Network 

Parenthesis denote the total number of convolutional filters. After each 

convolutional (    )  layer, a ReLu layer is added. With stride and padding of 1 in 

both dimensions, the 3D convolution kernel is      (     ), where   is the 

temporal depth and k is the spatial size. Except for pool1, which uses a       

pooling kernel, all other kernels are      . C3D accepts a 20-frame clip as input 

and scales each frame down to          pixels (width×height).   

4.1.1.1 Body Joints and Optical Flow Mapping Schemes: 

 Methods for JTDD that use 3D convolutional feature maps to map body joints 

and optical flow to points are compared and contrasted here. Using a ratio scaling 

technique, in which the output of the network is multiplied by the input in both space 

and time, the original video frame's body joint and optical flow coordinates can be 

converted into feature maps. 
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Point coordinates in the     3D convolutional feature maps are represented by 

(  
    

    
 ), while the rounding operator in (4.1) and (4.2) is represented by ( )̅̅ ̅. where 

(        ) are the body joint coordinates from the original video sequence and 

(  
    

    
 ) are the size ratios of the     3D convolutional feature maps to the video clip. 

Similarly, (        ) are the original video sequence's trajectory point coordinates, 

while (  
    

    
 ) are the size ratios of the     3D convolutional feature maps, 

respectively. 

 The exact location of the point on the convolutional feature map that 

corresponds to the body joint and trajectory point is determined by considering the 

kernel size, stride, and padding of each layer. This method is known as coordinate 

mapping. To calculate the mapping connection layer by layer between points. Suppose 

   is a point on the      layer, and its coordinates are (        ) and (        ), 

respectively. Point      is found by projecting    onto the next layer deeper. Following 

is the notation for the coordinate mapping from the     convolutional layer to the 

(   )    pooling layer: 
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All of these formulas rely on the   coordinates of the     layer's stride (  
 ), 

kernel size (  
 ), and padding (        

 ). Similar considerations are given to the 

        and  ,  dimensions. 

 For ReLU layers, the coordinate mapping relationship is maintained as the size 

of the feature maps is not changed during the operations. The formula for this mapping 

between coordinate systems is as follows: 

(              )  (        )                                                        (4.9) 

(              )  (        )                                                 (4.10) 

The coordinate mapping connection between feature maps and the video 

sequence cannot be determined without considering the layers that came before it. 

Following the application of the values of C3D kernel sizes, strides, and paddings into 

(4.3)-(4.5) and (4.9), the following relationship is created between point coordinates in 

the     convolutional feature maps and the locations of body joints in the input video 

sequence: 
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 The following description of the relationship between the coordinates of points 

in the     convolutional feature map and the points of trajectories in the input video 

sequence can be tweaked by repeatedly substituting different values for the kernel size, 

the stride length, and the padding length into equations (4.6)-(4.8), and (4.10). 
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4.1.1.2 Aggregation of Body Joint Points and Optical Flow 

The video descriptor is utilized for categorization after the obtained features of 

frames throughout time have been aggregated. specified that C3D takes frames from 

the specified video as input, this makes sense. Points in 3D feature maps can be 

localized using body joints and trajectory points in video frames, hence revealing the 
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best spots to pool. Each body joint and trajectory point in a video frame is represented 

as a   -dimensional feature vector, where   is the number of feature map channels.  -

dimensional feature vector   
   

 for the      frame of the      clip is the outcome of a 

pooling operation directed by the i-th body joint. In a similar vein,   
   

 represents the  -

dimensional feature vector gathered under the guidance of the     trajectory point at the 

    frame of the     clip.   

These methods are applied to the combined feature vectors from each frame of a 

video in order to provide a descriptor for the video. To create a representation of a 

frame, one joins together the feature vectors from that frame's pool. This characteristic 

of the         dimensions is expressed as: 
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   ]                                        (4.15) 

In the equation (4.15),   is the total number of body joints,   is the total 

number of trajectory points in each frame, and   is the total duration of the video series. 

Then, a video descriptor is constructed    normalization by averaging the frame 

representations *                +, where   is the total amount of video clips that 

have been counted. This method of aggregating JTDD yields the         

dimension.   

Another method of data aggregation involves transforming the feature vectors 

of each body joint and trajectory point in a single frame into a       dimensional 

representation. 
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   ]                                                    (4.16) 

 After that,   representations *  
   

    
   

      
   

 + within the same frame 

define that frame. It uses max + min pooling, where max + min pooling is defined as 

choosing the maximum value and the minimum value of each feature dimension, to 

merge these representations into a frame descriptor. There are a total of   frames. 

Finally, a video descriptor is constructed from a max + min pooled and    normalized 

set of   frame descriptors.    
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4.1.2 Two-Stream Bilinear C3D Model using Body Joints and Optical Flow 

Selecting activations on convolutional feature maps at the relevant sites of body 

joints and trajectory points is equivalent to assigning hard weights to the activations, 

and this is how JTDD's novel body joint and optical flow driven feature pooling is 

implemented. An individual convolutional feature map is created for each body joint 

and trajectory point in a given video sequence, and then all of that information is 

integrated into a single heat map with the same spatiotemporal dimensions as the 

feature maps. The dimensions are written as      , where   represents length,   

represents height, and   represents weight. Each point is represented by a 1 in the body 

joint location and trajectory, whereas all other positions are represented by 0. Pooling 

on a single feature map guided by the heat map of a single body joint and trajectory 

point can be described as a pixel-wise product between the 3D feature map and the 3D 

heat map, followed by a sum over all pixels. 

JTDD makes use of   (       ) heat maps. The original       

  heat maps are then transformed into a 2D matrix   with   rows and       

columns. C3D data is converted into a 2D matrix   with   rows and       

columns using the         feature mapping. The resulting expression for the 

bilinear product is as follows:    

                                                                                                               (4.17) 

In equation (4.17),   is an     matrix and    is the transposition of  . All 

the values in the product matrix   are strung together as a long vector to achieve 

functionality similar to JTDD for video sequence. Similarly to JTDD, the feature can be 

expressed as   representations in     dimensions.  

It is possible that it will automatically zero in on discriminative regions of 

feature maps using a 3D convolutional neural network (CNN) that has been pre-trained 

utilizing the guidance of body joint locations and trajectory data. After convolutional 

layer 5b (      ) and fully connected (  ) layers, a C3D without ReLU is used to 

regress the corresponding points' heat maps. Training sigmoid cross entropy loss, on a 

pixel-by-pixel basis, is defined as 

  
 

 
∑ ∑ ∑ ∑ (    

     ̂   
  (      

 )     (   ̂   
 )) 

   
 
   

 
   

 
         (4.18) 



68 
 

In equation (4.18),  ̂   
  is the ground-truth heat map value of the mth channel at 

location (     ) and       are the indices in width, height, and length, and     
  is the 

sigmoid value of conv5b's output at location (     ) of the     channel. For every 

body joint and trajectory node, the 3D attention model creates heat maps of soft weight. 

In order to generate video sequence descriptors, the convolutional feature maps from 

the original C3D are combined with the bilinear product using heat maps.     

After that, the body's joint positions and trajectories are used to train a two-

stream bilinear C3D model that automatically captures the spatiotemporal features and 

provides guidance. Both the attention stream (which employs the parameters from the 

pre-trained 3D attention model) and the feature stream (which employs the      layer 

from the original C3D) are combined using the bilinear product. The whole network is 

trained using the class label as input. Forward and inverse calculations using a general 

bilinear product used in this model are presented. The following is an explicit formula 

for computing a general form of the bilinear product: 

                                                                                                    (4.19) 

The network is given a matrix of parameters, denoted by  , of the form 

                              . In contrast to (4.17), it is not required 

that   and   have the same number of columns here. In addition,   is used to learn 

additional statistical properties shared by   and  . With its two independent streams, 

attention, feature extraction, keypoint pooling, and classification are all seamlessly 

integrated into this bilinear C3D network model. Using softmax loss and the provided 

class label, the complete network may be trained from the ground up. Using back 

propagation, it can calculate the bilinear layer's gradients as follows: 
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As the loss function   is back-propagated, its gradient with respect to the 

activation function   is indicated by 
  

  
. With the two-stream bilinear model, video 



69 
 

descriptors are generated by combining trajectory points and body joint locations. 

Finally, video descriptors are classified using linear support vector machines (Fan et al., 

2008) to facilitate accurate action detection from video sequences. The SVM is often 

built as a hyperplane in an infinite-dimensional metric space. The hyperplane with the 

biggest functional margin (distance to nearest training sequences of any class) yields 

the most accurate HAR. Where    represents the video descriptors (instances) and    

represents the labels (-1,+1), the training dataset is represented as a collection of 

instance-label pairs (     )                  *     +. For each class, the 

following unconstrained optimization problem must be solved in order to determine the 

hyperplane with the highest margin.  

    
 

 
     ∑  (       )

 
                                                            (4.23) 

The weight of the training sequences    is denoted by   in (4.23), while the 

penalty parameter is denoted by   0  . Human actions can be identified once this 

optimization challenge is solved.    

4.2 RESULTS AND DISCUSSIONS 

 Matlab2017b was used to evaluate the proposed JTDD model's recognition 

accuracy in contrast to that of the baseline JDD model. In order to measure 

effectiveness, the Penn Action dataset's 2326 video sequences from 15 action classes 

are used. The average number of annotated body joints each frame is 13, but there are 

videos in which not all of the marked body joints are in the frame or visible. The 

suggested model is trained on one half of the dataset, while the other half is used for 

testing. In order to train an attention model, the dataset is split into a training set of 84 

and a testing set of 16 occurrences. The videos are compiled from a wide range of 

online sources. There are typically between 50 and 100 frames in a video. C3D 

features, points on a trajectory, and body joint coordinates are employed as starting 

points. As a result, they assess JTDD with these enhancements and compare it to other 

pooling schemes. The recognition accuracy is defined as the percentage of accurate 

identifications (TPs) in comparison to the total number of cases. Calculated as: 

         
     

           
                                                          (4.24) 
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To clarify,    refers to a False Positive result and    to a False Negative one. Joint 

and trajectory point extraction is shown in Fig. 4.4. 

a). Input video sequence 

  
b). Body joints extraction 

  
c). Trajectory points extraction 

  
Figure 4.2. Results for Extraction of Body Joints and Trajectory Points 

Table 4.1 displays the outcomes on the Penn Action dataset. 

Table 4.1. Recognition Accuracy of Baselines and JTDD with Different 

Configurations on Penn Action Dataset 

 

Concatenate 

all the 

activations 

JTDD Ratio 

Scaling 

(1×1×1) 

JTDD 

Coordinate 

Mapping 

(1×1×1) 

JTDD Ratio 

Scaling 

(3×3×3) 

JTDD 

Coordinate 

Mapping 

(3×3×3) 

Joint 

coordinates + 

trajectory 

coordinates 

0.6120 - - - - 

  7 0.7211 - - - - 

    0.7368 - - - - 

       0.7052 0.8014 0.8599 0.8086 0.8367 

       0.6305 0.7583 0.7834 0.7533 0.7628 

    4  0.5324 0.7697 0.7601 0.7847 0.7993 

       0.4297 0.7136 0.6845 0.7021 0.7014 
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 In Table 4.1, the first column displays the recognition accuracies achieved by 

employing body joint coordinates with trajectory coordinates as a feature, as well as 

C3D features. Using only the locations of body joints and optical flow (in the form of 

trajectory points) is shown to be wasteful in this research. There is an improvement in 

discriminative power when using C3D features, which concatenate all activations in a 

given layer into a single long vector.   7 has somewhat lower recognition accuracy 

than    . Since the original C3D on Penn Action dataset does not fine-tune, the second 

fc layer is probably more suitable for the classification of the pre-trained dataset. 

Pooling experiments at different 3D      layers for JTDD are presented, as are body 

joint and trajectory point mapping strategies. 

In Table 4.2, the benefits of body joint and trajectory point driven pooling are 

shown to be superior to those of C3D features. Further, JTDDs across several      

layers are pooled together to test for mutual compensation. Table 4.2 and Fig. 4.5 

display the outcomes of several late fusion combinations with SVM scores on the Penn 

Action dataset. 

Table 4.2. Recognition Accuracy of Fusing JTDD from Multiple Layers together 

on Penn Action Dataset 

 

Fusion Layers 

                                       

JDD JTDD JDD JTDD JDD JTDD 

Accuracy 0.855 0.867 0.981 0.987 0.860 0.873 

 

Figure. 4.3 Recognition Accuracy of Fusing JTDD from Multiple Layers together 

on Penn Action Dataset 



72 
 

Figure 4.3 shows that combining JTDDs from multiple layers almost likely 

improves recognition results. When JTDDs from conv5b and conv4b are used together, 

recognition performance is much improved. Accuracy improves as more qualities that 

complement one another are fused together. 

 The results of combining JTDD from different layers on the Penn action dataset 

are shown in Table 4.3 in terms of precision, recall, and f-measure. 

Table 4.3. Precision, Recall, and F-measure of Fusing JTDD from Multiple Layers 

Together on Penn Action Dataset 

Performance 

Metrics 

Fusion Layers 

                                       

JDD JTDD JDD JTDD JDD JTDD 

Precision 0.839 0.855 0.968 0.975 0.841 0.856 

Recall 0.844 0.861 0.976 0.982 0.848 0.869 

F-measure 0.842 0.858 0.972 0.979 0.845 0.863 

 

 

Figure. 4.4 Recognition precision of Fusing JTDD from Multiple Layers together 

on Penn Action Dataset 
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Figure 4.4 shows that combining JTDDs from multiple layers almost likely improves 

recognition results. When JTDDs from conv5b and conv4b are used together, 

recognition performance is much improved. Precision improves as more qualities that 

complement one another are fused together. 

 

Figure. 4.5 Recognition recall of Fusing JTDD from Multiple Layers together on 

Penn Action Dataset 

Figure 4.5 shows that combining JTDDs from multiple layers almost likely improves 

recognition results. When JTDDs from conv5b and conv4b are used together, 

recognition performance is much improved. Recall improves as more qualities that 

complement one another are fused together. 

 

Figure. 4.6 Recognition F-measure of Fusing JTDD from Multiple Layers together 

on Penn Action Dataset 
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Figure 4.6 shows that combining JTDDs from multiple layers almost likely 

improves recognition results. When JTDDs from conv5b and conv4b are used together, 

recognition performance is much improved. F-measure improves as more qualities that 

complement one another are fused together. 

Table 4.4 and Figure 4.3 show the results of comparing the use of estimated 

versus ground-truth body joints and trajectory points for evaluating JDD and JTDD on 

the Penn Action dataset. 

TABLE 4.4. Impact of Estimated Body Joints + Trajectories Versus Ground-

Truth Body Joints + Trajectories for JDD and JTDD On Penn Action Dataset 

Method GT Estimated Difference 

JDD (      ) 0.819 0.777 0.042 

JTDD (      ) 0.835 0.810 0.025 

 

 

Figure. 4.7 Impact of Estimated Body Joints + Trajectories versus Ground-Truth 

Body Joints + Trajectories for JDD and JTDD on Penn Action Dataset 

 

Figure 4.7 illustrates JTDD's top performance on the Penn Action Dataset 

compared to other methods. When using both ground-truth joints and points and 

anticipated body joints and trajectory points, JTDD improves on JDD by roughly 10%. 
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4.3 CHAPTER SUMMARY 

Using the two-stream bilinear model, i.e. JTDD, this chapter optimizes HAR by 

extracting both body joints with the optical flow. In this approach, a C3D network is 

fed two streams of data, and a bilinear product is used to extract a trajectory point for 

each body joint location. As a result, the spatiotemporal features of video sequences 

can be created jointly using pooled descriptors. The class label from the bilinear C3D 

model with two input streams is then combined with the video descriptors in a full-

network training approach. In order to classify the video descriptors used in HAR, the 

linear support vector machine is employed. Experiments demonstrate that the suggested 

JTDD model's recognition accuracy improves to 0.987 on the Penn Action dataset by 

merging JTDDs from conv5b and conv4b with GT body joints and trajectory points. 

 

 

  


