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Abstract: Exponential stability criteria for neutral second-order stochastic systems involving impulses
and state-dependent delay have been addressed in this paper based on stability theory, stochastic
analysis, and the inequality technique. Some sufficient conditions are given to establish the exponen-
tial stability of such systems, which is well-established in the deterministic case, but less known for
the stochastic case. In our model, the noise effect can be described as a symmetric Wiener process.
By formulating the impulsive integral technique, exponential stability analysis of the pth moment
of the second-order system involving stochastic perturbation is established. As an application that
illustrates the theoretical formulation, an example is presented.
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dependent delay
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1. Introduction

Second-order differential equations act as a momentous part in mathematical mod-
elling. The order of a dynamical system is known as the order of its maximum derivative.
The second-order system (SOS) is the root of systems with higher orders. SOS is the recur-
rent description of several dynamic procedures and used whenever an association relating
to certain continuously fluctuating magnitudes and their rates of change is identified [1].
Delay differential equations (DDEs) play a substantial role in numerous fields and math-
ematical models, with various types of DDEs formulated by mathematicians [2,3]. DDE
is an important concept in the differential equation in which the unknown function takes
the previous time values as its inputs. Unlike ordinary differential equations, DDEs will
agree to accept past actions into the real situation models. Many authors investigated
the existence, stability, and controllability concepts of linear and nonlinear systems with
state-dependent delay (SDD), where delay is based on the state only [4–7]. The inspiration
for dynamical system studies is to increase the performance of the system along with the
system’s stability. Much of the research work has concentrated on the study of dynamical
systems because of their broad applications involved in various fields.

One of the well-built forms of stability is the concept of exponential stability. As a
whole, the convergence of exponential stability has become a noteworthy application
because of its robustness to perturbations. There are several outstanding investigations on
exponential stability in [8–10]. The stochastic differential equation is an equation containing
randomness in the co-efficients of a differential equation. It involves some known stochastic
processes such as Brownian motion, which is a symmetric Wiener process, and its presence
in SOS with delay effects has produced substantial development of realistic models and
physical systems [11,12]. There has been a lot of discussion in the study of stochastic
SOS with and without delay [13–16]. In references [17,18], the stability, existence, and
controllability notions for nonlinear systems were presented and the analyses are related to
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the deterministic case. The occurrence of the stochastic process in the mathematical model
is unavoidable to characterize the physical structures. So, the stability analysis of stochastic
nonlinear systems involving several effects was studied in [19–24]. Further, impulsive
systems have been paid remarkable attention in various areas and many significant works
have been attained by researchers. In [25–28], the authors studied the stability concept
with the occurrence of impulsive effects. However, no study has addressed exponential
stability for second-order neutral stochastic systems involving impulses and SDD due to its
complexity, and it is an interesting yet challenging issue.

Second-order differential equations appear in models as well as in physical applica-
tions such as acoustic vibrations, optimization, dynamical systems, quantum mechanics,
and mathematics of networks. Many deterministic types of SOS have been analyzed,
whereas the stochastic kind has been an emerging area. However, in many circumstances,
some types of randomness can occur in these problems. So, second-order systems need to
be designed by a stochastic structure. Noise is an essential aspect of data processing in sev-
eral models and the investigation of such equations or systems, on top of their theoretical
interest, and it has specific importance in population dynamics, modeling of the networks
and so forth [29,30]. Meanwhile, in stochastic behavior related to a second-order system,
the characteristic is connected to natural circumstances. However, this is in problematic
situations, whereas delay based on unknown functions has been considered in system
design. These types of equations are known as equations involving SDD. In particular,
the designed problem is helpful to describe some mathematical models of real phenomena
such as bursting rhythm models in medicine, chemical engineering, flying object motion,
aero-elasticity, and biological neural networks [31–33]. Due to these features, the considered
system is one of the key attractive phenomena in practice. The main contributions are
outlined below:

1. Most of the earlier analysis on exponential stability of second-order systems has
been discussed with or without delay. For this work, we concentrate on the case in
which the exponential stability analysis of the second-order system involves stochastic
perturbation with SDD.

2. Related to several earlier analyses, exponential stability of a second-order stochastic
system with impulsive effects and SDD is firstly provided for designing more general
second-order impulsive stochastic models.

3. By employing the impulsive integral technique, we stated that the considered system
is exponentially stable in the pth moment.

The layout of this analysis is structured as follows. Section 2 contains basic definitions,
lemmas, and notations. In Section 3, sufficient conditions are given to establish the expo-
nential stability of a mild solution for the impulsive SOS by deriving an integral inequality.
An illustrative example is presented to check the applicability of the derived result in
Section 4. As a final point, the conclusion is given in Section 5. The following notations are
carried over throughout this paper. ß1 and ß2 are two real separable Hilbert spaces. W(t)
denotes the Wiener process and B represents the abstract phase space. Also, ∆u(ti) denotes
the jump in the state u at time ti and E represents mathematical expectation.

2. Problem Statement and Preliminaries

Consider the following second-order neutral stochastic impulsive system with SDD:

d[u′(t)− £1(t, uρ(t,ut))] =
[

Au(t) + £2(t, uρ(t,ut))
]
dt + £3(t, uρ(t,ut))dW(t),

t ≥ 0, t 6= ti, i = 1, 2, . . . , (1)

∆u(ti) =Ii(u(t−i )), i = 1, 2, . . . , (2)

∆u′(ti) =Ji(u(t−i )), i = 1, 2, . . . , (3)

u(s) =ψ(s), s ∈ [−τ, 0), u′(0) = ζ. (4)
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Here, A : D(A) ⊂ ß1 → ß1 is the infinitesimal generator of a strongly continuous
cosine family of bounded linear operators C(t) : t ∈ R on ß1. ζ is a ℵ0-measurable ß1-valued
random variable independent of Wiener process W(t). Here, 0 < t1 < t2 < . . . < ti < . . .
are prefixed numbers. ∆u(t−i ) and ∆u(t+i ) represent the left and right limits of u(t) at
t = ti; ∆u(ti) represents the jump in state u at time ti with Ii and Ji defining the size of the
jump. The term ut : (−∞, 0] → ß1, ut(θ) = u(t + θ) belongs to the abstract phase space
B, which is described axiomatically. £1, £2 : [0,+∞)× PC → ß1, £3 : [0,+∞)× PC →
L0

2(ß2, ß1) and ρ : [0,+∞) × PC → [−τ, 0] are the appropriate mappings. Also, we
assume ρ(s, us) ≤ s, s ∈ [−τ, 0]. Let (Ω,ℵ, {ℵt}t≥0, P) be a complete probability space
with ℵ0 containing all P-null sets. Let ß1 and ß2 be two real separable Hilbert spaces. Let
〈·, ·〉ß1 and 〈·, ·〉ß2 be defined as their corresponding inner products. Furthermore, let us
denote the vector norm of the Hilbert space (ß1, ß2) as ‖ · ‖ß1 and ‖ · ‖ß2 , respectively. Let
the term {W(t) : t ≥ 0} be the ß2-valued Brownian motion on (Ω,ℵ, {ℵt}t≥0, P) involving
covariance operator Q, which is a self-adjoint, positive trace class operator on ß2. That is,

E〈W(t), x〉ß2E〈W(s), y〉ß2 = (t ∧ s)〈Qx, y〉ß2 , for all x, y ∈ ß2.

Here, L0
2(ß2, ß1) represents the space of all Hilbert–Schmidt operators σ : ß2 → ß1

with ‖σ‖2
L0

2
= tr(σQσ∗), for any bounded operators σ ∈ L0

2 and its adjoint operator

σ∗; see [34,35] and the references therein. Define the piecewise continuous space PC =
PC([−τ, 0), ß1) formed by all the functions φ̂ : [−τ, 0) → ß1 such that φ̂ is continuous
at t 6= ti, and φ̂(t−i ) = φ̂(ti) and φ̂(t+i ) exist for all i = 1, 2, . . . ,. Let PC([−τ, 0), ß1) be
the space of all bounded ℵ0-measurable and PC([−τ, 0), ß1)-valued random variables ζ,
satisfying ‖ζ‖2

PC = sup
−ρ≤θ<0

E‖ζ(θ)‖2
PC . A stochastic process is given as the collection of

random variables Z = {x(t, w) : Ω → ß1, t ∈ J}. Usually w is suppressed and written as
x(t) instead of x(t, w).

For the fundamental concepts about cosine functions, one can refer to [36], and the
results in [37] provide some insight into the nature of the cosine family and demonstrate its
inherent symmetry properties. We will use the following concepts for deriving the results.

Definition 1. The one-parameter family {C(t) : t ∈ R} ⊂ L(ß1, ß1), satisfying

(i) C(0) = I;
(ii) C(t)x is continuous in t on R for all x ∈ ß1;
(iii) C(t + s) + C(t− s) = 2C(t)C(s) for all t, s ∈ R.

And the corresponding strongly continuous sine family {S(t) : t ∈ R}, which is denoted as
S(t)x =

∫ t
0 C(s)xds, x ∈ ß1.

Lemma 1. For any a ≥ 1 and for an L0
2(ß2, ß1) - valued predictable process γ(·), we have

sup
s∈[0,t]

E
∥∥∥∥ ∫ s

0
γ(v)dW(v)

∥∥∥∥2a

ß1

≤ (a(2a− 1))a
[ ∫ t

0

(
E
∥∥∥γ(s)

∥∥∥2a

L0
2

) 1
a

ds
]a

, t ∈ [0,+∞).

In the rest of this paper, we denote by Ka = (a(2a− 1))a.
The concept of cadlag is important for studying the stochastic process. Generally,

a sample function X on a well-ordered set is cadlag if it is right-continuous with left limits
at every point. Also, a stochastic process X is cadlag if almost all its sample paths are cadlag.
In the following definition, we introduce the concept of a mild solution for system (1)–(4).

Definition 2. A ß1-valued stochastic process u(t), t ∈ R is known as the mild solution of (1)–(4), if

(i) u(t) is adapted to ℵt and has a càdlàg path;
(ii) for t ∈ [0,+∞), almost surely
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u(t) =C(t)ψ + S(t)[ζ − £1(0, ψ)] +
∫ t

0
C(t− s)£1(s, uρ(s,us))ds

+
∫ t

0
S(t− s)£2(s, uρ(s,us))ds +

∫ t

0
S(t− s)£3(s, uρ(s,us))dW(s)

+ ∑
0<ti<t

C(t− ti)Ii(u(t−i )) + ∑
0<ti<t

S(t− ti)Ji(u(t−i )). (5)

Definition 3. For η > 0 and G̃ ≥ 1, the mild solution (5) of system (1)–(4) is known as
exponentially stable in pth moment (p ≥ 2) if

E‖u(t)‖p ≤ G̃e−ηt, t ≥ 0, p ≥ 2, (6)

for any solution u(t) with initial condition ζ ∈ PC.

In order to prove the exponential stability of the considered system, we need the
following lemma.

Lemma 2. Assume that there exists the positive constants κi(i = 1, 2, 3, 4) and ai, bi (i = 1, 2, 3, . . . , )
and a function Υ : [−τ,+∞)→ [0,+∞) such that

Υ(t) ≤ κ1e−η1(t) + κ2e−η2(t), t ∈ [−τ, 0], (7)

and

Υ(t) ≤ κ1e−η1(t) + κ2e−η2(t) + κ3

∫ t

0
e−η1(t−s) sup

θ∈[−τ,0]
Υ(s + θ)ds

+ κ4

∫ t

0
e−η2(t−s) sup

θ∈[−τ,0]
Υ(s + θ)ds + ∑

ti<t
aie−η1(t−ti)Υ(t−i )

+ ∑
ti<t

bie−η2(t−ti)Υ(t−i ), t ≥ 0, (8)

for η1, η2 ∈ (0, η], η > 0. If

κ3

η1
+

κ4

η2
+

+∞

∑
i=1

ai +
+∞

∑
i=1

bi < 1, (9)

then

Υ(t) ≤ G̃e−δt, t ≥ −τ, (10)

where δ ∈ (0, η1 ∧ η2) is a positive root of the equation(
κ3

η1 − δ
+

κ4

η2 − δ

)
eδτ +

+∞

∑
i=1

(ai + bi) = 1

and

G̃ = max
{

κ1 + κ2,
κ1(η1 − δ)

κ3eδτ
,

κ2(η2 − δ)

κ4eδτ

}
> 0.

Proof. Assume that

F(κ) =

(
κ3

η1 − δ
+

κ4

η2 − δ

)
eδτ +

+∞

∑
i=1

(ai + bi)− 1;



Symmetry 2023, 15, 2135 5 of 14

then from the existence theorem of root and (9), there exists a positive constant δ ∈ (0, η1 ∧ η2)
such that F(δ) = 0.

Let

G̃ε = max
{

κ1 + κ2 + ε,
(κ1 + ε)(η1 − δ)

κ3 eδτ
,
(κ2 + ε)(η2 − δ)

κ4 eδτ

}
> 0, (11)

for any ε > 0.
Firstly, let (7) and (8) imply

Υ(t) ≤ G̃εe−δt, t ≥ −τ. (12)

Evidently, Equation (12) holds for t ∈ [−τ, 0]. By contradiction, we state that there
exists a constant t1 > 0 such that

Υ(t) < G̃εe−δt f or t ∈ [−τ, t1), Υ(t1) = G̃εe−δt1 . (13)

Then, (13) and (8) together infer that

Υ(t1) ≤ κ1e−η1t1 + κ2e−η2t1 + κ3G̃ε

∫ t1

0
e−η1(t1−s) sup

θ∈[−τ,0]
e−δ(s+θ)ds

+ κ4G̃ε

∫ t1

0
e−η2(t1−s) sup

θ∈[−τ,0]
e−δ(s+θ)ds + G̃ε ∑

ti<t1

aie−η1(t1−ti)e−δti

+ G̃ε ∑
ti<t1

bie−η2(t1−ti)e−δti

≤ κ1e−η1t1 + κ2e−η2t1 + κ3G̃ε

∫ t1

0
e−η1(t1−s)e−δ(s−τ)ds

+ κ4G̃ε

∫ t1

0
e−η2(t1−s)e−δ(s−τ)ds + G̃εe−δt1

[ +∞

∑
i=1

(ai + bi)

]
≤
(

κ1 −
κ3G̃ε

η1 − δ
eδτ

)
e−η1t1 +

(
κ2 −

κ4G̃ε

η2 − δ
eδτ

)
e−η2t1

+ G̃εe−δt1

[
κ3eδτ

η1 − δ
+

κ4eδτ

η2 − δ
+

+∞

∑
i=1

(ai + bi)

]
. (14)

Using the assumption on δ and (11), we obtain(
κ1 −

κ3G̃ε

η1 − δ
eδτ

)
e−η1t1 ≤

(
κ1 −

κ3eδτ

η1 − δ

(κ1 + ε)(η1 − δ)

κ3eδτ

)
e−η1t1

< 0.

And also,(
κ2 −

κ4G̃ε

η2 − δ
eδτ

)
e−η2t1 ≤

(
κ2 −

κ4eδτ

η2 − δ

(κ2 + ε)(η2 − δ)

κ4eδτ

)
e−η2t1

< 0. (15)

So, in consideration of (14), we have

Υ(t1) < G̃εe−δt1 ,

which contradicts (13). So, (12) holds. Since ε is arbitrarily small, we obtain (10). Hence,
the proof is completed.
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3. Main Results

In this section, we study the exponential stability in the pth moment of the mild
solution for the second-order neutral stochastic differential equations with impulsive
effects and SDD. In order to attain the exponential stability of the considered system, we
impose the following assumptions.

Hypothesis 1. The continuous function t→ ψt is well-defined and

R(ρ−) = {ρ(s, ψ) ≤ 0 : (s, ψ) ∈ [0,+∞)×PC → [−τ, 0]}.

There exists a bounded and continuous function Jψ : R(ρ−) → [0,+∞) such that
‖ψt‖ ≤ Jψ(t)‖ψ‖ for every t ∈ R(ρ−). Here, ρ : [0,+∞) × PC → [−τ, 0] is a continu-
ous function.

Hypothesis 2. The cosine family of operators {C(t) : t ≥ 0} on ß1 and the corresponding sine
family {S(t) : t ≥ 0} satisfies the conditions

‖C(t)‖ ≤ Ĝe−λt, ‖S(t)‖ ≤ Ĝe−ωt, t ≥ 0

for Ĝ ≥ 1 and λ, ω > 0.

Hypothesis 3. The function £1 : [0,+∞)×PC → ß1 is continuous and there exists a constant
M£1 > 0 such that for any x1, x2 ∈ ß1 and t ≥ 0, we have

E‖£1(t, x1)− £1(t, x2)‖ ≤ M£1‖x1 − x2‖, £1(t, 0) = 0.

Hypothesis 4. The function £2 : [0,+∞)×PC → ß1 is continuous and there exists a constant
M£2 > 0 such that for any x1, x2 ∈ ß1 and t ≥ 0, we have

E‖£2(t, x1)− £2(t, x2)‖ ≤ M£2‖x1 − x2‖, £2(t, 0) = 0.

Hypothesis 5. The function £3 : [0,+∞)×PC → L0
2(ß2, ß1) is continuous and there exists a

constantM£3 > 0 such that for any x1, x2 ∈ ß1 and t ≥ 0, we have

E‖£3(t, x1)− £3(t, x2)‖ ≤ M£3‖x1 − x2‖, £3(t, 0) = 0.

Hypothesis 6. For x1, x2 ∈ ß1 and ∑+∞
i=1 αi < +∞, ∑+∞

i=1 βi < +∞, there exists αi > 0,
βi > 0 (i = 1, 2....) such that

‖Ii(x1)− Ii(x2)‖ ≤ αi‖x1 − x2‖ and ‖Ii(0)‖ = 0,

‖Ji(x1)− Ji(x2)‖ ≤ βi‖x1 − x2‖ and ‖Ji(0)‖ = 0,

where the impulsive functions Ii, Ji satisfy the above conditions.

Hypothesis 7. For any scalar p ≥ 2,

7p−1Ĝp
[

λ−pMp
£1
+ ω−pMp

£2
+Mp

£3
ω−

p
2

(
p(p− 1)

2

) p
2

×
(

2(p− 1)
p− 2

)1− p
2

+

( +∞

∑
i=1

(αi + βi)

)p]
< 1.

Remark 1. It is noted that the existence and uniqueness of the mild solution to the considered system
can be efficiently exposed by utilizing the hypotheses (H1)–(H7) and Picard’s iterative process. So if the
condition (H7) is dropped, then the well-posedness of the system under consideration may not hold.
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Remark 2. Picard’s iteration scheme was the first method to solve the nonlinear differential equa-
tions analytically. By using this, we can study the existence and uniqueness of a solution of first-order
differential equations. Picard’s method has been developed to solve initial value problems when the
forcing term satisfies a Lipschitz condition where the Lipschitz constant is time-dependent [38],
and in [39], the nonlinear term satisfies a time-independent Lipschitz condition. Also, Picard’s
iterative process can be applied to ensure the existence of a unique solution of higher-order ordinary
differential equations and for systems of differential equations.

Theorem 1. Let (H1)–(H7) hold; then for p ≥ 2, the mild solution of system (1)–(4) is exponen-
tially stable in the pth moment.

Proof. From (5), we have

E‖u(t)‖p =E
∥∥∥∥C(t)ψ + S(t)[ζ − £1(0, ψ)] +

∫ t

0
C(t− s)£1(s, uρ(s,us))ds

+
∫ t

0
S(t− s)£2(s, uρ(s,us))ds +

∫ t

0
S(t− s)£3(s, uρ(s,us))dW(s)

+ ∑
0<ti<t

C(t− ti)Ii(u(t−i )) + ∑
0<ti<t

S(t− ti)Ji(u(t−i ))
∥∥∥∥p

≤7p−1

{
E‖C(t)ψ(0)‖p + E‖S(t)[ζ − £1(0, ψ)]‖p

+ E
∥∥∥∥ ∫ t

0
C(t− s)£1(s, uρ(s,us))ds

∥∥∥∥p

+ E
∥∥∥∥ ∫ t

0
S(t− s)£2(s, uρ(s,us))ds

∥∥∥∥p

+ E
∥∥∥∥ ∫ t

0
S(t− s)£3(s, uρ(s,us))dW(s)

∥∥∥∥p

+ E
∥∥∥∥ ∑

0<ti<t
C(t− ti)Ii(u(t−i ))

∥∥∥∥p

+ E
∥∥∥∥ ∑

0<ti<t
S(t− ti)Ji(u(t−i ))

∥∥∥∥p
}

E‖u(t)‖p ≤7p−1 {Ñ1 + Ñ2 + Ñ3 + Ñ4 + Ñ5 + Ñ6 + Ñ7
}

(16)

Now by using the necessary hypotheses and the lemmas, we estimate the terms on
Equation (16).

Using the assumption (H2), we have

Ñ1 = E‖C(t)ψ(0)‖p

Ñ1 ≤ ĜpE‖ψ‖pe−λt. (17)

By (H2) and (H3), we obtain

Ñ2 = E
∥∥ S(t)[ζ − £1(0, ψ)]

∥∥p

Ñ2 ≤ Ĝp[ E‖ζ‖p +Mp
£1

E‖ψ‖p] e−ωt (18)

Now, by using (H1), (H2), and (H3) we obtain

Ñ3 = E
∥∥∥∥ ∫ t

0
C(t− s)£1(s, uρ(s,us))ds

∥∥∥∥p

≤ Ĝp
∫ t

0
e−λ(t−s)E‖£1(s, uρ(s,us))‖

pds

≤ Ĝpλ1−p
∫ t

0
e−λ(t−s)(E‖£1(s, uρ(s,us))‖

p)ds
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≤ Ĝpλ1−pMp
£1

∫ t

0
e−λ(t−s)(E‖uρ(s,us)‖

p)ds

≤ Ĝpλ1−pMp
£1

∫ t

0
e−λ(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds (19)

Similarly, using (H1), (H2), and (H4), we obtain

Ñ4 = E
∥∥∥∥ ∫ t

0
S(t− s)£2(s, uρ(s,us))ds

∥∥∥∥p

≤ Ĝpω1−pMp
£2

∫ t

0
e−ω(t−s)(E‖uρ(s,us)‖

p)ds

≤ Ĝpω1−pMp
£2

∫ t

0
e−ω(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds (20)

Now, by Lemma 1 and (H5), we obtain

Ñ5 = E
∥∥∥∥ ∫ t

0
S(t− s)£3(s, uρ(s,us))dW(s)

∥∥∥∥p

≤ Ĝp
(

p(p− 1)
2

) p
2
[ ∫ t

0
e−ω(t−s)(E‖£3(s, uρ(s,us))‖

p
L2

0

) 2
p ds
] p

2

≤ Ĝp
(

p(p− 1)
2

) p
2
(

2ω(p− 1)
p− 2

)1− p
2 ∫ t

0
e−ω(t−s)E‖£3(s, uρ(s,us))‖

pds

≤ Ĝp
(

p(p− 1)
2

) p
2
(

2ω(p− 1)
p− 2

)1− p
2

Mp
£3

∫ t

0
e−ω(t−s)E‖u(ρ(s, us))‖pds

≤ Ĝp
(

p(p− 1)
2

) p
2
(

2ω(p− 1)
p− 2

)1− p
2

Mp
£3

∫ t

0
e−ω(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds (21)

Using Hölder′s inequality and by (H2) and (H6), we obtain

Ñ6 = E
∥∥∥∥ ∑

0<ti<t
C(t− ti)Ii(u(t−i ))

∥∥∥∥p

≤ ĜpE
(

∑
0<ti<t

e−λ(t−ti)αi‖u(t−i )‖
)p

≤ ĜpE
( +∞

∑
i=1

α
p−1

p
i α

1
p
i e−λ(t−ti)‖u(t−i )‖

)p

≤ Ĝp
( +∞

∑
i=1

αi

)p−1

∑
0<ti<t

αie−λ(t−ti)E‖u(t−i )‖
p (22)

Similarly, using (H2) and (H6), we have

Ñ7 ≤ Ĝp
( +∞

∑
i=1

βi

)p−1

∑
0<ti<t

βie−ω(t−ti)E‖u(t−i )‖
p (23)
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On substituting all the equations from (18) to (23) into (16), we obtain

E‖u(t)‖p ≤7p−1
{

ĜpE‖ψ‖pe−λt + Ĝp[ E‖ζ‖p +Mp
£1

E‖ψ‖p] e−ωt

+ Ĝpλ1−pMp
£1

∫ t

0
e−λ(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds

+ Ĝpω1−pMp
£2

∫ t

0
e−ω(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds

+ Ĝp
(

p(p− 1)
2

) p
2
(

2ω(p− 1)
p− 2

)1− p
2

×Mp
£3

∫ t

0
e−ω(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds

+ Ĝp
( +∞

∑
i=1

αi

)p−1

∑
0<ti<t

αie−λ(t−ti)E‖u(t−i )‖
p

+ Ĝp
( +∞

∑
i=1

βi

)p−1

∑
0<ti<t

βie−ω(t−ti)E‖u(t−i )‖
p
}

E‖u(t)‖p ≤7p−1
{

Ĝp{E‖ψ‖pe−λt +
[

E‖ζ‖p +Mp
£1

E‖ψ‖p] e−ωt}
+ Ĝpλ1−pMp

£1

∫ t

0
e−λ(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds

+ Ĝpω1−pMp
£2

∫ t

0
e−ω(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds

+ Ĝp
(

p(p− 1)
2

) p
2
(

2ω(p− 1)
p− 2

)1− p
2
Mp

£3

∫ t

0
e−ω(t−s) sup

θ∈[−τ,0]
E‖u(s + θ)‖pds

+ Ĝp
( +∞

∑
i=1

αi + βi

)p{
∑

0<ti<t
e−λ(t−ti)E‖u(t−i )‖

p + ∑
0<ti<t

e−ω(t−ti)E‖u(t−i )‖
p
}}

By Lemma 2 and if the hypotheses (H7) holds, we attain the following from the
above equation:

E‖u(t)‖p ≤ 7p−1ĜpE‖ψ‖pe−λt + 7p−1Ĝp[E‖ζ‖p +Mp
£1

E‖ψ‖p]e−ωt (24)

In addition, it is proven and demonstrated as below:

E‖u(t)‖p ≤ G1e−λt + G2e−ωt, (25)

where G1, G2 > 0 are two constants such that G1 = 7p−1ĜpE‖ψ‖p and G2 = 7p−1Ĝp

[E‖ζ‖Mp
£1
+ E‖ψ‖p]. Obviously, by Lemma 2 and the above evaluations, we obtain that

E‖u(t)‖p ≤ G̃e−δt, t ≥ −τ, where

G̃ =max
{

7p−1Ĝp[E‖ψ‖p + E‖ζ‖p +Mp
£1

E‖ψ‖p],
7p−1λ−pMp

£1
, 7p−1ω−pMp

£2
,

7p−1Ĝpω−
p
2

(
p(p− 1)

2

) p
2
(

2(p− 1)
p− 2

)1− p
2

Mp
£3

}
> 0.

Thus, the exponential stability result is achieved for the mild solution of system (1)–(4).
Hence the theorem is proved.

Assume that p = 2; then by applying the same procedure of Theorem 1, we derive a
corollary as follows:
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Corollary 1. Suppose that the hypotheses (H1)–(H7) are satisfied; then the mild solution (5) of
the impulsive second-order system with SDD (1)–(4) is exponentially stable in the mean square
moment, provided

7Ĝ2
[M2

£1

λ2 +
M2

£2

ω2 +
M2

£3

ω
+

( +∞

∑
i=1

(αi + βi)

)2]
< 1

Remark 3. If Equations (1)–(4) are in the absence of impulses, then the system becomes the
following second-order neutral stochastic systems involving SDD:

d[u′(t)− £1(t, uρ(t,ut))] =
[

Au(t) + £2(t, uρ(t,ut))
]
dt + £3(t, uρ(t,ut))dW(t)

t ≥ 0, t 6= ti, i = 1, 2, . . . , (26)

u(s) =ψ(s), s ∈ [−τ, 0), u′(0) = ζ (27)

and the solution is

u(t) =C(t)ψ + S(t)[ζ − £1(0, ψ)] +
∫ t

0
C(t− s)£1(s, uρ(s,us))ds

+
∫ t

0
S(t− s)£2(s, uρ(s,us))ds +

∫ t

0
S(t− s)£3(s, uρ(s,us))dW(s)

Now, by Theorem 1, we derive the following.

Corollary 2. If the assumptions (H1)–(H5) hold and if the inequality

5p−1Ĝp
[

λ−pMp
£1
+ ω−pMp

£2
+Mp

£3
ω−

p
2

(
p(p− 1)

2

) p
2
(

2(p− 1)
p− 2

)1− p
2
]
< 1

is satisfied, then the mild solution of SOS with SDD (26) and (27) is exponentially stable in the
mean square momentm provided

5Ĝ2
[M2

£1

λ2 +
M2

£2

ω2 +
M2

£3

ω

]
< 1.

Suppose the neutral term £1(t, uρ(t,ut)) = 0; then the system (1)–(4) becomes

du′(t) =
[

Au(t) + £2(t, uρ(t,ut))
]
dt + £3(t, uρ(t,ut))dW(t)

t ≥ 0, t 6= ti, i = 1, 2, . . . , (28)

∆u(ti) =Ii(u(t−i )), i = 1, 2, . . . , (29)

∆u′(ti) =Ji(u(t−i )), i = 1, 2, . . . , (30)

u(s) =ψ(s), s ∈ [−τ, 0), u′(0) = ζ (31)

Corollary 3. If (H1), (H2) with (H4)–(H6) are satisfied, then the mild solution of SOS (28)–(31)
is exponentially stable in the pth moment if the following inequality

6p−1Ĝp
[

ω−pMp
£2
+Mp

£3
ω−

p
2 ×

(
p(p− 1)

2

) p
2

×
(

2(p− 1)
p− 2

)1− p
2

+

( +∞

∑
i=1

(αi + βi)

)p]
< 1
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is satisfied. Then it is exponentially stable in the mean square moment, provided

6Ĝ2
[M2

£2

ω2 +
M2

£3

ω
+

( +∞

∑
i=1

(αi + βi)

)p]
< 1.

Remark 4. It should be noted that the stability analysis of second-order systems with or without
stochastic effects has been studied in [8,13,15]. Further, the stability of stochastic systems with
impulses has been discussed in [10,22,25,26]. However, in practice, many second-order systems
together with impulse effects are subjected to random loading. Also, delay effects are an essential
occurrence in the study of stability analysis and are inevitable. Thus, the vital purpose of the present
study is to bridge such a gap by making an attempt to deal with the second-order impulsive systems
with stochastic effects and state-dependent delay. Comparing with [8,10,13,15,22,25,26], the results
in this paper are new and original, as they have not considered the state-dependent delay.

4. Example

Consider the second-order neutral impulsive stochastic partial differential equations
with SDD,

∂

[
∂

∂t
z(t, y)− f1z(t + θ)

]
=

[
∂2

∂x2 z(t, y) + f2z(t + θ)

]
+ f3z(t + θ)dW(t), (32)

t ≥ 0, 0 ≤ y ≤ π, θ ∈ [−τ, 0], subject to the initial conditions

∆z(ti)(y) =
r1

i2
z(t−i ), t = ti, i = 1, 2, . . . ,

∆z′(ti)(y) =
r2

i2
z(t−i ), t = ti, i = 1, 2, . . . ,

z(t, 0) =z(t, π) = 0,
∂

∂t
z(0, y) =z1(y), y ∈ [0, π],

z(ξ, y) =ϕ(ξ, y), 0 ≤ y ≤ π, −τ ≤ ξ ≤ 0,

where ϕ(ξ, ·) ∈ L2[0, π], ϕ(·, y) ∈ PC and fi > 0, i = 1, 2, 3, rk ≥ 0, k = 1, 2 are constants.
Here, W(t) is a one-dimensional Brownian motion. Also, A is the infinitesimal generator
of a strongly continuous cosine family of bounded linear operators C(t), t ≥ 0 and the
associated sine family S(t), t ≥ 0, which satisfies ‖C(t)‖ ≤ e−π2t and ‖S(t)‖ ≤ e−π2t for
t ≥ 0. Let ß1 = L2

0[0, π] and ß1 = R1 and the norm is defined as ‖ · ‖. Define the operator
A : ß1 → ß1 by A = ∂2

∂x2 with domain D(A) = y ∈ ß1 such that y, y′ are absolutely
continuous, y′′ ∈ ß1 and y(0) = y(π) = 0. Then

Ay = −
∞

∑
n=1

n2〈w̃, w̃n〉w̃n w̃ ∈ D(A),

where w̃n(y) =
√

2
π sin ny, n = 1, 2, . . . , is denoted as a complete orthonormal set {w̃n}n∈N

of eigenvectors of A.
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We define the operators f1, f2 : [0,+∞)×PC → ß1, f3 : [0,+∞)×PC → L0
2(ß2, ß1)

and ρ : [0,+∞)×PC → [−τ, 0] as follows:

£1(t, uρ(t,ut)) = f1z(t + θ)

£2(t, uρ(t,ut)) = f2z(t + θ)

£3(t, uρ(t,ut)) = f3z(t + θ)

∆u(ti
i) =

r1

i2
z(t−i )

∆u′(ti
i) =

r2

i2
z(t−i ),

where θ ∈ [−τ, 0]. It is easy to see that the conditions G̃ = 1, r = 1, λ = ω = π, αi =
r1
i2 ,

β = r2
i2 , i = 1, 2, . . . , andM£1 = µ1,M£2 = µ2 andM£3 = µ3 are satisfied. Consequently,

by Theorem 1, the system (32) is exponentially stable in the pth moment, provided that

7p−1
[

π−pµ1 + π−pµ2 + µ3π
−p
2

(
p(p− 1)

2

) p
2
(

2(p− 1)
p− 2

)1− p
2

+

[(
r1π2

6
+

r2π2

6

)]p]
< 1.

Thus, the mild solution of system (32) is exponentially stable.

5. Conclusions

In this paper, the exponential stability results for the impulsive neutral second-order
stochastic differential equation with state-dependent delay have been investigated. At first,
using a lemma, an integral inequality concerning impulses is rendered to overwhelm the
difficulties of the impulsive conditions in the system. Further, an example is given to show
the validity of the attained result. Moreover, the derived result can be extended to systems
with different delay effects, like multiple delay, distributed delay, and so on.
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