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Abstract

Themarine food-processing industries were producing large quantities of shell wastes

as a discard. Currently, this waste material was underutilized and leads to the land-

fill as a significant environmental issue. The outer shells or exoskeletons of mollusks

serve as the best source of chitin. Three different allomorphs of chitin (γ, β, and γ) were
extracted from different species of crustaceans, mollusks, and fungi. β-Allomorphs

predominantly exist in the shells of mollusks. β-Chitin and its deacetylated product

chitosan has been utilized for its special characteristic features, including biocom-

patibility, environmental friendly, and nontoxic properties. The extraction of β-chitin
and chitosan from the mollusk shell waste were evaluated in this work. Hence, this

review aims to explore edible mollusk shell waste sources and its suitable extraction

techniques, characterizations, and functional properties of mollusk-based β-chitin and
chitosan. Further, the genetic pathway of synthesizing mollusk chitin was discussed.

The entire life cycle assessment with techno-economic aspects were extrapolated to

study the bottlenecks and tangible solution for the industrial upscaling of obtaining

β-chitin and chitosan from the edible mollusk shell waste have been reviewed herein.
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1 INTRODUCTION

The seafood industry serves as the chief source of food supply

for the human population. Seafoods, including fish, crustaceans, and
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mollusks were attracted by the consumers for their high protein con-

tent and other nutritional value. This rising usage led to produce huge

volumes of shell wastes. The accumulation of bio-waste in landfills

can cause severe deleterious effects on the environment and humans.
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For instance, Cadano et al. (2021) reported that 250,000 MT wastes

were produced from aquatic animals. Besides, the conversion of waste

resources into valuable biomass is an emerging concept as per United

Nations sustainable development goals.

The consumption of mollusks has significantly increased due to

their health benefits. Mollusks serve as the best source of polyunsat-

urated fatty acids next to fish (Abedi & Sahari, 2014; Moniruzzaman

et al., 2021). The outer shell of mollusks were inedible which produce

huge quantities of shell wastes (Morris et al., 2019; Murphy & Kerton,

2017). In addition, the mollusk shell waste contains calcium carbon-

ate and some minerals (Laskar et al., 2018). These wastes serve as an

excellent source of chitin, proteins, and mineral traces (Mathew et al.,

2021). Extraction of value-added products after acid and alkali treat-

ments have several demerits (Kumari et al., 2015). In particular, toxic

and corrosive chemicals utilized in the biorefining are considered as

the major bottlenecks. Furthermore, the chemical residues present on

chitosan restrict their usage in food, feed, and pharmaceutical appli-

cations. Although it can also be extracted using natural deep eutectic

solvents (Bradic et al., 2019), further research is required to find a

biodegradable solvent for extraction.

Chitin is a complex polysaccharide generally present in exoskele-

tons of crustaceans (Mohan et al., 2021), insects (da Silva Lucas et al.,

2021), and mushrooms (Benamar et al., 2022; Mesa Ospina et al.,

2015). The total yield of chitin and chitosan might vary between the

species. The hydrogen bonds present in the chitin lower the solubiliz-

ing properties. Chitin is insoluble in water, some organic, and inorganic

solvents (Hajji et al., 2014). In addition, three different allomorphs of

chitin were reported. For instance, α-chitin exists in the cell wall of

fungi and crustaceans (Mohan et al., 2021; Younes&Rinaudo, 2015), β-
chitin has been reported frommollusks and insects (Mohan et al., 2020;

Weiss, 2012). Furthermore, γ-forms of chitin exist only in cocoons of

insects and fungi with three glycosidic chains (Pellis et al., 2022). The

multifunctional role of chitin and chitosan depends on its solubiliz-

ing properties and molecular weight. These two properties are vital in

determining the potential application of chitin, which proves to be a

functional ingredient inhumanapplication. For instance, (1) it enhances

the proliferation of immune lymphocytes, (2) it has inhibitory effects

on various types of cancer cell lines, (3) it inhibits the production of

reactive oxygen species as an antioxidant, (4) potent surfactant on the

food formulation, (5) and it possess better mechanical property on

food-packaging.

According to the bibliometric analysis, approximately 100 research

papers published over the period of the past two decades that have

been indexed in databases, including Elsevier, Springer, Wiley, Taylor

and Francis, the Royal Chemical Society, and the American Chem-

ical Society using the keywords “mollusk shell waste,” “extraction

methods,” “chitin,” “chitosan,” and “biological activity.” The majority

of research outcomes are from crustacean shell wastes, fungi- and

insects-derived chitin and chitosan. The multifunctional properties of

chitin and chitosan have been documented in previously published

literature (Alimi et al., 2023; Arbia et al., 2013; El Knidri et al.,

2018; Hamed et al., 2016; Islam et al., 2023; Joseph et al., 2021;

Kaur & Dhillon, 2015; Khajavian et al., 2022; Mohan et al., 2020,

2022, 2023; Saenz-Mendoza et al., 2023; Silva et al., 2017; Özel &

Elibol, 2021).

Meanwhile, the structural and functional properties of chitin and

its derivatives from various mollusk shells have been reported earlier

(Akpan et al., 2018; Aylanc et al., 2020; Cabrera-Barjas et al., 2021;

Hazeena et al., 2022; Mohan et al., 2019; Nouj et al., 2022). How-

ever, no comprehensive review were focused on the edible mollusk

shell waste derived chitin and chitosan. As outlined before, this review

aims to discuss the sources of β-chitin and its extraction process. Fur-

thermore, the physicochemical characterization and multifunctional

properties were evaluated to emphasis its role as a functional ingredi-

ent. Finally, the bottlenecks and viable solutions for producing β-chitin
in large-scale were also discussedmeticulously.

2 CHEMICAL STRUCTURE AND SOURCES OF
β-CHITIN AND CHITOSAN

Chitin is the second most abundant polysaccharide on earth, next

to cellulose. The structure of chitin comprised of repeating β-(1,4)-
N-acetylglucosamine units, and chitosan was obtained by deacety-

lation of chitin. Chitosan is acetylated and deacetylated units of

D-glucosamine linked with β-(1,4) glycosidic bonds. During deacety-

lation, acetate ions and amino groups (NH2) were formed by the

hydrolysis of acetamide functional groups (Yadav et al., 2019). Based

on the crystalline properties, chitin has been categorized into three dif-

ferent forms, including α, β, and γ-chitin (Rudall & Kenchington, 1973).

Furthermore, α-allomorphs exist with antiparallel chains, β-allomorphs

contain parallel chains, whereas γ-allomorphs consist of both parallel

and antiparallel chains (Rinaudo, 2006). The best sources of α-chitin
were exoskeletons of crustaceans and beetles (Kaya et al., 2014b; Pak-

izeh et al., 2021). Figure 1 illustrates the chemical structures of α, β,
and γ-chitin and chitosan. Most importantly, β-chitin exists in squid

pens, clams, oysters shell and bones of cuttlefish. The characteristic

features, including solubility, flexibility, hardness, and permeability of

shells, were determined using the ratio of α-chitin and β-chitin. When

compared to α-chitin, β-chitin exhibits higher solubilizing properties

(Seenuvasan et al., 2020).

3 CHITIN SYNTHESIS VIA GENOMIC PATHWAY

The chitin production in mollusk shells can be enhanced through the

chitin synthesis pathway, a total of eight enzymes were involved in

this process. The chitin synthase was the core enzyme in this pathway,

which catalyzes the conversion of N-acetyl-D-glucosamine to chitin.

This chitin synthase was commonly present in insects, fungi, arthro-

pods, and mollusca. The crustaceans including shrimp and crab was

known for higher chitin production (Zhang et al., 2021). The crus-

taceans have a chitin content of 36.43% and whereas in mollusk with

23% respectively. This difference in chitin synthesis can be identi-

fied by exploring the enzyme chitin synthase (CHS). RNAi-mediated

silencing of the CHS gene in the insect Atta sexdens results in its
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F IGURE 1 Chemical structure of α, β, and γ-chitin.

downregulation, which leads to morphological modification and mal-

function in chitin synthesis (Moreira et al., 2020). More exploration

into the CHS gene was needed by using the recent advancements in

genomics andgenetics tools such as Sanger sequencing,whole-genome

sequencing (WGS), transcriptome, recombinant DNA technology, and

in silico bioinformatics analysis. Phylogenetic analysis revealed that

CHS genes of most crustacean species were clustered together and

more specific to arthropods closely related to insects (Zhang et al.,

2021). This made them distant from mollusk CHS (Zheng et al., 2015).

Further phylogenetic analysis revealed that the CHS gene of mollusk

Hyriopsis cumingii, Pinctada fucata, Atrina rigida, andMytilus galloprovin-

cialiswere similar in identity. The theoreticalmolecularmass ofmollusk

was higher (264 kDa) than shrimp CHS and insect CHS protein. This

difference was due to the presence of myosin motor head domain in

the mollusk CHS protein (Zhang et al., 2021; Zheng et al., 2015). In

the mollusk family, the first attempt at sequencing CHS gene was on

A. rigida and M. galloprovincialis with a complete cDNA of the mus-

sel CHS gene found in myosin motor head domain; however, this was

not present in crustacean’s and insects CHS gene (Weiss et al., 2006).

CHS gene from freshwater pearl mussel H. cumingii was sequenced

using a molecular cloning technique, revealing the presence of myosin

head domain (Zheng et al., 2015). Myosin motor head domain function

was predicted to be inhibiting the mineralization process and thereby

regulating the chitin deposition. WGS of polychaete Branchipolynoe

onnuriensis identified seven putative CHS genes (Choi et al., 2022),

more than200CHS isoforms identified inD.magna (Zhang et al., 2021),

whereas crustaceans possess one or two CHS genes. Nevertheless,

the WGS of different mollusks was necessary to find the presence of

CHS genes and chitin synthesis-related genes. At theminimal level, the

CHS of different mussels can be sequenced using Sanger sequencing

and analyzed. Transcriptome analysis of Lamellidens marginalis (Indian

mussel) identified some of the genes involved in chitin biosynthesis

such as CHS, chitin deacetylase isoform, chitinase-3, and chitinase

domain–containing protein-1 (Suman et al., 2023). As the CHS genes
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of crustaceans and mollusks were completely different, a compara-

tive analysis of the CHS gene by molecular cloning technique might

increase chitin production. Furthermore, the genomic and genetics-

based approach of selective breeding of high chitin-producing mussels

can be implemented by (1) mussels free of mutation in the CHS gene

and the other genes involved in the chitin pathway, (2) expression level

of chitin pathway genes in mussels, and (3) also identification of other

potential genomic markers. Genomic tools such as WGS, genetic link-

agemaps, geneticmarker panels, and identificationof quantitative trait

loci were already recommended in the selective breeding of mollusks

species for improving the key production traits (Moreira et al., 2020).

In this case, key production traits can be high chitin production.

4 PRETREATMENT AND PROCESSING OF
MOLLUSK SHELLS

The seafood industries produce huge quantities of shell wastes, which

must be cleaned up before being discarded. However, in most cases

it became untreated and leads to landfill as an environmental burden

(Lim et al., 2021). The waste shells contain few organic tissue mate-

rials after processing the edible part. They can be removed using a

variety of techniques, including mechanical or heat treatment, high-

pressure washing, enzyme hydrolysis, and acid/alkali washing. The

extraction of β-chitin from mollusk shells is a laborious process com-

pared to crustaceans shells that includes the separation of the shell

from the gonads/meat. This process requires special tools for de-

clumping, trimming, cooking, and hydrolyzing operations that remain

developing at industrial scale. The processing ofmollusk shells through

cooking (direct steam) opens themollusk shell and separates the shells

and meat (Iribarren et al., 2010a). After the processing, a predominant

amount of shell wastes produces CaCO3 and chitin.

5 EXTRACTION OF β-CHITIN AND CHITOSAN
FROM MOLLUSK SHELLS

The extraction of β-chitin from mollusk shell wastes is the most chal-

lenging process. Mollusk shells are made up of calcium carbonate

(90%), lipid, proteins, and 10% of chitin (Furuhashi et al.,2009; Hou et

al., 2016). The most common methods employed for chitin extraction

are chemical and green extraction methods. The sources, extraction,

characterization, and biological activities of mollusk derived chitin and

chitosan are summarized in Table 1.

5.1 Chemical (conventional) extraction methods

β-Chitin extraction process follows a similar extraction method like α-
chitin. There are four essential steps involved in conventional chitin

and chitosan extraction (1) deproteinization, which removes protein,

(2) demineralization,which removesminerals, (3) decolorization,which

removes pigments, and (4) deacetylation (Ianiro et al., 2014). The key

advantages of using chemical methods for extraction are the short

processing time and low cost.

5.1.1 Deproteinization

Deproteinization process can be achieved by disrupting the chemical

bonds between proteins and chitin (Manni et al., 2010). The mollusk

shell powder was subjected to NaOH or KOH treatment for 2 h at

90◦C, with constant stirring and it was filtered using a vacuum filter

(Abed et al., 2017; Adekanmi et al., 2023). Finally, the deproteinized

shells were washed for 30 min to neutralize the pH and dried at 60◦C

for 24 h. The concentrations of alkali differs between 0.4 and 3 M

(Gbenebor et al., 2017; Mohan et al., 2019) and wider ranges of tem-

peratures up to 120◦C (Hazeena et al., 2022; Li et al., 2021). The

usage of basic alkali solution made chitin to partially deacetylate and

it may result in lowmolecular weight (Mw) and hydrolysis. Alternately,

enzymes, including proteases, alcalase, and esperase were utilized to

remove the proteins from mollusk shells (Hajji et al., 2015; Vázquez

et al., 2017). These enzymes might take longer reaction time, low pro-

tein degradation, and expensive to maximize the yield at industrial

scale.

5.1.2 Demineralization

The elimination of mineral components, including CaCO3 and

Ca3(PO4)2, can be achieved via the demineralization process. The

acids, such as H2SO4, HCl, HNO3, CH3COOH, HO2C−CO2H, and

HCOOH, were often utilized in this process. Among them, HCl is

predominantly utilized in extraction of β-chitin from mollusk shells

(Čadež et al., 2018; Rajathy et al., 2021; Singh et al., 2019; Varma

et al., 2021). Followed by, vacuum- filtration and neutralization, the

demineralized shells were heated for 24 h at 60◦C.During this process,

a decomposition reaction occurs which transforms CaCO3 into Cacl2

and CO2. Generally, this process was carried out at a high temperature

for a long duration which adversely affects the physical properties of

chitin (Kaur &Dhillon, 2015).

5.1.3 Decolorization

Removal of pigments attached in the shells could improve the purity

of chitin at the final stage. This can be performed by treating with

decolorizing agents, including acetone, chloroform, and ethyl alcohol

(Dinculescu et al., 2023). After decolorization, resulting pigments can

be extracted and utilized for other industrial applications (Rinaudo,

2006). The samples were decolored by subjecting them to an acetone

or ethyl alcohol solution for 10 min followed by drying at room tem-

perature for 2 h. The leftover wastes was neutralized and used as a soil

enhancer.
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5.1.4 Deacetylation

The process of removing acetyl groups that are connected to chitin

replaces them with reactive amino groups. The degree of deacetyla-

tion (DDA) can affect the percentage of free amino groups, which is

considered as an essential factor that differentiates chitin and chi-

tosan. Deacetylation increases the possibilities of producing chitosan

in large quantities by converting chitin into chitosan using chemical

procedures. This process was performed by conventional chemical

deacetylation by alkali-NaOH (Čadež et al., 2018; He et al., 2016; Sis-

woyo et al., 2023; Zamri et al., 2020). It is suggested that alkali would

be a preferable chemical alternative to acid. Furthermore, glycosidic

linkages are extremely vulnerable to acid (Hajji et al., 2014).

5.2 Green extraction methods

The utilization of NaOH at high concentration and temperature dur-

ing the deproteinization process could deacetylate and depolymerize

chitin and restrict their applications. Similarly, this requires a lot of

energy and cause adverse effects to the environment (Gortari &Hours,

2013). Furthermore, chemicals utilized during the chitin extraction

process spoil or degrade the nature of proteins, and it cannot be used

as a food or feed applications (Xu et al., 2008). Therefore, greener

extraction approaches are gaining popularity for their environment-

friendly nature, safe, and reduced energy consumption. To date,

few greener techniques like ultrasound-assisted and deep eutectic

solvent extraction methods are used for its versatility in β-chitin
production.

5.2.1 Ultrasound-assisted extraction (UAE) method

The cavitation impact of ultrasound enhances the solubility of pro-

tein coupled with chitin, which could be due to depolymerization of

macromolecules, dissociation of covalent links in polymer chains, and

aggregation dispersion (Suryawanshi et al., 2020). The UAE method

is simple, cost-effective, which can be applied to produce chitin in

large quantities. It improves mass balance, shortens extraction time,

reduces energy input and environmental impact compared to conven-

tional extraction methods (Tiwari, 2015). Most importantly, very few

studies evidenced the effectiveness of ultrasound based approaches to

remove β-chitin and chitosan from the shells ofmollusks (Delezuk et al.,

2011; Fiamingoet al., 2016;Huang et al., 2011; Singh et al., 2019).Most

importantly, chitosan extracted from squid pens using high-intensity

ultrasonic signals reduced the extraction time, temperature, power

consumption, and operation frequency of 20 kHz± 50Hz (Huang et al.,

2011; Singh et al., 2019). On the other hand, β-chitin particles showed
remarkable morphological changes as a result of ultrasound cavita-

tion, that is, small particle size andenhancedN-deacetylation efficiency

(Delezuk et al., 2011). Furthermore, the volumeof β-chitin is influenced
by the position of ultrasound probe on the surface this will enhance

the conversion of 88% of β-chitin (from <10% of crude chitin) to chi-

tosan (Fiamingo et al., 2016). Thus, further research investigations are

required to optimize the UAE to increase the yields of β-chitin. Most

importantly, this technique could serve as an alternative for chemical

based extraction procedures in the near future.

5.2.2 Deep eutectic solvent (DES) extraction
methods

DES provides a sustainable alternative to the traditional approaches

that are used to produce β-chitin. DES has the potential to minimize

themultiple steps involved in the conventional chemical processes into

single-step-approach. CaCO3 is the main component of mollusk shell.

The extraction process requires an acidic solution to act as a co-solvent

hydrogenbonddonor. Recently,McReynolds et al. (2022) reported that

DES breaks strong hydrogen bonds between chitin amino groups and

H+ by using citric acid, malonic acid, and lactic acid. These green sol-

vents are highly biodegradable and less or nontoxic nature compared

to conventional alkali extraction (Zhang et al., 2012). DES coupledwith

potassium carbonate: glycerol enhances the purity of β-chitin from

snail shell and squid pen at 100 or 120◦C for 2 or 3 h. So far, this

combination of solvents has been used only for α-polymorph. But,

these results proved that DES is efficient β-polymorph as well (Kimi

& Hamdi, 2023; McReynolds et al., 2022). Other physical properties

such as acetylation degree and crystallinity improved between 77%

and 88%, and 88% and 91%, respectively, and a maximum degradation

temperaturewas around350◦C.DESused in this extractionwas recov-

ered and recycled over three times without modifying the final yield of

chitin (30%) and C/N ratio (6.45–6.52). Other physical properties were

also not modified, including DA and thermal stability (Tdmax around

350◦C). This process is proving that environmentally and economically

beneficial compared to the alkali treatment. It is also important to opti-

mize acid, neutral and alkali DES system to increase the final purity of

β-chitin.

6 PHYSICO-CHEMICAL CHARACTERIZATIONS

6.1 Extraction yield

The extraction yield of β-chitin and chitosan from different mollusk

sources is summarized in Table 1. The final β-chitin and chitosan may

vary from species to species. The maximum yield was obtained from

Pinna bicolor powder (100 g of grounded), that is, 80.15% chitin and

0.021% chitosan (Sudatta et al., 2020), whereas other species had

less chitin yield, such as 39.7% β-chitin extracted from squid pens

Sepioteuthis lessoniana (Subhapradha et al., 2013c), followed by cuttle-

fish bone (Sepia aculeata) had 21% chitin and 49.71% chitosan (after

deacetylation) (Vino et al., 2012), Sepia officinalis yield 5% β-chitin
(Hajji et al., 2014), Sepia pharaonis cuttle bone yielded 27.6% of β-
chitin and 83% of chitosan (from chitin) (Karthik et al., 2016) similar

amount recorded in Sepia prashadi cuttlebone 29% and 15% β-chitin
and chitosan (Seedevi et al., 2017). All these extraction processes used
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acid-alkali (HCl and NaOH) treatment with variable concentration and

temperature. Other common edible mollusk species recorded with

30%–49% of chitin and chitosan from Razor clam shell (Ensis arcu-

atus), West African clam Egeria radiate, Pinna deltoids, Mytilus edulis,

Laevicardiumattenuatum, horsemussel (Modiolusmodiolus), Asian green

mussel (Perna viridis), Donacid clam (Donax scortum), Scylla serrata cara-

pace and P. viridis shells, Scallop shell (Amusium sp), Scylla tranquebarica

(refer to Table 1). Overall, P. bicolor had a high chitin percentage

compared to other reported species.

6.2 Solubility

Chitin has less solubility due to its high cohesive energy between

molecules in the solid state (George&Roberts, 1992). Thismakes chitin

more resistant against variety of organic solvents, but chitosan has a

high degree of solubility in dilute acidic solutions (<pH 6.0) (Chang

et al., 2015; Kumari et al., 2017). The solubilizing properties of chitosan

are associated with time, temperature, alkali ratio, Mw, crystalline

nature, and acetylation degree (Araanz et al., 2021). The DDA andMw

affects the chitosan solubility in water (Qin et al., 2002). Chitosan has

good solubilizingproperties due to thepresenceof anaminogroup. The

amino group contains active sites that influence the attraction of ionic

compounds and soluble in inorganic solvents (Varma & Vasudevan,

2020). The dissolvability of chitosan increases by using ionic liquids

that dissolves in plain water (Li et al., 2019). Generally, chitosan with

high Mw exhibits poor solubility in neutral pH and limits its applica-

tion potential (Blunt et al., 2018; da Salva et al., 2018). The presence

of sulfate plays an important role in chitosan solubility (Ramachan-

dran et al., 2022) but differs between mollusk species. Chitosan from

Telescopium telescopium was soluble in 1% acetic acid, whereas chitin

from Conus inscriptus displayed 72.35% solubility in 40% acetic acid

solution (Mohan et al., 2019). The solubility of crab, pang scale, sil-

ver scale, and prawn chitin was 70.78%, 70.67%, 68%, and 58.33%

respectively (Alabaraoye et al., 2018).Mussels’ chitin had a highest sol-

ubility of85.71%followedby squidpenandoysters chitinwith78%and

77.78%, respectively (Subhapradah et al., 2013; Huang et al., 2014).

Chitin derived from crustacean sources are comparatively less soluble

than mollusc chitin. Overall, these outcomes proved more than 70%

solubility of mollusk chitin/chitosan is viable for many biodegradable

applications.

6.3 Molecular weight (Mw) distribution of
β-chitin and chitosan from mollusk shells

The biological performance of chitin is directly linked to Mw and

purity. It has been proven that extraction process and solvents influ-

ences theMw of chitin. Chitosan extracted from Periplaneta americana,

Orthoptera, Leptinotarsa decemlineata, Mesobuthus gibbosus, and Tene-

brio molitorwas observed to be 230,300 Da, 5.2–6.8 Da, 2.722–2.676,

3.22, and 308.3 kDa respectively (Kim et al., 2017; Kaya et al., 2014b,

2015, 2016; Song et al., 2018). Chitosan from E. arcuatus displayed

a high Mw of 482.38 kDa (Zamri et al., 2020), compared to chitosan

from D. scortum, M. modiolus, and Sepia kobiensis showed a molecular

weight range of 373.80, 345.94, and 322.04 kDa (Ramasamy et al.,

2014; Shanmugam et al., 2012; Varma & Vasudevan, 2020). Chitosan

extracted from squid pen displayed highest Mw of β-chitin (a→ b) was

1800kDaand β-chitin (b→a)was1150kDa (Suenagaet al., 2016), con-

versely, α-chitin extracted from the shells of C. inscriptus displayedMw

of 25 kDa (Mohan et al., 2019). The sulfated chitosan from S. lessoniana

through gamma irradiation (25, 50, and 100 kGy) displayed different

Mw, including 1449, 1051, and 663 Da respectively (Ramachandran

et al., 2022). Chitosan was extracted using high hydrostatic pressure

(HHP) and untreated squid pen samples had low Mw of 98.83 and

136.11 KDa respectively (Huang & Tsai, 2020). Most interestingly, low

Mw chitosan displayed stronger cytotoxic activity against squamous

cell carcinoma (Wimardhani et al., 2014). Chitosan’s with high Mw

makes it insoluble in water and viscous, and this unique property is

attractive and helpful in food packagaing application. According to the

previous reports, lowmolecular weight shrimp chitosan exhibits effec-

tive bacterial inhibiting effects than themedium and highMw chitosan

(Du et al., 2009). In summary, the Mw of chitin and chitosan influences

functional application. LowMw chitin and chitosan frommollusk shells

offer remarkable antibacterial and anticancer characteristics that can

be used in the development of new pharmaceuticals.

6.4 Degree of deacetylation (DDA)

The DDA of chitin and chitosan is the significant characteristic that

influences the biological, physicochemical, and mechanical properties

of the extracted material, and these attributes are reliant on the

methodof extraction (Khanet al., 2002). TheDDAof chitinwas97.70%,

96%, 94.02%, 90%, 89.14%, 88%, 85.55%, and 74.35% in Belamya

javanica, Illex argentinus, Todarodes pacificus, chiton shell, oyster shell

S. lessonianai, S. kobiensis, and D. scortum, respectively (Cortizo et al.,

2008; Handayani et al., 2018; Hardani et al., 2021; Ramasamy et al.,

2014; Rasti et al., 2017; Shanmugam et al., 2012; Subhapradha et al.,

2013; Youn et al., 2013). The DDA of chitosan was 88% in Halio-

tis tuberculata (Zentz et al., 2001), 83.76% in Doryteuthis singhalensis

(Ramasamy et al., 2017), 93% in Dosidicus gigas (Jung & Zhao, 2011),

85.4% in I. argentinus (Huang&Tsai, 2020), 85.55% in S. kobiensis (Shan-

mugam et al., 2016), 71.8% in Scallop shell (Rokhati et al., 2017), and

89.14% in oyster shell (Alabaraoye et al., 2018). DDA can be deter-

mined by Fourier transform infrared spectroscopy (FT-IR) (Kaya et al.,

2014a), conductometric (Khayrova et al., 2019), acid-base (Zhang et al.,

2011), andpotentiometric titrationmethods (Maet al., 2015). Chitosan

derived from fish, shrimp, and crab shells have DDA percentages of

75%, 78% and 70%, respectively (Kumari et al., 2017). The research

findings that were discussed earlier have revealed that an increas-

ing DDA of chitin and chitosan that can be employed as scaffolds for

skin/tissue engineering and implantations in the field of biomedicine

(Akpan et al., 2018).
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7 STRUCTURAL CHARACTERIZATIONS

The structural characterization of β-chitin and chitosan from mol-

lusk shells requires instruments including X-ray diffractometry (XRD),

energy-dispersive X-ray spectroscopy (EDX), FT-IR, scanning elec-

tronmicroscopy (SEM), thermogravimetric analysis (TGA), and nuclear

magnetic resonance spectroscopy (NMR). Identifying the structural

components is necessary to optimize its extraction process as well as

its suitable applications.

7.1 Crystalline properties

XRD is a non-destructive method for characterizing crystalline mate-

rials that provide information on structural arrangements, the orien-

tation of the crystals, grain size, and crystallinity. In this method, the

X-rays filtered to produce monochromatic radiation on the material.

The peak intensities represent specific angles from each set of lattice

planes in the sample (Bunaciu et al., 2015). A total of 13 strong peaks,

including two strong peaks between 23◦ and 50◦ and three strongest

peaks at 29.3◦, 19.63◦, and 20◦, were observed in pen shells (Sudatta

et al., 2020), and a strong peak at 20.04◦ for horse mussel (Varma &

Vasudevan, 2020) represents adenser crystalline structureof chitosan.

In another study, Majekodunmi et al. (2017a) evidenced seven strong

peaks and two highest peaks corresponding to silicon dioxide and cal-

cium carbonate. A recent study by Varma et al. (2021) analyzed the

chitosan from P. deltoids. The XRD analysis results displayed nine dis-

tinct peaks. The chitosan extracted from crab and squilla displayed two

typical crystalline peaks at 2θ = 10.3 and 19.2; 2θ = 10.2 and 19.5,

both of which were slightly displaced to a higher diffraction angle and

revealed semi-crystalline chitosan (Anand et al., 2014). In conclusion,

chitin and chitosan extracted from the mollusk shell wastes revealed

more crystalline than amorphous nature of β-chitin and chitosan.

7.2 Energy-dispersive X-ray spectroscopy (EDX)

The presence of C, H, and N in chitin and chitosan were determined

using energy-dispersive X-ray spectroscopy (Scimeca et al., 2018).

The mollusk shells derived chitin and chitosan comprises of 10.75%–

48.40% carbon, 0.64%−7.02% hydrogen, and 2.90%–12.32% nitrogen

(Cadano et al., 2021; Karthik et al., 2016; Ramasamy et al., 2014;

Seedevi et al., 2017). The highest carbon content of 48.40% in Cras-

sostrea iredalei (Cadano et al., 2021), 7.02% of hydrogen in P. viridis

(Cadano et al., 2021), and 5.70% of nitrogen in Sepioteuthis pharaonis

(Karthik et al., 2016)weredocumented.Hence, it canbeconcluded that

the chitosan isolated from mollusk shells contains high C% followed

by N and H. In addition, the carbon, hydrogen, and nitrogen analyti-

cal results for the chitin from crabs were found to be 6.03%, 42.9%,

and 5.65%, respectively; from crayfish itwas noticed as 6.09%, 42.88%,

and 6.02%, respectively; and from shrimp it was confirmed as 6.17%,

43.2%, and 6.42% (Kaya et al., 2015). The N content of chitin is an

essential indicator to determine the purity index, and it has been dis-

covered that the pure (acetylated) chitin had 6.89%N; however, higher

N indicates protein residue in chitin. However, <6.89% suggests inor-

ganic elements are still present (Liu et al., 2012; Sajomsang & Gonil,

2010). Especially,N-rich source indicates thepuritynatureof chitin and

chitosan.

7.3 Fourier transform infrared spectroscopy
(FT-IR)

FT-IR is a modern spectroscopic technique used for both qualitative

and quantitative analyses of chitin and chitosan to differentiate or

distinguish α-form and β-form by evidencing amide I band. In the α-
form, the amide I band splits into two bands at the ranges of 1650 and

1620 cm−1 (Wang et al., 2013), whereas in the β-form, there is only

one amide I band at the 1656 cm−1 region. Shanmugam et al. (2016)

demonstrated that chitosan extracted from S. kobiensis confirmed the

presence of bands corresponding to the functional groups such as

NH2 bonded with H, and OH (3435.37 cm−1), aliphatic CH (2921.94

and 2852.95 cm−1), C=O (1640.62 cm−1), C–O–C (1020.99 cm−1),

and P=O (1386.30 cm−1). However, chitosan from S. officinalis con-

firmed the presence of OH (3340 and 3350 cm−1), C–O–C and C–O

(1200-950 cm−1), amide (1658, 1558, and 1627 cm−1), and CHX

(1376 cm−1) groups (Cadez et al., 2018). Chitosan isolated from P.

bicolordisplayedmajor vibrations ranging between700 and3000 cm−1

(Sudatta et al., 2020). Furthermore, the functional group correspond-

ing to NH (711, 871, and 872 cm−1) stretching vibrations, C–O–C

(1016 cm−1), amide I and II (1741 and 1395 cm−1), aliphatic CH

(2855 cm−1), asymmetric CH2 (2926 cm−1), and OH (3448 cm−1).

Varma and Vasudevan (2020) documented five peaks between the fre-

quency range of 4000 and 400 cm−1 which corresponding to NH, C–O

(564 cm−1), NH (711 cm−1), C–O–C (1174 cm−1), CH2 (2685 cm−1),

and OH (3594 cm−1) in the chitosan ofM. modiolus. Furthermore, Hajji

et al. (2015) highlighted four peaks at the frequency ranges of 3490,

2800–3100, and 1558 cm−1 that correspond to OH-stretching vibra-

tions that overlap the NH, CH, and NH of chitosan isolated from S.

officinalis. The FT-IR spectrum of squilla, crab, krill, lobster, and shrimp

chitin and chitosan exhibits I band at the positions of 1643, 1634, 1625,

1628 and 1667 cm−1, respectively (Anand et al., 2014; Mohan et al.,

2021; Sayari et al., 2016; Srinivasan et al., 2018; Wang et al., 2013).

Overall, the functional group determination results suggested that the

chitin and chitosan extracted frommollusk shells are in β-form.

7.4 Scanning electron microscopy (SEM)

SEM is a useful technique for determining the surface morphology

of chitin and chitosan. The chitosan isolated from the mollusk M.

edulis and L. attenuatum showed uneven size and shape at low magni-

fication and brick-like structures at high magnification (Majekodunmi

et al., 2017b). Varma et al. (2021) identified a porous free smooth

texture of chitosan isolated from Plebidonax deltoides, whereas S.

kobiensis chitosan showed flakey, highly porous, and fibril structures
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(Ramasamy et al., 2014). A rough surface on chitosanwas observed at a

highermagnification ofM. edulis (Majekodunmi et al., 2017b); however,

unevenparticle size and shapewereobservedunder lowmagnification.

The chitosan from S. prashadi showed porous bridge shaped crystalline

particles (Seedevi et al., 2017). Vairamani et al. (2013) observed and

reported highly porous structure of chitosan isolated from cuttlebone.

However, the chitosan isolated from P. deltoides showed a porous-free

smooth texture under SEM micrographs. Chitin from conus shell had

microfibrillar crystalline structure with pores (Mohan et al., 2019).

Moreover, chitin extracted from krill, shrimp, and lobster shells was

also found to contain the similarly densely packed fibers (Al Sagheer

et al., 2009; Srinivasan et al., 2018; Wang et al., 2013). Surface mor-

phology is one of the essential factors that determines the efficient

usage of chitin and chitosan. Chitin and chitosan in their nanofiber and

nanopore forms may have uses in textiles, food, and medicine (Aranaz

et al., 2009; Synowiecki & Al-Khateeb, 2003).

7.5 Thermogravimetric analysis

The thermal stability based on the amount of mass that is lost at two

different stages. The loss that occurs in the first step can be attributed

to the water molecules during evaporation in the chitin and chitosan

molecules, and the loss that occurs in the second step can be attributed

to the degradation of chitin and chitosan (Ofem, 2015). The first loss

of the chitin and chitosan from different mollusk shells ranged from

5% to 9.61%, whereas the second mass loss ranged from 51.9% to

63.5% (Aylanc et al., 2020; Cabrera-Barjas et al., 2021; Huang & Tsai,

2020; Ianiro et al., 2014; Kaya et al., 2016; Mohan et al., 2019; Varma

et al. 2021). The maximum temperatures (DTG max) for the degrada-

tion of chitin and chitosan from several mollusk shells ranged from 380

to 444◦C (Mohan et al., 2019; Rajathy et al., 2021). In the TGA anal-

ysis of chitosan obtained from crab and squilla, the process of mass

loss occurred in three stages: The first stage was observed at temper-

atures below 100◦C; the second stage had occurred at temperatures

between 213 and 269◦C; and the third stage had occurred at temper-

atures between 350 and 384◦C (Anand et al., 2014). In addition, De

Andrade et al. (2012) have reported that the maximum decomposition

temperature range for crab chitosan is between 400 and 500◦C. This

thermal stability of chitosan was influenced by Mw, and crystallinity

(Kumari et al., 2017; Kaya et al., 2016). Overall, it could be evidenced

that chitin and chitosan from mollusk shells showed better thermal

stability at>350 oC.

7.6 Nuclear magnetic resonance spectroscopy

NMR spectroscopy is used to identify and characterize chemical com-

pounds. The nature of neighboring units determines the change in the

resonance signal. The presence of hydrogen bonds in the molecules

shifts the resonance signal to lower fields (Zia et al., 2019). Ramasamy

et al. (2014) investigated the chitosan from S. kobiensis showed four

peaks at 1.95–1.97, 3.05–3.09, 3.65–3.68, and 3.81–3.85 ppm, which

represent three protons of N-acetyl glucosamine, H-2 proton of glu-

cosamine, and non-anomeric proton, respectively. Similar units were

identified in S. prashadi chitosan at 3.503–3.583, 3.002–3.044, 2.983,

and 1.918–1.923 ppm that indicate the presence of glucosidic amide

proton, sulfated amide proton, H2 of GlcN, N-alkylated GlcN, and

unfold amide of α-carbon proton, respectively (Seedevi et al., 2017).

The 13C CP/MAS NMR spectra of the insect cicada slough chitin spec-

trum have eight well-defined peaks of C1–C6, CH3, and C=O carbons.

These peaks can be identified by a chemical shift that ranges from20 to

190 ppm (Sajomsang & Gonil, 2010). The peaks identified in the NMR

studies revealed that they can be used to characterize, identify, and

confirm the presence of chemical molecules in the chitin and chitosan

extracted from variousmollusk species.

8 FUNCTIONAL PROPERTIES

Edible mollusk shells chitin and chitosan exhibited a wide range of bio-

logical functions that include antibacterial, antifungal, antiviral, anti-

tuberculosis, anticoagulant, antioxidant, anticancer, and anti-obesity

properties (Adhikari & Yadav, 2018; He et al., 2016; Ramasamy et al.,

2022; Van Hoa et al., 2021). The valorization of functional ingredient

frommollusk shell waste is shown in Figure 2.

8.1 Antioxidant and anticoagulant activities

The antioxidant property of any natural compound is determined by

its potency against free radical scavenging properties. Chitosan from

Sepia aculeata cuttle bones exhibits potent antioxidants against DPPH

and hydroxyl radicals at 88.6% and 72%, respectively (Vino et al.,

2012). However, other species of cuttlefish S. prashadi exhibited 64.5%

and 83.5% against hydroxyl and superoxide radical scavenging activity.

This difference could be due to alkali concentration, time, and tem-

perature applied in extraction process that influences the antioxidant

percentage. Less DDPH scavenging action of 38.92% was observed

from shells of D. scortum (Shanmugam et al., 2012). These chitin dis-

played both anticoagulant and antioxidant activity. They exhibited

partial thromboplastin time (PTT) and PT assay value of 6.90 and

1.2 IU/mg, respectively.Most importantly, chitosan exhibited anticoag-

ulant properties in human plasmawith PTT of 1.73 and activated a PTT

of 6.45 IU (Subhapradha et al. 2013d). However, increasing the pres-

sure of 300MPa/min and a release time of<3 s throughHHP increases

antioxidant activity of 98 %and 99% against DDPH and the chelating

ability, comparatively HHP process displayed better antioxidant activ-

ity (Huang & Tsai, 2020) to the conventional acid/alkali method. These

antioxidant properties is essential for food application topreserve food

and also act as a functional ingredient while consuming. However, the

percentage of mollusk chitin addition in food is lacking. It is therefore

recommended to identify the concentration dependentmode of action

in animal models.

 26438429, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fft2.326, W

iley O
nline L

ibrary on [01/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



KARTHICK RAJAN ET AL. 63

F IGURE 2 Valorization of functional ingredient frommollusk shell waste.

8.2 Antimicrobial activities

Chitin and its derivatives have been well recognized for their antimi-

crobial potential (Benhabiles et al., 2012; Rakkhumkaew & Pengsuk,

2018). For instance, Abdelmalek et al. (2017) evaluated the antibacte-

rial efficacy of β-chitosan against a wide range of pathogens, including
Salmonella enterica, Escherichia coli, Klebsiella pneumoniae, and Bacil-

lus cereus at 49 mg/mL concentration on the selected pathogens.

They evidenced that chitosan has the ability to inhibit the growth

of these pathogens at 0.5–2.3 mm zone of inhibition. Moreover, the

antibacterial effectiveness of chitosan and phosphorylated chitosan

from S. kobiensis has been evaluated (Shanmugam et al. 2016) against

Proteus vlulgaris and Staphylococcus aureus showed 17 and 16 mm

inhibition at 100% concentration. However, 50% chitin concentra-

tion had less inhibition of 14 mm against the same bacterial species.

The gamma-irradiated sulfated chitosan 100 Gy (GIR-SCH) displayed

anti-tuberculosis effects againstMycobacterium smegmatis (Ramachan-

dran et al., 2022). Most interestingly, it displayed three folds higher

action than the commercial chitosan but less action against com-

mercial drug rifampin. Chitosan from S. kobiensis displayed potent

action against Vibrio choleraewith 7 mm zone of inhibition (Ramasamy

et al., 2022). At a low concentration of 200 μg/mL chitin, P. bicolor

shells had displayed better antibacterial activity against G +ve and

G −ve pathogens (Sudatta et al., 2020). For instance, the highest

zone (17 ± 0.5 mm) of inhibition was observed in cuttlefish bone-

derived chitosan against E. coli, which comparatively higher than

crustaceans chitosan (14±0.3mm) (crab) and shrimp-derived chitosan

(10 ± 0.8 mm) (Hajji et al., 2015). Similarly, He et al. (2016) evaluated

in vitro effects of β-chitosan against Newcastle disease virus that had

a potency to enhance immune function. The mechanism involved in

antimicrobial properties are cell wall lysis, release of intracellular com-

ponents, including protein and genetic materials. Meanwhile, chitosan

interacts with the outer membrane and forms vesicles like structure

and leads to cell wall disruption (Helander et al., 2001).

8.3 Anticancer activity

The anticancer action of β-chitin was not much evaluated on various

cancer cell lines. As the main focus was given to α-chitin that was

found to be well established on various tumor cells and also commer-

cialized in pharmaceutics. There are few research outcomes proven

the efficacy of β-chitin/chitosan action on tumor cells such as RT112,

and HepG2 (Hajji et al., 2015; Rasti et al., 2016). Cuttlefish chitosan’s

low AD (<20%) holds promising industrial use. It exhibited superior

activity against human bladder cancer cells, with an EC50 of 62 μM
after 48 h and 50 μM after 72 h of RT112 cell incubation. In con-

trast, crab chitosan (AD: 12%; MW: 6120 g/mol) had EC50 values of

100 μM after 48 h and 50 μM after 72 h. Therefore, this confirms

that lowMw,water-soluble chitosan forming lowviscous solution likely

inhibits tumor growth (sarcoma in mice) by promoting T-cell prolifera-

tion and enhancing cytotoxic activity against tumors through induced
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lymphocyte cytokines, leading to enhanced natural killer cell activity,

contributing to their antitumor effects.

8.4 Wound-healing activity

Karthik et al. (2016) demonstrated that lowMw-sulfated chitosan from

S. pharaonis showed cytostatic activity, followed by anticoagulant and

antiviral activities. Similarly, β-chitin from cuttlefish bone exhibited

wound-healing properties against skin damage that reduces wound

radius on the rat models (Jung et al., 2018). To obtain a better func-

tionality of chitin, electrospinning or nanopartilces will improve chitin

actionon the target site.However, themodeof action,molecularmech-

anisms, and effectiveness of chitosan may provide better insight to

identify the unknown or novel mechanisms in future.

9 FOOD INDUSTRIAL APPLICATION

The food industry generates substantial effluents during processing,

which need to be treated/adsorped before eliminating to the environ-

ment. Chitin and chitosan have gained attention for their adsorption

properties and low cost. Furthermore, presence of amino and hydroxyl

groups significantly absorbs the toxic effluents. Their unique chemi-

cal structure (β-chitin), stability, chelation behavior, high reactivity, and
selectivity toward contaminants make them excellent for adsorption

(Bhatnagar & Sillanpää, 2009; Boamah et al., 2015). Recent studies

have explored mollusk-derived β-chitin and chitosan as adsorbents

for wastewater contaminants (Kavisri et al., 2023; Nouj et al., 2022;

Siswoyo et al., 2023). For instance, chitosan from cephalopod waste

proved effective in removing cadmium (Cd) from aqueous solutions,

with optimal conditions at pH 7, 42.5◦C, 220 min, and 1 g/L sorbent

dosage (Kavisri et al., 2023), highlighting the role of surface pores in

adsorption. Nouj et al. (2022) demonstrated that β-chitin from cut-

tlefish bone significantly reduced turbidity, BOD, and COD in food

processing wastewater. Similarly, Siswoyo et al. (2023) found that chi-

tosan from blood cockle shells reduced total suspended solids and

turbidity in well-water. These findings suggest that mollusk-derived β-
chitin and chitosan serve as natural coagulants, promising biopolymers

and potential alternatives for replacing the chemical coagulants. How-

ever, there is a need for further research on their ecological impact in

wastewater treatment from various industrial sectors.

10 LIFE CYCLE ASSESSMENT (LCA) OF
MOLLUSK SHELL FOR β-CHITIN PRODUCTION

Life cycle assessment (LCA) is a technique to measure the total car-

bon footprint from land-use change, carbon uptake, biogenic carbon

emission, and so on (ISO14040/14044) during the production process

from cradle to grave. The amount of energy involved, the use of oper-

ational materials in the production process, and its waste disposal will

determine the environmental effect through LCA. Environmental foot-

print of producing chitin from crustacean’s shells (Muñoz et al., 2018)

and mussel CaCO3 production (Iribarren et al., 2010a, 2010b) were

studied earlier in LCA. However, limited information is available on

the carbon-footprint of chitin frommollusk shell waste. LCA inventory

analysis starts from hatchery, seedling, cultivation, formation of shells,

harvesting, and extraction processes involved in the entire value-chain.

The cultured mollusks such as mussels, clams, and oysters (de

Alvarenga et al., 2012; Filgueira et al., 2015; Vélez-Henao et al., 2021)

were potent carbon sequestration that uptake eutrophication agents

like nitrogen and phosphorus, which positively affects the biodiver-

sity of marine ecosystem. The shell formation is influenced by various

abiotic factors such as pH, temperature, and salinity of the growth

media. The fluctuation in these factors affects C, N, and P fixation in

the clam-shell, which releases CO2, and climate change (CC) impact

category during the formation of the shells. Nevertheless, it was bal-

anced during respiration by C fixation in the shell, and a biogenetic

precipitation of CaCO3 (Filgueira et al., 2015). Upto 57% CC and 59%

acidificationwere observed at the shell-forming stage. Followed by the

post-harvesting steps such as farming, washing, cleaning, and grading

accounts 38% CC and 31.8% acidification of the total environmental

impacts. At the industrial processing stage, the strong acid is used for

the extraction process that consumes energy (fuel and electricity) up

to 5% acidification and 35% ozone layer depletion (Vélez-Henao et al.,

2021). Therefore, it can be extrapolated that the purification of fresh

mussels became key contributor to environmental impact. However,

100 t of mussel shells produce 65 t of CaCO3 with 44 t of debris (Irib-

arren et al., 2010b), and the remaining can produce 10%–20% of chitin

(Table 1) depending on the origin. Followed by the next step of produc-

ing chitin by extracting them using HCl and NaOH for hydrolysis, for

instance, 10 kg of feedstock material should be treated with 9 kg HCl

and 8 kg NaOH in 300 L water, which could yield 1 kg of chitin. This

process releases0.9 kgCO2 per kg chitin basedon their carbon content

and stoichiometry. The entire process, including power, type of power

grid, other materials involved in the process, will be evaluated. The

majority of emission comes from wastewater as NaOH, HCl consump-

tion and disposal lead to CC and acidification and ammonia emission.

These emissions also depend on other impurities like sand, sediments,

and organic debris, associated with the pretreatment process, which

will influence the wastewater disposal treatment. The chitin recovery

process contributes to acidification, photochemical smog, and global

warming potential (Zuorro et al., 2020). The LCA for chitin and chitosan

production frommollusk shells is shown in Figure 3.

11 TECHNO-ECONOMIC ASSESSMENT (TEA)
FOR CHITIN PRODUCTION

TEA was carried out to test product and process benefit pathways.

Based on this profitability, process optimization, production costs, and

long-termpaybackwill be estimated. The conversionof shellwaste into

chitosan is a a multi-step process: rawmaterial pretreatment involving

washing and grinding, followed by depigmentation with ethanol, dem-

ineralization with HCl, and deproteinization with NaOH to produce
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F IGURE 3 Life cycle assessment of chitin and chitosan production frommollusk shells.

chitin. The final step involves deacetylation using NaOH to obtain chi-

tosan (Okoro et al., 2023). The novelty lies in scaling up this chitosan

production process from mollusks shell waste, previously developed

in the lab, and applying a TES sensitivity assessment to evaluate the

impact of economic changes on the process conditions. This economic

evaluation involves equipment costs, primarily heat exchangers, wash-

ing tanks, a crusher, reactors, and dryer, which are the highest contrib-

utors to direct fixed capital investment (DFCI). The raw material cost

encompasses cleaning the mollusk exoskeleton (removal of debris),

transportation to the negiboring plant, reagents for depigmentation,

demineralization, deproteinization, deacetylation, and neutralization,

along with catalyzers for necessary reactions. It is advisable that chi-

tosan cost remainswithin the range of 50,000–120,000USD/ton in the

North Colombian context (Cogollo-Herrera et al., 2018). DFCI impacts

operational expenses and makes large-scale production economically

challenging. Implementing an integrated biorefinery approach using

water pinch analysis can reduce water and recycled NaOH and HCl

solution consumption in chitosan production by 80% (Zuorro et al.,

2020). Although this method may decrease the production capacity

by 28%, it can yield a 65.88% return on investment with a complete

investment recovery in 6 years when processing 4113.09 tons/year

of fresh shrimp. A similar approach could be applied to mollusk shell

biorefineries to optimize costs.

12 BOTTLENECKS AND POSSIBLE SOLUTION

At the biorefining stage, identifying an efficient solvent combination

to replace HCl and NaOH was in the rudimentary stage, though few

lab-scale studies showed better performance on green chemicals; it

is a high-end technology to upscale. Besides, β-chitin is a highly crys-

talline structure that is relatively resistant to enzymatic degradation,

thus limiting the extraction process through EAE. The tightly packed β-
chitin chains require specialized extractionmethods to break down the

structure and release the chitin molecules. This factor also influences

solubility, as they are insoluble in most common solvents, which lim-

its the reaction timewith green chemicals and processability. Similarly,

β-chitin was found less stable than α-chitin, and thermal decomposi-

tion occurs between 25 and 250◦C, with an exothermic peak of 230◦C

compared to its counterparts 330 and 310◦C (α- and γ-chitin) (Jang
et al., 2004). This allows β-chitin as a low activation energy relatively

at a low temperature and insensitive. Another constraint is obtain-

ing byproducts or side-streams generated during β-chitin extraction

(less than 20%–25%), as the residual waste (more than 75%–80%)

comprises of proteins, and minerals, mixed with debris, and sand, mak-

ing the separation process complicated. However, the electrostatic

attraction createdbyusing selective adsorbents like Fe3O4/polyaniline

composite (Li et al., 2022), and ion exchange using expanded bed

adsorption (Shahid et al., 2021) had proven to recover a high percent-

age of protein from the processing wastewater. Transitioning to larger

scale production while maintaining quality and cost-effectiveness can

be complex. Nevertheless, the availability of mollusk shells was lim-

ited to specific regions, making it difficult for mass production of chitin

and chitosan. In the national and regional context, mollusk shells were

used for compost production and the rest accumulated in a landfill.

Food and Agriculture Organization (FAO) data shows that 600,000 t

of mussels have been used in the European market, with 500,000 t

from domestic origin and 100,000 t of international origin. The
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European region’s per capita consumption of mussels was between

200 g and 4 kg (FAO, 2023). However, there was a 20% decline in

mussel production in the EU region, although it represents more than

one third of aquaculture production. With integrated multi-trophic

aquaculture techniques involving mollusks in farming might increase

the production of raw material (shells). The brightside is that farmed

mollusks have a low negative impact and carbon footprint on the envi-

ronment compared to wild harvest species like squid pens for this

reason. Therefore, environmentally sustainable methods for β-chitin
extractionmust be developed to ensure its long-term viability.
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