A structure of open sets in quad topological spaces

D. Sasikala¹, M. Deepa²

1, 2.Assistant Professor, Department of Mathematics, PSGR Krishnammal College for Women. .1. dsasikala@psgrkcw.ac.in, 2 .deeparavi2007@gmail.com

Abstract

The main aim of this paper is to present a new set, namely quad j-open set in quad topological space. We discuss the basic properties of quad j-open sets using quad j-interior and quad j-closure. In Addition we study the relationships among quad j-closed, quad b-closed and quad j-regular open in quad topological space.

Keywords:quad j-open, quad j-closed, quad pre closure, quad regular open.

1 Introduction

In 1963, J. C. Kelly [4] introduced the concept of bitopological space using quasimetrics. In 2000, Martin Kovar [5] finding the new concept of tri topological spaces using three topologies. In 2013, the concept with four topologies called as quad topological spaces(4-tuple)was initiated by D. V. Mukundan [8]. In 2017, U.D.Tapi and RanuSharma[13] initiate semi open sets and pre open sets in quad topological space. In the year 2018, Ranu Sharma, BhagyasriA.Deole, Smit Verma [9] label Fuzzy qb-open sets and qb-separation axioms in Fuzzy quad topological space. Tri topological spaces, quad topological spaces are the generalization of bitopological spaces. The idea of N-topological space related to ordinary topological spaces was introduced and studied, in 2011, by Tawfiq and Majeed [15]. In 2017, M. LellisThivagar, V. Ramesh and M. ArokiaDasan [6] defined the new structure of N- topology using quasi pseudo metrics. In 2013, I. Arokiarani and D. Sasikala introduced the new type of open set [10]namlely j-closed in topological spaces.

2 Preliminaries

In this section we discuss some preliminaries about quad sets and quad topological spaces. Let $(X, \tau_1, \tau_2, \tau_3, \tau_4)$ be a quad topological space. It is simply denoted by $(X, 4\tau)$. The member of $(X, 4\tau)$ is quad open set and its complement is quad closed set.

Definition 2.1[10]

A subset A of X is called asj-openif $A \subseteq int(pcl(A))$ and j-closed if $int(pcl(A)) \subseteq A$.

Definition 2.2[6]

Let X be a non-empty set $\tau_1, \tau_2, \tau_3, \tau_4$ are four arbitrary topologies on X and the collection 4τ is defined by $4\tau = \{Q \subset X; Q = (A_1 \cup A_2 \cup A_3 \cup A_4) \cup (B_1 \cap B_2 \cap B_3 \cap B_4)/$

 $A_1, B_1 \in \tau_1, A_2, B_2 \in \tau_2, A_3, B_3 \in \tau_3, A_4, B_4 \in \tau_4 \}$

satisfying the following axioms

i.
$$x, \varphi \in 4\tau$$

ii. $\bigcup_{i=1}^{\infty} Q_i \in 4\tau$ for all $Q_i \in 4\tau$
iii. $\bigcap_{i=1}^{n} Q_i \in 4\tau$ for all $Q_i \in 4\tau$

Then the pair $(X, 4\tau)$ is called quad topological space.

Example 2.3

Let $X = \{p,q,r,s\}$ and $\tau_1 = \{\varphi, X, \{p,q\}\}, \tau_2 = \{\varphi, X, \{q,s\}\}, \tau_3 = \{\varphi, X, \{p,r\}\}, \tau_4 = \{\varphi, X, \{s\}\}$. Then $(X, 4\tau) = \{\varphi, X, \{s\}, \{p,q\}, \{q,s\}, \{p,r\}, \{p,q,s\}, \{p,r,s\}, \{p,q,r\}, \{q\}, \{p\}, \{p,s\}\}$. Here quad open sets are in $(X, 4\tau)$ and quad closed sets are $X, \varphi, \{p,q,r\}, \{r,s\}, \{p,r\}, \{q,s\}, \{r\}, \{q\}, \{s\}, \{p,r,s\}, \{q,r,s\}, \{q,r\}$. We denote the sets $X, \varphi, \{p,r\}, \{q,s\}, \{q\}, \{s\}, \{p,r,s\}, \{q,r,s\}, \{q,r\}$. We denote the sets $X, \varphi, \{p,r\}, \{q,s\}, \{q\}, \{s\}, \{p,r,s\}, are both quad open and quad closed.$

Remark 2.4

(i) Intersection of two quad topology is also a quad topology

(ii) Union of twoquad topology need not be a quad topology.

Definition 2.5[13]

Let A be a subset of a quad topological space $(X,4\tau)$ then the union of all q-open sets of X contained in A is called q-interior of A and it is simply denoted by q-int(A). The intersection of all q- closed set of X containing A is called q-closure of A and it is simply denoted by q-cl(A).

Definition 2.6[13]

A subset A of $(X,4\tau)$ is said to be a quad pre open set if $A \subseteq q \operatorname{int}(qcl(A))$ and complement of quad pre open set is quad pre closed set. It is defined by $qcl(q \operatorname{int} A) \subseteq A$.

Definition 2.7[8]

A subset A of $(X,4\tau)$ is said to be a quad b open set if $A \subseteq q \operatorname{int}(qcl(A)) \cup qcl(q \operatorname{int}(A))$ and complement of quad b open set is quad b closed set.

3. Quad j-open sets in quad topological space

Definition 3.1

In a quad topological space $(X,4\tau)$, a subset A of X is said to be quad j-open if $A \subseteq q \operatorname{int}(qpcl(A))$. It is simply denoted by q j-open.

Example 3.2

Consider $X = \{p,q,r,s\}$. Let $\tau_1 = \{\varphi, X\}, \tau_2 = \{\varphi, X, \{q\}\}, \tau_3 = \{\varphi, X, \{p,r\}\}, \tau_4 = \{\varphi, X, \{q,r\}\}$. Then $4\tau = \{\varphi, X, \{q\}, \{q,r\}, \{p,r\}, \{p,q,r\}, \{r\}\}, 4\tau^c = \{X,\varphi, \{p,r,s\}, \{p,s\}, \{q,s\}, \{s\}, \{p,q,s\}\}$. We have the qj-open sets are $\varphi, X, \{q\}, \{r\}, \{p,r\}, \{q,r\}, \{p,q,r\}, \{q,r,s\}$ and qj-closed sets are $X, \varphi, \{p,r,s\}, \{p,q,s\}, \{q,s\}, \{p,s\}, \{s\}, \{p\}\}$.

Definition 3.3

Let A be a subset of quad topological space $(X,4\tau)$ then, the union of all qj-open sets of X contained in A is called qj- interior of A and it is denoted by q int $_i(A)$.

Definition3.4

Let A be a subset of quad topological space $(X,4\tau)$ then the intersection of all qjclosed set of X containing A is called qj-closure of A and it is denoted by $qcl_i(A)$.

Definition 3.5

Let A be a subset of a quad topological space $(X,4\tau)$ then the union of all q-pre open sets of X contained in A is called q-pre interior of A and it is simply denoted by q-pint(A). The intersection of all q- pre closed sets of X containing A is called q-pre closure of A and it is simply denoted by q-pcl(A).

Definition 3.6

A subset A of $(X,4\tau)$ is said to be a quad regular open set if $A = q \operatorname{int}(qcl(A))$ and complement of quad regular open set is quad regular closed set.

Definition 3.7

A subset A of $(X,4\tau)$ is said to be a quad j-regular open set if $A = q \operatorname{int}(qpcl(A))$ and complement of quad j-regular open set is quad j-regular closed set.

Theorem 3.8

Every quad open set is quad pre-open.

Proof

For any set *A*, we have $A \subseteq qcl(A)$. Since $A \subseteq B \Rightarrow q$ int $A \subseteq q$ int *B*. Therefore q int $A \subseteq q$ int(qcl(A)). But *A* is quad open. That implies A = q int *A*. Hence $A \subseteq q$ int(qcl(A)). Therefore every quad open set is quad pre open.

Converse of the above theorem need not be true by the following example.

Example 3.9

Let $X = \{a, b, c, d\}$, $\tau_1 = \{\varphi, X\}$, $\tau_2 = \{\varphi, X, \{c\}\}$, $\tau_3 = \{\varphi, X, \{d\}\}$ and $\tau_4 = \{\varphi, X, \{c\}\}$, $\{d\}, \{c, d\}\}$. Then $4\tau = \{\varphi, X, \{c\}, \{d\}, \{c, d\}\}$ and $4\tau^c = \{X, \varphi, \{a, b, d\}, \{a, b, c\}, \{a, b\}\}$. The sets $\{a, c, d\}$ and $\{b, c, d\}$ are quad pre open but not open.

Theorem 3.10

Every quad open set is qj-open.

Proof

For any set A, we have $A \subseteq cl(A)$. Since $A \subseteq B \Rightarrow q$ int $A \subseteq q$ int B. Therefore q int $A \subseteq q$ int(qcl(A)). Since $qpcl(A) \subseteq qcl(A)$. That implies q int $A \subseteq q$ int $(qpcl(A)) \subseteq q$ int(qcl(A)) But A is quad open. That implies A = q int A... Hence $A \subseteq q$ int(qpcl(A)). Therefore every quad open set is quad j- open.

Converse of the above theorem need not be true from the example 3.2. A set $\{q,r,s\}$ is gjopen but not quad open.

Theorem 3.11

Every quad j-open is q pre-open.

Proof

If a set A is quad j-open, then $A \subseteq qint(qpcl(A))$. Since $qpcl(A) \subseteq qcl(A)$. That implies $A \subseteq qint(qpcl(A)) \subseteq qint(qcl(A))$ That implies $A \subseteq qint(qcl(A))$ Hence every quad j-open set is quad pre open.

Converse of the above theorem need not be true as shown by the following example.

Example 3.12

Let $X = \{p,q,r,s\}$. Let $\tau_1 = \{\varphi, X\}, \tau_2 = \{\varphi, X, \{p,s\}\}, \tau_3 = \{\varphi, X, \{p,q,r\}\}, \tau_4 = \{\varphi, X, \{q,r,s\}\}$. Then $4\tau = \{\varphi, X, \{p,s\}, \{p,q,r\}, \{q,r,s\}, \{p\}, \{s\}, \{q,r\}\}\}, 4\tau^c = \{X,\varphi, \{q,r\}, \{s\}, \{p\}, \{q,r,s\}, \{p,q,r\}, \{p,s\}\}$. Here $\{p,q,s\}$ is quad pre open but not qj-open.

Theorem 3.13

Let us take the collection $\{P_{\alpha} : \alpha \in J\}$ of qj-open sets in quad topological space $(X, 4\tau)$. Then $\bigcup_{\alpha \in J} P_{\alpha}$ is also qj-open in $(X, 4\tau)$.

Since P_{α} is the arbitrary collection of qj-open sets. Therefore P_{α} is qj-open.(ie) $P_{\alpha} \subseteq q \operatorname{int}(qpcl(P_{\alpha}))$ which implies $\bigcup_{\alpha \in J} P_{\alpha} \subseteq \bigcup_{\alpha \in J} q \operatorname{int}(qpcl(P_{\alpha})) \subseteq q \operatorname{int}(qpcl(\bigcup_{\alpha \in J} P_{\alpha}))$. Hence $\bigcup_{\alpha \in J} P_{\alpha}$ is also qj-open in X.

Theorem 3.14

In a quad topological space $(X, 4\tau)$, arbitrary intersection of qj-closed sets is also qj-closed.

Proof

Let $\{Q_{\alpha} : \alpha \in I\}$ be a family of qj-closed sets in X. let $P_{\alpha} = Q_{\alpha}^{c}$ then $\{P_{\alpha} : \alpha \in I\}$ is a family of qj-open sets in X.. Using the previous theorem $\bigcup P_{\alpha}$ is qj-open and $(\bigcup P_{\alpha})^{c}$ is qj-closed. $\bigcap P_{\alpha}^{c}$ isqj-closed. Hence $\bigcap Q_{\alpha}$ is qj-closed.

Theorem 3.15

Let $(X,4\tau)$ be a quad topological space, if a singleton subset of $(X,4\tau)$ is qj-open if and only if it is q-open.

Proof:

Let $\{p\}$ be a q j-open subset of X. Then $\{p\} \subseteq q \text{ int}(qpcl\{p\})$. Since each singleton subset of any space X is q j -closed that implies p cl $\{p\} \subseteq$ cl $\{p\} \subseteq$ l $\{p\} \subseteq$ l $\{p\} \subseteq$ int $\{p\}$. Hence $\{p\}$ is q-open.

Theorem 3.16

Let $(X, 4\tau)$ be a quad topological space and $P, Q \subseteq X$. Then

- i. $q \operatorname{int}_{i}(P)$ is the largest qj open set contained in P.
- ii. $P \subseteq Q$ then q int $_{i}(P) \subseteq q$ int $_{i}(Q)$.
- iii. *P* is qj-open if and only if $qint_j(P) = P$ In particular $qint_j(\phi) = \phi$. and $qint_i(X) = X$.
- iv. $q \operatorname{int}_{i}(P \cup Q) \supseteq q \operatorname{int}_{i}(P) \cup q \operatorname{int}_{i}(Q).$
- v. $q \operatorname{int}_{j}(P \cap Q) = q \operatorname{int}_{j}(P) \cap q \operatorname{int}_{j}(Q).$
- vi. $q \operatorname{int}_{j}(q \operatorname{int}_{j}(P)) = q \operatorname{int}_{j}(P).$

- i. If a quad topology space arbitrary union of qj-open sets is again qj-open, then $q \operatorname{int}_{j}(P)$ is qj-open, using the definition of qj-interior of A, we have $q \operatorname{int}_{j}(P) \subseteq P$. Let Q be any qj-open set which contained in P then $Q \subseteq \bigcup \{F : F \subseteq P \text{ and } F \text{ is qj-open}\} = q \operatorname{int}_{j}(P)$ in P and also $q \operatorname{int}_{j}(P)$ is the largest qj-open set which contained in P.
- ii. Assume $P \subseteq Q$ then $X Q \subseteq X P$ implies $qcl_i X - Q \subseteq qcl_i X - P \Rightarrow qint_i(P) \subseteq qint_i(Q)$
- iii. Let *P* be an qj-open set if and only if X P is qj closed set, then $qcl_jX P = X P$ if and only if $X - qcl_j(X - P) = P$ if and only if q int $_j(P) = P$. Also ϕ and X are qj open sets then q int $_j(\phi) = \phi$ and q int $_j(X) = X$
- iv. Let $x \in qint_j(P) \cup qint_j(Q)$, then $x \notin X (qint_j(P) \cup qint_j(Q))$ $x \notin qcl_j(X - P) \cap qcl_j(X - Q)$, which implies $x \notin qcl_j(X - (P \cup Q) \Longrightarrow x \in qint_j(P \cup Q)$ Hence $qint_j(P \cup Q) \supseteq qint_j(P) \cup qint_j(Q)$.
- v. Assume $x \in qint_j (P \cap Q)$. then $x \notin X qint_j (P \cap Q)$ which implies $x \notin qcl_j (X - P) \cup qcl_j (X - Q)$ then $x \in (X - qcl_j (X - P)) \cap (X - qcl_j (X - Q))$ Then $x \in qint_j (P) \cap qint_j (Q)$ Thus $qint_j (P \cap Q) \subseteq qint_j (P) \cap qint_j (Q)$. Similarly we can prove $qint_j (P) \cap qint_j (Q) \subseteq qint_j (P \cap Q)$. Hence $qint_j (P \cap Q) = qint_j (P) \cap qint_j (Q)$.
- vi. Since q int $_{i}(P)$ is a qj open set, Then q int $_{i}(q$ int $_{i}(P)) = q$ int $_{i}(P)$.

Theorem 3.17

Let $(X, 4\tau)$ be a quad topological space on X and $P, Q \subseteq X$, Then

- i. $qcl_i(P)$ is the smallest quad closed set which contains P.
- ii. If $P \subseteq Q$ then $qcl_j(P) \subseteq qcl_j(Q)$.
- iii. $qcl_i(P \cup Q) = qcl_i(P) \cup qcl_i(Q).$
- iv. $qcl_i(P \cap Q) = qcl_i(P) \cap qcl_i(Q).$

v.
$$qcl_i(qcl_i(P)) = qcl_i(P)$$
.

- i. Since intersection of arbitrary collection of quad j-closed set is quad j-closed ,then $qcl_j(P)$ is a quad closed set. Therefore $P \subseteq qcl_j(P)$. Let Q be quad j closed set which contains P. This implies $qcl_j(P) \subseteq \bigcap \{G : P \subseteq G \text{ and } G \text{ is qj-closed}\} \subseteq Q$ Hence P is the smallest quad j closed set which containing P.
- ii. Assume $P \subseteq Q$, since $Q \subseteq qcl_j(Q)$ that implies $P \subseteq qcl_j(Q)$. We know that $qcl_j(P)$ is the smallest closed set which containing P. Hence $qcl_j(P) \subseteq qcl_j(Q)$.
- iii. Since $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. Using (ii) we have $qcl_j(P) \cup qcl_j(Q) \subseteq qcl_j(P \cup Q)$ Using(i) $P \cup Q \subseteq qcl_j(P) \cup qcl_j(Q)$ Since $qcl_j(P \cup Q)$ is the smallest quad j closed set which containing $P \cup Q$. Therefore $qcl_j(P \cup Q) = qcl_j(P) \cup qcl_j(Q)$. Hence $qcl_j(P \cup Q) = qcl_j(P) \cup qcl_j(Q)$.
- iv. Since $P \cap Q \subseteq P, P \cap Q \subseteq Q$ that implies $qcl_i(P \cap Q) = qcl_i(P) \cap qcl_i(Q)$.
- v. Since $qcl_i(P)$ is q j closed set then $qcl_i(qcl_i(P)) = qcl_i(P)$.

Theorem 3.18

Let $(X,4\tau)$ be a quad topological space and $P \subset X$ then $(a)[qcl_j(P)]^c = q \operatorname{int}_j(P^c)$ $(b)[q \operatorname{int}_j(P)]^c = qcl_j(P^c)$

Proof

Given $P \subset X$ in quad topological space $(X, 4\tau)$

 $[qcl_{j}(P)] = \bigcap \{Q : P \subset Q \text{ and } Q \text{ is } qj \text{ - closedset} \}$ $[qcl_{j}(P)]^{c} = [\bigcap \{Q : P \subset Q \text{ and } Q \text{ is } qj \text{ - closedset} \}]^{c} = \bigcup \{Q^{c} : Q^{c} \subset P^{c} \text{ and } Q^{c} \text{ is } qj \text{ - open set} \}$ $\text{Hence } [qcl_{j}(P)]^{c} = q \text{ int }_{j}(P^{c})$

(b)Similarly we can prove $[qint_i(P)]^c = qcl_i(P^c)$

Theorem 3.19

The relationship between the concepts of q-closed set ,qj-closed set and qb-closed is q-closed set \Rightarrow qj-closed set \Rightarrow qb-closed

First we proveq-closed set \Rightarrow qj-closed set

Let $P \subseteq X$ be a q-closed set. Therefore P^c is q-open. Since $P^c \subset qcl(P^c)$ $qpclP^c \subset qcl(P^c)$ which implies q int $P^c \subset q$ int $(qpcl(P^c))$. Therefore P^c is qj-open. Hence P is qj-closed set.

Next we prove that qj-closed set \Rightarrow qb-closed

Let *P* be qj-closed set of *X*. Then P^c is qj- open, ie. $P^c \subseteq q \operatorname{int} qpcl(P^c) \subseteq q \operatorname{int} qcl(P^c) \Rightarrow P^c \subseteq q \operatorname{int} qcl(P^c) \Rightarrow P^c \subseteq q \operatorname{int} qcl(P^c) \cup qclq \operatorname{int}(P^c)$ Therefore P^c is qb-open. Hence *P* is qb-closed set.

Definition 3.20

A subset *P* of a quad topological space $(X,4\tau)$ is said to be quad regular open if $P = q \operatorname{int}(qcl(P))$ and its complement is called quad regular closed set.

Theorem 3.21

Every quad regular open set is quad open.

Proof

A set *A* is quad regular open, if $A = q \operatorname{int}(q \operatorname{cl}(A)), q \operatorname{int}(A) = q \operatorname{int}(q \operatorname{cl}(A))) = q \operatorname{int}(A) q \operatorname{int}(A)$ is always open. Hence every quad regular open set is quad open.

Converse of the above theorem need be true as shown by the following example.

Example 3.2

Let $X = \{1,2,3,4\}$. Let $\tau_1 = \{\varphi, X\}, \tau_2 = \{\varphi, X, \{1\}\}, \tau_3 = \{\varphi, X, \{2\}\}, \tau_4 = \{\varphi, X, \{3\}\}$. Then $4\tau = \{\varphi, X, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$. Here $\{1,2,3\}$ is quad open but not quad regular open.

Theorem 3.23

Every quad regular open set is quad j-regular open.

Proof

By theorem 3.21, every quad regular open set is quad open and using the theorem 3.10 every quad open set is qj-open. Hence every quad regular open set is quad j-regular open.

References

[1]. D. Andrijevic, "On b-open sets", Mat. Vensik, 48(1996), 59-64.

[2]. Barah M. Sulaiman and Tahir H. Ismai, "On Tri-α-Open Sets in Fuzzifying

TritopologicalSpaces"Advances in Fuzzy SystemsVolume 2019, Article ID 2570926, 9 pages.

[3]. Y. Gnanambal "On generalised preregual closed sets in Topological spaces", Indian J. Pure appl. Math., 28(3):351-360, March 1997.

[4]. Kelly J.C, "Bitopological spaces", Proc.LondonMath.Soc., 3. 17-89, 1963.

[5]. Kovar, M,On 3-Topological version of Thet-Reularity, Internat. J. Matj, Sci. 2000, 23(6), 393-398.

[6]. M. LellisThivagar, V. Ramesh and M. ArokiaDasan, "On new structure of N-

Topology", Cogent Mathematics, Pure mathematics Research article, 2016, 1-10.

[7]. N. Levine , Semi-open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[8]. Mukundan D.V. "Introduction to Quad topological spaces", Int. Journal of Scientific and Engg.Research ,Vol.4,Issue 7,2483-2485,July-2013.

[9]. Ranu Sharma, Bhagyashri A. Deole, SmitaVerma"Fuzzy q-b open Sets and Fuzzy q-b separationinFuzzy Quad Topological Space" International Journal of Scientific Research in Multidisciplinary Studies , Vol.4, Issue.6, 1-11, June (2018).

[10]. D.Sasikala and I.Arockiarani, "λα-J-Closed sets in Generalized Topological Space" IJST, (2),(2011), 200-210.

[11]. D.Sasikala and I.Arockiarani, "On Strongly $\lambda(m, n)$ -J-continuous functions" International Journal of Statistika and Mathematika, Volume 3, Issue 1, 2012, 06-11. [12]. T. Shyla Isac Mary and A. Subitha "On semi alpha regular pre semi closed sets in "topological space" International journal of Mathematics and its applications, Volume 4,Issue 3-B(2016), 27-35.

[13]. U.D.TapiandRanu Sharma "Semi open sets and Pre open sets in Quad topological space "International Journal of Computer & Mathematical Sciences, Volume 6, Issue 9, September 2017, 15-20.

[14]. U.D.Tapi and Ranu Sharma "q-Continuous Functions in Quad Topological Spaces" of Pure and Applied Mathematics Vol. 10, No.1, 2015, 117-122.

[15]. Tawfiq L.N.M., Majeed R.N. 2011,N-topological space and its applications in artificial neuralnetworks,Ibnal-Haytham Journal for Pure & Applied Science24(1).
