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CHAPTER V 

DEEP POSITIONAL ATTENTION-BASED BIDIRECTIONAL RNN WITH 3D 

CONVOLUTIONAL VIDEO DESCRIPTORS FOR ACTION RECOGNITION 

HAR is the method used to identify an individual's actions in videos by 

identifying those that include a particular activity and retrieving those recordings. 

Industries such as video processing, healthcare IT, and user interface design may have 

profited from this.  The constant stream of new videos from surveillance equipment, the 

news, YouTube, and other sources is staggering. As a result, HAR has great 

significance in modern machine learning. Automatic recording of an individual 

loitering with bags at airports, train stations, and other public places requires us to be 

able to understand potentially inappropriate or ambiguous behavior on the part of the 

relevant authority. As an added advantage, the automated detection of several players' 

trajectories in a given scenario is only one example of how the identification of 

trajectories can improve the user experience while interacting with computers. In the 

medical field, this could be used to aid in the recovery of patients by automatically 

recognizing patient behaviors (Wan et al., 2020). 

There are often three levels of representation used in HAR: the lowest, the 

intermediate, and the highest. Edge detection, feature extraction, interpretation, and 

action identification are the three primary operations carried out by the low-level 

representation. First, a single entity is divided into a series of videos, and then 

characteristics such as texture, attitude, silhouettes, motion, etc. are extracted. The 

motion detection classifier is trained with these characteristics to identify certain 

actions. According to Ding et al. In the same vein, the mid-level representation 

employs three crucial techniques: specific HAR, detection of user-machine interaction, 

and detection of abnormal behavior. Over time, several high-level representation 

(HAR) applications are implemented. Numerous studies for various HAR systems have 

been proposed during the past few years.  

On the flip side, it is extremely challenging to accurately identify behaviors due 

to factors such as context complexity, individual differences in perspective, and other 

such factors. Most cutting-edge techniques include recording video under controlled 

conditions. However, real-time systems have not adopted these ideas just yet. The 
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properties of raw video sequences are learned by utilizing various classifiers, and their 

functions are computed in a two-stage approach. Because the choice of features is so 

problem-specific in real-time systems, it is difficult to determine which ones are most 

important. To be more specific, it's possible that there is little to no visual or behavioral 

distinction between many common HAR behaviors. As a result, deep learning methods 

have been designed specifically for the purpose of learning hierarchical features by 

extrapolating generalizations from specific examples (Nweke et al., 2018). Both 

supervised and unsupervised algorithms are used in their training to produce 

satisfactory results in HAR. 

Cao et al. (2017) propose Joints-pooled 3D-Deep convolutional Descriptors 

(JDD), which are more effective than other deep learning methods by pooling the 

convolutional activations of a 3D-deep Convolutional Neural Network (3DCNN) to 

create discriminative descriptors based on joint locations. The videos is first cut into 

segments of uniform length, after which 3D convolutional feature maps are calculated 

for each segment. The 3D feature maps of a convolutional layer are used to pinpoint the 

predictable joint positions. After that, all the joint location activations from the same 

clips are added together. In addition, the clip features are aggregated into video features 

using the average pooling and   -norm. Once the features have been labeled, a linear 

SVM is employed to do so. For better guiding learning from the joints and 

simultaneous spatiotemporal feature extraction, this technique is improved as the two-

stream bilinear C3D network. Manual annotation or skeleton estimate are used to 

determine joint locations in C3D (Ji et al., 2012). In addition, the vector representations 

of the body joints are aggregated via max-min pooling. These two streams are 

multiplied by the bilinear product function and supplied to the fully linked layers to be 

used as a video description. However, with large datasets, joint location estimate takes 

more time, and skeleton location estimation is more challenging. 

For this reason, Srilakshmi et al. (2019) propose using JTDD, which 

incorporates an optical flow into the C3D approach. The trajectory points or optical 

flow between two video sequences can be automatically retrieved at the junction sites 

by multiplying two C3D streams (including feature and attention) with a bilinear 

product function. When extracting spatiotemporal features, pooling descriptors are also 

created. The video descriptors are then trained using the class labels over the entire 
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network. Furthermore, the SVM is utilized to classify these video characteristics for the 

purpose of locating particular behaviors. However, a type of feature aggregation called 

max-min pooling was used because of its ability to spatially smooth out differences 

between neighboring kernels while maintaining its adaptability. This does away with 

the need for class labels to vary in space and time. 

The PABRNN model is incorporated into a two-stream C3D network in this 

chapter, and Joints and Trajectory-pooled 3D-Deep Positional Attention-based 

Bidirectional Recurrent convolutional Descriptors (JTDPABRD) are proposed for 

extracting the important spatiotemporal features and enhancing the accuracy of 

recognizing individual activities. The original video is broken down into smaller 

segments that are fed into the two-stream C3D network as input. Joint orientation is 

extracted from the attention stream and important spatiotemporal aspects of the 

trajectory are extracted from the feature stream in a C3D network. After that, the 

convolutional feature vector representations of each clip in the video are aggregated 

using the PABRNN to generate the clip descriptor. Also, the bilinear product of these 

two streams is employed together with class labels to train the entire pipeline. In 

addition, the activations of completely connected layers and the differences between 

them in space and time are combined to form the ultimate video description. To 

identify specific actions inside videos, the SVM is fed this video description. This 

effectively improves the HAR system's accuracy. 

5.1 PROPOSED METHODOLOGY 

The JTDPABRD approach is briefly discussed here. Figure 5.1 shows a block 

schematic of this JTDPABRD procedure. 

 
Figure 5.1. Block Diagram of JTDPABRD based HAR System 
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The two-stream C3D network begins by taking in data from a series of frames 

or clips from each video sequence. Both an attention stream and a feature stream are 

used as input in this network. Extraction of trajectory points (or optical flow) between 

clips is done in the feature stream, while extraction of joint guidance is done in the 

attention stream. Each channel's activations are combined with those of other channels 

to reveal the whole picture of the body's joints and trajectories. RNN, specifically the 

JTDRD approach, is used in place of max-min pooling to produce the pooled feature 

vectors associated with a single clip. However, the typical RNN has difficulty 

optimizing the aggregation of network outputs when multiple networks have been 

trained using the same data. Therefore, the issues with the traditional RNN are 

addressed by employing a Video clips are used to train a JTD-Bidirectional RNN-

Descriptor (JTDBRD) that can describe events both in the past and the future. The 

concept is to split a regular RNN's state neurons into forward and backward sections. 

There is no connection between the outputs of advance states and the inputs of 

backward states. Using state, input information from both the past and future of the 

currently estimated frames, the objective function can be reduced in real time. 

This BRNN can be trained using the same methods as a standard RNN, as it 

requires only a small number of specialized solutions at the beginning and end of 

training samples. Both the input at time     to the forward state and the input at time 

    to the reverse state cannot be verified. However, they are randomized to a fixed 

value (0.5). Furthermore, as the information beyond the advance states'     and the 

backward states'      is not relevant for the present update, the local state derivatives 

at those times have been set to 0. However, BRNN can't be used to provide the most 

likely important feature vectors. Another issue with BRNN is how to combine feature 

representations using hidden vectors. Therefore, PABRNN is proposed by this 

JTDPABRD method, with the idea being that if a feature from one video frame also 

occurs in another video frame, then the two together provide contextual aid. That is, 

nearby features are more likely to provide information about body joints and 

trajectories than distant ones. Figure 5.2 depicts the whole two-stream C3B framework 

that may be trained using PABRNN. 
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Figure 5.2. Block Diagram of Two-stream Bilinear C3D with PABRNN-based 

Feature Aggregation Method 

5.1.1 PABRNN Model 

In this PABRNN, the feature vector representation is a BRNN, which employs the pre-

trained feature embeddings (body joints and trajectory points) as input to construct the 

hidden vectors via recurrent updates. The feature vector representations are aggregated 

using standard attention, and the attentive weights are generated in large part by the 

hidden vectors. To do this, a positional attention system was suggesting and 

recommend certain extra steps beyond the purview of typical attention. 

 Locate the frames within a video series that contain a given occurrence 

feature. 

 The feature vector guidance should be propagated in a position-aware 

manner. 

 Create position-aware guidance vectors for all clip features based on the 

spread advice. 

 Integrating the position-aware guidance vector into the already-established 

focus method. 
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Using the meticulous representations of both the original and aggregated feature 

vectors, the relevance between each dimension is assessed using a variety of similarity 

functions. As a similarity function,   -norm is often paired with the Manhattan distance 

(   ).  

   (    )    (‖    ‖ )     (5.1) 

The ‖ ‖  is the   -norm, is used in Eq. (5.1), along with the original feature vector,  , 

and the aggregated feature vector,   , for each video clip.  

Figure 5.3 depicts the organizational scheme of this PABRNN system. 

 

Figure 5.3. Feature Vector Representation with PABRNN Framework 
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5.1.2 Position-aware Guidance Propagation 

All of this is taken into account so that the features can be guided by the 

surrounding context if they show up in other clips. Here, the Gaussian kernel is used to 

simulate the spread of position-aware guidance, and the model reads as follows: 

      ( )   
.   

   ⁄ /
     (5.2) 

The kernel-based guidance acquired at a given distance   is denoted as 

      ( ) in Eq. (5.2), where   is the distance between the original and aggregated 

features,   is a parameter that constrains the propagation scope, and K is the kernel.  As 

the distance increases, the position-aware steering appears to weaken. The highest level 

of propagating guidance is achieved in particular at   0. In this case, the feature 

vectors are all given the same value  , and Integrating locational context into focus is a 

major area of study.  

5.1.3 Position-aware Guidance Vector 

By acquiring the position-aware guiding vector for each feature vector in the 

videos, it is able to describe the steering of attentions in a high-dimensional space. It is 

recommended that the guidance for a specific distance be evaluated in relation to the 

Gaussian distributions over the hidden dimensions. Based on this assumption, a 

guidance base matrix   is created, with each column containing the guidance base 

vector associated with a certain distance. The element of   are outlined as follows:  

 (   )  (      ( )   )     (5.3) 

In Eq. (5.3),   is the normal density with a       ( ) prediction and a 

standard deviation of   , and  (   ) is the advice connected to the distance of   at 

the    position. The guidance base matrix is used to determine the guiding vector for a 

feature at a specific location by summing the guidance of all features present in the 

relevant video frames.     

             (5.4) 

The number of features at various distances is estimated using the distance 

count vector    in Eq. (5.4), and the aggregated guidance vector for the feature at 
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position   is denoted by   . If a feature is located at location  , then the number of body 

joint and trajectory point features within d units of   is denoted by   ( ).   

  ( )  ∑ ,(   )     ( )-  ,(   )     ( )-    (5.5) 

In Eq. (5.5),   stands for the multi-feature 3D feature maps,   stands for a body 

joint location or a trajectory point feature in  ,    ( ) stands for the set of all the clips 

in which   occurs, and , - stands for an indictor function with a value of 1 if the 

condition is met and 0 otherwise.   

5.1.4 Positional Attention 

To incorporate the features' position-aware advice into the attentive 

representations of the aggregated features, a positional attention method is presented. In 

particular, a feature's focus weight at the     position in the combined feature vector is 

formulated as follows. 

   
 

( .     /)

∑  
. (     )/ 

   

       (5.6) 

 The   length of the video sequence, the BRNN-based hidden vector at position 

 ,   , the aggregated position-aware guidance vector,   , obtained in Eq. (5.4), and the 

score function,  ( ), which estimates the feature significance based on the hidden 

vector and the position-aware guidance vector, are all shown in Eq. (5.6). After that, the 

score function is written as:   

 (     )        (           )    (5.7) 

The components of Eq. (5.7) are the matrices    and   , the bias vector  , the 

hyperbolic tangent function     , the global vector  , and its transpose   . Following 

this, the aggregated feature vector (the weighted sum of all the hidden vectors) is given 

the attention weights that were calculated. 

   ∑     
 
          (5.8) 

Therefore, the clip descriptors are obtained by summing all of the feature 

vectors associated with a single clip. 
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Algorithm: 

Input: Video sequences from Penn Action Dataset 

Output: Extracted body points, trajectory points (Video descriptor) 

 Begin 

 Split video sequences into clips; 

    (         ) 

 Initialize CNN parameters for both attention and feature streams; 

 Compute all the activations in convolutional layers; 

 Aggregate activations of each convolutional layers using PABRNN; 

 //PABRNN 

 Formulate the position-aware guidance propagation via Gaussian kernel; 

 Calculate the guidance base matrix related to certain distance; 

 Aggregate the guidance of all features in convolutional layers; 

 Obtain the aggregated guidance vector; 

 Determine the score function and the attentive weight of features in the  

           aggregated    

          guidance vector; 

 Find the resultant aggregated feature vector belonging to one clip i.e., obtain the clip  

           descriptors; 

 Combine attention and feature streams using bilinear product function; 

 Apply fully connected and softmax layer; 

 Train the C3D using aggregated guidance feature vector; 

 Predict the video descriptors for a video sequence; 

 Perform SVM classifier; 

 //SVM 

 Initialize the video descriptor ( ) to classify; 

 Consider the training set  *(     )   (     )+; // : class 

 Consider   nearest neighbors; 

 Decide   *    +; 
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 Find   sample and train the SVM; 

 Classify   and get the result  ; 

 Return  ; 

 Recognize the individual activities in particular video sequence; 

 End  

To further improve its representational power, bilinear production were use to mix clip 

descriptors from many convolutional layers. The whole network is trained end-to-end 

with softmax loss supervised by class label by adding the clip descriptors together, i.e. 

convolutional feature vectors with bilinear product. Human activity in a given video 

sequence can be identified once video descriptors are gathered and fed into a SVM. 

5.2 EXPERIMENTAL RESULTS 

The JTDPABRD method is implemented in MATLAB 2017b, and its efficacy 

is evaluated in terms of recognition accuracy in contrast to the JTDBRD, JTDRD, and 

JTDD. The experiment uses the 2326 video sequences from 15 different activity 

classifications found in the Penn Action dataset. The clips are culled from a wide 

variety of video sharing sites. Each clip averages between 50 and 100 still images in 

duration. There are 13 annotated body joints per frame.  

To ensure accuracy, only 20% of the data is used for testing, while 80% is used 

for training. Baselines are the body's joint coordinates, the points along the trajectory, 

and the C3D characteristics. Therefore, JTDPABRD is tested using numerous 

configurations of pooling, or feature aggregation, to see which is most effective.  

Measures of recognition accuracy include the True Positive (TP) and True 

Negative (TN) rates as a percentage of total trials. That's because: 

        
     

           
     (5.9) 

In Eq. (5.9), FP and FN stand for "false positive" and "false negative," 

respectively. Total Recognized Amount (TP) is the sum of all lawful actions that have 

been properly identified as such. The number of officially recognized illegal activities 

that are also illegal is denoted by TN. The FP is the total quantity of things that people 

think are lawful but are actually illegal. The FN amount of things that are thought to be 

prohibited but are actually legal. The results of both the body joint extraction and the 

trajectory point extraction are shown in Figure 5.5. 
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Figure 5.4 (a). Sample Input Video Sequence 

 

Figure 5.4 (b). Image for Body Joints Extraction from Input Video Sequence 

 

Figure 5.4 (c). Results for Trajectory Points Extraction of Input Video Sequence 
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Table 5.1 displays the results of the recognition accuracy analysis performed on 

the Penn Action dataset. Body joint coordinate recognition accuracies using trajectory 

point coordinates as a feature and C3D features are shown in the first column of Table 

5.1. The results of these experiments demonstrate that using only the positions of body 

joints and the direction of optical flow as characteristics is insufficient. C3D features 

that combine all activations in a given layer are said to be particularly discriminative 

due to their high level of performance.   7 has slightly less reliable recognition than 

   . Since the current implementation of C3D on the Penn Action dataset lacks the 

ability to fine-tune the   7 layer, which is ideal for constructing the video descriptor on 

the pre-learned dataset, this is theoretically achievable. Many body joint and trajectory 

point features are aggregated using PABRNN across multiple 3D      layers to 

produce JTDPABRD.   

Table 5.1. Recognition Accuracy of Baselines and JTDPABRD with Various 

Configurations on Penn Action Dataset  

 

Concatenate 

all the 

activations 

JTDPABRD 

Ratio 

Scaling 

(1×1×1) 

JTDPABRD 

Coordinate 

Mapping 

(1×1×1) 

JTDPABRD 

Ratio 

Scaling 

(3×3×3) 

JTDPABRD 

Coordinate 

Mapping 

(3×3×3) 

Joint 

coordinates 

+ 

trajectory 

coordinates 

0.6452 - - - - 

  7 0.7638 - - - - 

    0.7811 - - - - 

       0.7345 0.8358 0.8829 0.8385 0.8683 

       0.6675 0.7768 0.8047 0.7722 0.7831 

    4  0.5684 0.7965 0.7873 0.8135 0.8258 

       0.4602 0.7268 0.7059 0.7336 0.7315 

 

As can be shown in Table 5.1, the JTDPABRD performs better than the 

JTDBRD, JTDRD, and JTDD when it comes to averaging the guided feature vectors of 

body joints and trajectory points in a video sequence. In addition, JTDPABRDs from 
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different      layers are combined for processing to determine whether or not they can 

strike a fair balance. Combinations of convolution layers and fully connected layers are 

shown in Table 5.2 for the Penn Action dataset as fusion layer results.  

Table 5.2.  Activity Recognition Accuracy for Fusing Multiple Layers for Penn 

Action Dataset 

Fusion Layers 
JTDD JTDRD JTDBRD JTDPABRD 

Recognition Accuracy 

           0.867 0.871 0.875 0.883 

              0.987 0.989 0.991 0.994 

              0.873 0.875 0.879 0.883 

 

Figure 5.5 shows how the feature extraction and identification results benefit 

greatly from the fusion of JTDPABRD over many layers. Combining        

    4  into a JTDPABRD boosts individual activity recognition accuracy. This is due 

to the      layers aggregating more important features.   

 

Figure 5.5. Recognition Accuracy of Fusing JTDPABRD from Multiple Layers 

together on Penn Action Dataset 
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The results of fusing many layers together on the Penn action dataset are shown in 

Table 5.3 in terms of precision, recall, and f-measure. 

Table 5.3. Precision, Recall, and F-measure of Fusing Multiple Layers Together 

on Penn Action Dataset 

Performance 

Metrics 

Fusion Layers 

                                       

JTDD JTDPABRD JTDD JTDPABRD JTDD JTDPABRD 

Precision 0.855 0.874 0.975 0.983 0.856 0.871 

Recall 0.861 0.880 0.982 0.991 0.869 0.878 

F-measure 0.858 0.877 0.979 0.987 0.863 0.875 

 

Figure 5.6 shows how the feature extraction and identification results benefit 

greatly from the fusion of JTDPABRD over many layers. Combining        

    4  into a JTDPABRD boosts individual activity recognition of precision. This is 

due to the      layers aggregating more important features.   

 

 

Figure 5.6. Recognition Precision of Fusing JTDPABRD from Multiple Layers 

together on Penn Action Dataset 
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Figure 5.7 shows how the feature extraction and identification results are 

significantly enhanced thanks to the fusion of JTDPABRD of different layers. 

Combining            4  into a JTDPABRD boosts individual activity 

recognition of recall. This is due to the      layers aggregating more important 

features.   

 

Figure 5.7. Recognition Recall of Fusing JTDPABRD from Multiple Layers 

together on Penn Action Dataset 

Figure 5.8 shows how the feature extraction and identification results are significantly 

enhanced by the fusion of JTDPABRD of multiple layers. Combining        

    4  into a JTDPABRD boosts individual activity recognition of F-measure. This is 

due to the      layers aggregating more important features.   
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Figure 5.8. Recognition F-measure of Fusing JTDPABRD from Multiple Layers 

together on Penn Action Dataset 

Multiple HAR methods' results on the Penn Action dataset are shown in Table 5.4 

which draws parallels between predicted and ground-truth (GT) body joints and 

trajectory points. 

Table 5.4. Impact of Estimated Body Joints + Trajectories versus GT Body Joints 

+ Trajectories for Different Methods on Penn Action Dataset 

Methods GT Estimated Difference 

JTDD (      ) 0.835 0.810 0.025 

JTDRD (      ) 0.838 0.815 0.023 

JTDBRD (      ) 0.843 0.821 0.022 

JTDPABRD (      ) 0.847 0.828 0.019 

 

Figure 5.9 demonstrates that the JTDPABRD outperforms the other methods on the 

Penn Action Dataset. The JTDPABRD results in the least variation between the GT 

body joints+ trajectory points and the estimated body joints+ trajectory points, in 

comparison to other methods. 
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Figure 5.9 Impact of Estimated Body Joints + Trajectories versus GT Body Joints 

+ Trajectories for Different Methods on Penn Action Dataset5.4 CHAPTER 

SUMMARY  

5.3 CHAPTER SUMMARY 

In this chapter, offer JTDPABRD, a combination of the PABRNN and the two-

stream C3D network, for quickly extracting the necessary spatiotemporal information 

and boosting the accuracy of detecting individual actions. Multiple clips are extracted 

from the video before being fed into the two-stream C3D network. In a two-stream 

C3D network, the focus stream is responsible for extracting the body's joint locations, 

while the feature stream is responsible for extracting the points along the trajectory and 

any important spatiotemporal data. The convolutional feature vector representations of 

all clips in a single video are then aggregated to form the clip descriptor using the 

PABRNN. Furthermore, the entire pipeline, which consists of these two streams 

multiplied by a bilinear product, is trained using class labels. In addition, the 

activations of completely connected layers and the differences between them in space 

and time are combined to form the ultimate video description. To determine the action 

in a video, the SVM is provided this video description. The testing results showed that 

JTDPABRD approach utilizing Penn Action dataset achieves the highest recognition 

accuracy of 0.994 by fusing it from        and     4  with GT feature vectors. 
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