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Abstract 

 The main aim of this paper is to present a new set, namely quad j-open set in quad 

topological space. We discuss the basic properties of quad j-open sets using quad j-interior 

and quad j-closure. In Addition we study the relationships among quad j-closed, quad b-

closed and quad j-regular open in quad topological space. 
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1 Introduction 

  In 1963, J. C. Kelly [4] introduced the concept of bitopological space using 

quasimetrics. In 2000, Martin Kovar [5] finding the new concept of tri topological spaces 

using three topologies.  In 2013, the  concept with four topologies called as quad topological 

spaces(4-tuple)was  initiated by D. V. Mukundan [8]. In 2017, U.D.Tapi and 

RanuSharma[13] initiate semi open sets and pre open sets in quad topological space. In the 

year 2018, Ranu Sharma, BhagyasriA.Deole, Smit Verma [9] label Fuzzy qb-open sets and 

qb-separation axioms in Fuzzy quad topological space.Tri topological spaces, quad 

topological spaces are the generalization of bitopological spaces. The idea of N-topological 

space related to ordinary topological spaces was introduced and studied, in 2011, by Tawfiq 

and Majeed [15]. In 2017, M. LellisThivagar, V. Ramesh and M. ArokiaDasan [6] defined 

the new structure of N- topology using quasi pseudo metrics. In 2013, I. Arokiarani and D. 

Sasikala introduced the new type of open set [10]namlely j-closed in topological spaces.  

Using this notion we introduce the set namely quad j-open sets  in quad topological spaces. 

2 Preliminaries 

 Inthis section we discuss some preliminaries about quad sets and quad topological 

spaces. Let ( 4321 ,,,, X ) be a quad topological space. It is simply denoted by )4,( X . The 

member of )4,( X is quad open set and its complement is quad closed set. 

Definition 2.1[10] 

 A subset A  of X  is called asj-openif ))(int( ApclA  and j-closed if 

AApcl ))(int( . 

Definition 2.2[6] 

                     Let X  be a non-empty set  4321 ,,,     are four arbitrary topologies on X  and 

the collection 4 is defined by 
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satisfying the following axioms 

i. x,𝜑 ∈ 4  

ii. 4
1







i

iQ  for all  4iQ  

iii. 4
1





n

i

iQ  for all  4iQ  

Then the pair )4,( X is called quad topological space. 

Example 2.3 

 Let X ={p,q,r,s} and 1 ={𝜑,X,{p,q}}, 2  = {𝜑 ,X, {q,s}}, 3  ={𝜑, X, {p,r}}, 4  ={𝜑, 

X, {s}}.  Then )4,( X ={𝜑  ,X, {s}, {p,q}, {q,s}, {p,r}, {p,q,s}, {p,r,s}, {p,q,r}, {q}, {p}, 

{p,s}}.Here quad open sets are in  (X, 4 ) and quad closed sets are X,𝜑, {p,q,r}, {r,s}, {p,r}, 

{q,s}, {r}, {q}, {s}, {p,r,s}, {q,r,s}, {q,r}.  We denote the sets X,𝜑, {p,r}, {q,s}, {q}, {s}, 

{p,r,s} are both quad open and quad closed. 

Remark 2.4 

 (i) Intersection of two quad topology is also a quad topology 

      (ii) Union of twoquad topology need not be a quad topology. 

Definition 2.5[13] 

  Let A  be a subset of a quad topological space )4,( X then the union of all q-open 

sets of X  contained in A  is called q-interior of A and it is simply denoted by q-int( A ). The 

intersection of all q- closed set of X  containing A  is called q-closure of A  and it is simply 

denoted by q-cl( A ). 

Definition 2.6[13] 

  A subset A of )4,( X  is said to be  a quad pre open set if ))(int( AqclqA   and 

complement of quad pre open set is quad pre closed set . It is defined by .)int( AAqqcl   

Definition 2.7[8] 

  A subset A of )4,( X  is said to be  a quad b open set if 

))int(())(int( AqqclAqclqA   and complement of quad b open set is quad b closed set .  

3. Quad j-open sets in quad topological space 

Definition 3.1 

 In a quad topological space )4,( X , a subset A  of X  is said to be quad j-open if

))(int( AqpclqA . It is simply denoted by q j-open. 
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Example 3.2 

Consider X = {p,q,r,s} . Let  1 ={𝜑, X}, 2  ={𝜑, X,{q}}, 3  = {𝜑, X, {p,r}}, 4  

={𝜑, X,{q,r}}. Then 4 ={ 𝜑, X, {q}, {q,r}, {p,r}, {p,q,r}, {r}},  c4 ={X,𝜑, {p,r,s}, {p,s}, 

{q,s},{s}, {p,q,s}}.We have the qj-open sets are 𝜑, X, {q}, {r}, {p,r}, {q,r}, {p,q,r}, {q,r,s} and 

qj-closed sets are X, 𝜑, {p,r,s}, {p,q,s}, {q,s}, {p,s}, {s}, {p}. 

Definition 3.3 

 Let A  be a subset of quad topological space )4,( X then, the union of all qj-open sets 

of X  contained in A  is called qj- interior of A and it is denoted by  ).(int Aq j
 

Definition3.4 

        Let A  be a subset of quad topological space )4,( X  then the intersection of all qj-

closed set of X  containing A  is called qj-closure of A  and it is denoted by ).(Aqcl j  

Definition 3.5 

 Let A  be a subset of a quad topological space )4,( X then the union of all q-pre open 

sets of X  contained in A  is called q-pre interior of A and it is simply denoted by q-pint( A ). 

The intersection of all q- pre closed sets of X  containing A  is called q-pre closure of A  and 

it is simply denoted by q-pcl( A ). 

Definition 3.6 

  A subset A of )4,( X  is said to be  a quad regular open set if ))(int( AqclqA   and 

complement of quad regular open set is quad regular closed set .  

Definition 3.7 

  A subset A of )4,( X  is said to be  a quad j-regular open set if ))(int( AqpclqA   

and complement of quad j-regular open set is quad j-regular closed set .  

Theorem 3.8 

 Every quad open set is quad pre-open. 

Proof 

 For any set A, we have ).(AqclA  Since .intint BqAqBA   Therefore

)).(int(int AqclqAq  ButA is quad open. That implies ..int AqA  Hence )).(int( AqclqA 

Therefore every quad open set is quad pre open.  

Converse of the above theorem need not be true by the following example. 
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Example  3.9 

 Let X=  {a,b,c,d}, 1 ={𝜑, X}, 2  ={𝜑, X, {c}}, 3  = {𝜑, X, {d}} and 4  ={𝜑, X, {c}, 

{d}, {c,d}}. Then 4 ={ 𝜑, X,{c}, {d}, {c,d}} and  c4 = {X,φ, {a,b,d}, {a,b,c}, {a,b}}. The 

sets {a,c,d} and {b,c,d} are quad pre open but not open. 

Theorem 3.10 

 Every quad open set is qj-open. 

Proof 

 For any set A, we have ).(AclA  Since .intint BqAqBA   Therefore

)).(int(int AqclqAq   Since ).()( AqclAqpcl  That implies

))(int())(int(int AqclqAqpclqAq   But A is quad open. That implies ..int AqA  Hence

)).(int( AqpclqA  Therefore every quad open set is quad j- open.  

Converse of the above theorem need not be true from the example 3.2. A set {q,r,s} is qj-

open but not quad open. 

Theorem 3.11 

 Every quad j-open is q pre-open.  

Proof 

 If a set A is quad j-open , then )).(int( AqpclqA   Since ).()( AqclAqpcl  That 

implies ))(int())(int( AqclqAqpclqA   That implies ))(int( AqclqA   Hence every quad j-

open set is quad pre open. 

Converse of the above theorem need not be true as shown by the following example. 

Example  3.12 

Let  X = {p,q,r,s} . Let  1 ={𝜑, X}, 2  ={𝜑, X,{p,s}}, 3  = {𝜑, X, {p,q,r}}, 4  ={𝜑, 

X,{q,r,s}}. Then 4 ={ φ, X, {p,s}, {p,q,r}, {q,r,s},{p}, {s},{q,r}}},  c4 ={X,φ, {q,r}, {s}, 

{p},{q,r,s}, {p,q,r},{p,s}}.Here {p,q,s} is  quad pre open  but not qj-open. 

Theorem 3.13 

 Let us take the collection }:{ JP  ofqj-open sets in quad topological space )4,( X  

. Then
J

P



 is also qj-open in ).4,( X  
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Proof 

 Since P  is the arbitrary collection of qj-open sets.  Therefore P  is qj-open.(ie)

))(int(  PqpclqP  which implies  
J JJ

PqpclqPqpclqP
 


 





 )(int())(int(  . Hence 


J

P


 is also qj-open in .X  

Theorem 3.14 

 In a  quad topological space )4,( X , arbitrary intersection of qj-closed sets is also qj-

closed. 

Proof 

 Let }:{ IQ    be a family of qj-closed sets in .X   let 
c

QP   then }:{ IP  is 

a family of qj-open sets in .X .  Using the previous theorem P  is qj-open and
cP )(   is 

qj-closed.  c
P isqj-closed.  Hence  Q is qj-closed. 

Theorem 3.15 

 Let )4,( X be a quad topological space, if a singleton subset of )4,( X  is qj-open if 

and only if it is q-open. 

Proof: 

            Let {p} be a q j-open subset of .X  Then {p}q int(qpcl{p}). Since each singleton 

subset of any space X  is q j -closed that implies p cl{p} cl{p} {p}.Thus{p} int{p}. 

Hence{p} is q-open. 

Theorem 3.16 

 Let )4,( X be a quad topological space  and XQP , .Then  

i. )(int Pq j is the largest qj open set contained in P . 

ii. QP  then )(int Pq j  ).(int Qq j
 

iii. P  is qj-open if and only if PPq j )(int   In particular .)(int  jq and 

.)(int XXq j   

iv. ).(int)(int)(int QqPqQPq jjj   

v. ).(int)(int)(int QqPqQPq jjj   

vi. ).(int))(int(int PqPqq jjj   
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Proof 

i. If a quad topology space arbitrary union of qj-open sets is again qj-open, then  

)(int Pq j
is qj-open, using the definition of  qj-interior of A, we have )(int Pq j

P

.Let Q  be any qj-open set which contained in P  then PFFQ  :{ and F  is qj-

open}= )(int Pq j
in P  and also )(int Pq j

 is the largest qj-open set which contained in 

P . 

ii. Assume QP    then PXQX   implies 

)(int)(int QqPqPXqclQXqcl jjjj   

iii. Let P  be an qj-open set if and only if PX  is qj closed set, then  PXPXqcl j   

if and only if PPXqclX j  )( if and only if PPq j )(int . Also    and X are qj 

open sets then  )(int jq   and XXq j )(int  

iv. Let ).(int)(int QqPqx jj  ,then ))(int)(int( QqPqXx jj 

).()( QXqclPXqclx jj  which implies

)(int)(( QPqxQPXqclx jj  Hence

).(int)(int)(int QqPqQPq jjj   

v. Assume ).(int QPqx j  then )(int QPqXx j  which implies

)()( QXqclPXqclx jj  then ))(())(( QXqclXPXqclXx jj   

Then )(int)(int QqPqx jj  Thus ).(int)(int)(int QqPqQPq jjj  Similarly 

we can prove ).(int)(int)(int QPqQqPq jjj   Hence

).(int)(int)(int QqPqQPq jjj   

vi. Since )(int Pq j
is a qj open set, Then ).(int))(int(int PqPqq jjj  . 

Theorem  3.17 

 Let )4,( X be a quad topological space on X and XQP , , Then  

i. )(Pqcl j
is the smallest quad closed set which contains P . 

ii. If QP   then )(Pqcl j  ).(Qqcl j  

iii. ).()()( QqclPqclQPqcl jjj   

iv. ).()()( QqclPqclQPqcl jjj   

v. ).())(( PqclPqclqcl jjj   
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Proof 

i. Since intersection of arbitrary collection of quad j-closed set is quad j-closed ,then

)(Pqcl j
 is a quad closed set . Therefore )(PqclP j . Let Q be quad j closed set which 

contains P .This implies GPGPqcl j  :{)( and G  is qj-closed} Q   Hence P  is 

the smallest quad j closed set which containing P . 

ii. Assume QP  , since )(QqclQ j  that implies )(QqclP j .We know that )(Pqcl j
is 

the smallest closed set which containing  P . Hence  )(Pqcl j  ).(Qqcl j
 

iii. Since QPP  and QPQ  . Using (ii) we have )()()( QPqclQqclPqcl jjj 

Using(i) )()( QqclPqclQP jj  Since )( QPqcl j    is the smallest quad j closed set 

which containing  QP  .Therefore ).()()( QqclPqclQPqcl jjj  Hence   

).()()( QqclPqclQPqcl jjj   

iv. Since QQPPQP  ,  that implies ).()()( QqclPqclQPqcl jjj  . 

v. Since )(Pqcl j
 is q j closed set then ).())(( PqclPqclqcl jjj  . 

 

Theorem  3.18 

 

 Let )4,( X  be a quad topological space and XP  then 

)()](int)[(

)(int)]()[(

c

j

c

j

c

j

c

j

PqclPqb

PqPqcla




 

Proof 

Given XP  in quad topological space )4,( X  

set}open -qj is  and:{set}] closed-qj is Q and:{[)]([

set} closed-qj is Q and:{)]([

c ccccc

j

j

QPQQQPQPqcl

QPQPqcl





Hence )(int)]([ c

j

c

j PqPqcl   

(b)Similarly we can prove )()](int[ c

j

c

j PqclPq   

Theorem  3.19 

 The relationship between the concepts of q-closed set ,qj-closed set and qb-closed is  

q-closed set qj-closed setqb-closed 
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Proof 

 First we proveq-closed set qj-closed set 

Let XP  be a q-closed set. Therefore cP  is q-open.  Since )( cc PqclP 

)( cc PqclqpclP  which implies ))(int(int cc PqpclqPq  .  Therefore cP  is qj-open.  Hence

P  is qj-closed set. 

 Next we prove that qj-closed setqb-closed 

Let P  be qj-closed set of X  .  Then cP  is qj- open, ie. 

)int()(int)(int)(int)(int cccccccc PqclqPqclqPPqclqPPqclqPqpclqP 

 Therefore cP  is qb-open.  Hence P  is qb-closed set. 

Definition  3.20 

 A subset P of a quad topological space )4,( X  is said to be quad regular open if

))(int( PqclqP   and its complement is called quad regular closed set. 

Theorem  3.21 

 Every quad regular open set is quad open. 

Proof 

A set A is quad regular open, if 

)int()))(int(int()int()),(int( AqAqclqqAqAqclqA  )int(Aq is always open.  Hence every 

quad regular open set is quad open. 

Converse of the above theorem need be true as shown by the following example. 

Example 3.2 

Let  X = {1,2,3,4} . Let  1 ={𝜑, X}, 2  ={𝜑, X,{1}}, 3  = {𝜑, X, {2}}, 4  ={𝜑, 

X,{3}}. Then 4 ={ φ, X, {1}, {2}, {3},{1,2}, {1,3},{2,3},{1,2,3}},  Here {1,2,3} is  quad 

open  but not quad regular open. 

Theorem  3.23 

 Every quad regular open set is quad j-regular open. 

Proof 

 By theorem 3.21, every quad regular open set is quad open and using the theorem 

3.10 every quad open set is qj-open.  Hence every quad regular open set is quad j-regular 

open. 
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