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 Air pollution mitigation is essential to ensure sustainable development, as it 

directly affects climate change, economic productivity, and social well-

being. Despite the availability of numerous prediction techniques, machine 

learning (ML) remains the optimal solution for forecasting air pollution. 

Constructing a prediction model for a region with limited data poses a 

challenge. This study presents a novel technique that combines temporal 

fusion transformer (TFT) with transfer learning to create an inventive air 

quality index (AQI) prediction model, effectively utilizing temporal insights 

and prior knowledge. The TFT is an advanced deep neural architecture 

engineered to enhance time series forecasting through the fusion of sequence 

modelling and global temporal patterns. By fusing TFT with transfer 

learning, the research pioneers a fresh approach to AQI prediction for region 

with data scarcity issue, capitalizing on cross-domain knowledge transfer. 

Utilizing meteorological and pollutant data from the Cochin region, a hybrid 

AQI prediction model is constructed through TFT and transfer learning. 

Employing a preexisting TFT model trained on Trivandrum data, transfer 

learning technique is utilized to adapt the model for predicting AQI in the 

Cochin region. The study demonstrates that integrating TFT with transfer 

learning yields superior accuracy compared to an exclusive TFT-based 

approach. 
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1. INTRODUCTION  

Air pollution refers to the presence of harmful substances in the atmosphere, posing risks to human 

health and the environment. Originating from both human activities and natural sources, air pollutants 

encompass diverse particles and gases, including particulate matter, nitrogen dioxide, sulfur dioxide, volatile 

organic compounds, and ozone. Their cumulative effect contributes to air quality deterioration and 

consequent health and environmental consequences [1]. Accurate prediction of pollution levels is essential 

for proactively implementing measures to protect public health and maintain ecological equilibrium. This 

paper aims to develop an air quality index (AQI) prediction model for the Cochin region, which faces 

challenges due to limited data availability. Several methods are available for predicting AQI levels. Statistical 

models involve analyzing historical air quality data alongside meteorological variables to establish 

regression-based predictions that account for correlations between different parameters and AQI outcomes 

[2]. Chemical transport models simulate the dispersion and chemical interactions of pollutants in the 

atmosphere, considering emission sources, atmospheric conditions, and transport mechanisms to predict AQI 

levels [3]. Satellite observations provide valuable insights by monitoring pollutant concentrations and 
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atmospheric conditions on a broader geographical scale, facilitating the estimation of AQI over larger areas. 

Additionally, sensor networks comprising distributed air quality sensors offer real-time data collection for 

immediate AQI calculations and localized pollution monitoring, enhancing our ability to predict and respond 

to air quality fluctuations effectively [4]. 

Machine learning (ML) techniques, such as neural networks (NN), random forests (RF), and support 

vector machines (SVM), offer the capability to discern intricate relationships within vast datasets, enabling 

accurate AQI forecasting. These methods can leverage historical air quality data and other relevant features 

to build robust predictive models [5]. Deep learning (DL) algorithms are widely utilized for AQI prediction. 

DL excels in capturing complex patterns and nonlinear relationships within air quality data, enabling more 

accurate predictions and adaptability to changing environmental conditions. To address this, a review of 

research articles utilizing ML and DL algorithms was conducted and summarized [6]. Das et al. [7] have 

used ML and DL to build an accurately predicting AQI prediction models. They compared the performance 

of ML and DL algorithms. The study utilized a comprehensive dataset comprising historical air quality 

measurements and meteorological parameters from multiple monitoring stations in a metropolitan area over 

several years. Employing a comparative approach, the authors implemented various algorithms including RF, 

SVM, recurrent neural network (RNN), and long short-term memory (LSTM) networks. Results revealed that 

the LSTM network, a DL model, outperformed traditional ML algorithms, particularly in capturing temporal 

dependencies within the data. 

Gupta et al. [8] aimed to establish a robust predictive model for AQI through the utilization of ML 

methods. The study focused on assessing the effectiveness of various algorithms in accurately forecasting 

AQI levels by leveraging historical air quality and meteorological data. The dataset employed encompassed 

air quality measurements including PM2.5, PM10, NO2, SO2, CO, and O3 concentrations, alongside 

meteorological variables such as temperature, humidity, and wind speed. By applying ML techniques like 

decision trees (DT), RF, and gradient boosting (GB), the authors constructed predictive models. The results 

indicated that the GB ensemble technique outperformed other algorithms, effectively capturing non-linear 

interactions within the data and yielding heightened predictive accuracy. This study contributes to the 

existing body of knowledge by spotlighting the potency of ensemble ML approaches, particularly GB, in 

refining AQI predictions. 

Shankar and Arasu [9] aimed to explore the utilization of DL techniques for accurately predicting 

AQI levels. The research focused on assessing the potential of DL models in capturing intricate patterns 

within air quality and meteorological data. The dataset employed encompassed historical air quality 

measurements, including concentrations of PM2.5, PM10, CO, NO2, SO2, and O3, as well as meteorological 

features like temperature, humidity, and wind speed, collected from urban monitoring stations over an 

extensive time frame. The study utilized various DL models, including convolutional neural networks (CNN) 

and LSTM networks, to predict AQI levels. Notably, the LSTM network emerged as a standout performer, 

effectively capturing temporal dependencies and correlations within the data. The LSTM model’s ability to 

retain information over time contributed to its success in accurately predicting AQI levels.  

Sarkar et al. [10] aimed to develop and assess hybrid ML models for predicting AQI levels. The 

research focused on leveraging the strengths of different algorithms to enhance the accuracy of AQI 

forecasts. The dataset employed encompassed historical air quality measurements including concentrations of 

PM2.5, PM10, SO2, NO2, CO, and O3, alongside pertinent meteorological parameters such as temperature, 

humidity, and wind speed, gathered from monitoring stations spanning an urban area. Hybrid ML models 

were constructed by integrating multiple algorithms, including SVM, RF, and artificial neural networks 

(ANN). The results revealed that the hybrid models outperformed the performance of individual algorithms 

in predicting AQI levels. By harnessing the collective predictive power of different techniques, the hybrid 

models demonstrated improved accuracy. Halsana [11] used data from various web sources like central 

pollution control board (CPCB) and University of California, Irvine (UCI) repository to construct an AQI 

prediction model. The model was built employing supervised learning algorithms such as multiple linear 

regression, RF regression, DT regression, and SV regression. Improved accuracy was achieved through the 

utilization of RF regression. The performance of the algorithms was assessed using mean squared error 

(MSE) and mean absolute error (MAE).  

The conducted literature review has provided valuable insights into the contemporary methods and 

technologies employed in constructing AQI models. The authors of various studies have utilized both ML 

and DL techniques to develop models for predicting AQI values. Additionally, it is evident that all of them 

have used ample amounts of data for building the predictive model, highlighting the significance of robust 

datasets in achieving accurate predictions. A notable gap exists in addressing the challenge of developing an 

AQI prediction model for a region with limited dataset size. Hence, in this paper, a transfer learning approach 

is proposed, aiming to leverage knowledge gained from models trained on datasets from regions with ample 

data to improve AQI prediction accuracy in regions with limited dataset sizes. This paper also presents an 
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innovative methodology that combines temporal fusion transformer (TFT) with transfer learning to develop 

an enhanced and accurate model for predicting AQI. Given the limited data instances for the Cochin region, a 

strategic approach is adopted. The AQI prediction model built already using Trivandrum data with TFT is 

employed as a pretrained model. This pretrained knowledge is then utilized to construct a specialized TFT-

based AQI model tailored to the Cochin area. The results of transfer learning-based models are compared 

with AQI prediction models created without transfer learning. The architecture of TFT, method of 

implementing transfer learning and experimental results are explained in detail. 

 

 

2. BASE AND PRETRAINED AQI PREDICTION MODEL WITH TEMPORAL FUSION 

TRANSFORMER AND TRANSFER LEARNING 

Constructing an accurate AQI prediction model for the regions with limited data availability is a 

significant challenge. However, leveraging transfer learning offers a promising solution to this dilemma. By 

harnessing the knowledge acquired from a region with abundant data, transfer learning enables the adaptation 

of pre-existing models to suit the characteristics of a data-scarce region. In this context, a specialized 

transformer-based architecture known as TFT emerges as a crucial component. TFT, with its ability to 

capture complex temporal dependencies, serves as the foundation for the AQI prediction model. Central to 

the implementation of transfer learning is the utilization of pretrained models trained on data-rich regions. 

These pretrained models encapsulate valuable insights that can be transferred to enhance the performance of 

our AQI prediction model in regions with limited data. In this section, an exploration into the architecture of 

TFT, the concept of transfer learning, and the pivotal role of pretrained models is undertaken. The focus 

primarily lies on presenting the foundational framework of the base model, serving as the cornerstone for 

subsequent comparative analyses against transfer learning-enhanced models, as detailed in the experimental 

results section. 

  

2.1.  Temporal fusion transformer 

TFT is an advanced sequence-to-sequence forecasting model that effectively captures temporal 

dependencies and interactions within time-series data, enabling accurate predictions by incorporating both 

historical and contextual information [12]. TFT utilizes autoregressive components alongside the attention 

mechanisms, which facilitates the incorporation of different contextual information from variable time 

windows. This adaptability is particularly useful for time series data with varying context lengths, making 

TFT well-suited for capturing both short-term and long-term dependencies, enhancing its predictive 

capabilities. The architecture of TFT is given in Figure 1. 

 

  

 
 

Figure 1. Architecture of temporal fusion transformer 
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TFT’s architecture is composed of encoder and decoder components. The encoder takes in the 

historical observations, embedding them into a higher-dimensional space where self-attention mechanisms 

operate. This enables the model to understand the relationships between different time steps and extract 

meaningful features from the input sequence. The contextual embeddings generated by the encoder are then 

fed into the decoder, which employs autoregressive components to predict future values. TFT’s architecture 

is designed to automatically learn relevant features from the raw time series data that reduces the dependency 

on extensive manual feature engineering [13]. TFT’s ability to capture complex patterns and dependencies 

within the data means that it can effectively handle various data formats, making it a versatile solution that 

requires less preprocessing effort while still delivering accurate predictions. 

 

2.2.  Base air quality index prediction model with temporal fusion transformer 

In our previous work, a predictive model for air quality in the Cochin region was developed by 

integrating meteorological and pollutant features. Meteorological data obtained through the pollution control 

board’s portal and pollutant data sourced from the visual crossing website were combined based on the date. 

The comprehensive dataset spanned a period of 7 months, starting from July 2020 and ending in January 

2021, and was used in the study. Initial exploration of the data involved conducting exploratory data analysis 

(EDA), which facilitated a deeper understanding of the data’s inherent patterns and characteristics. The 

insights gleaned from the EDA phase guided the determination of necessary preprocessing steps. Finally, 

after implementing the necessary preprocessing steps, the dataset AQI-PMF-Cochin is formed with 5161 

instances and 17 attributes. The dataset was then input into the TFT model, leveraging its advanced 

architecture to enhance air quality predictions in the Cochin region.  

As data enters the architecture, the encoder layer captures temporal relationships using self-attention 

mechanisms, understanding interdependencies among time steps. Contextual embeddings, forged in this 

phase, encapsulate intricate patterns. These embeddings transition to the decoder layer, where autoregressive 

elements exploit historical insights for forecasting AQI values. This step ensures TFT comprehends time 

series data’s sequential nature, improving prediction accuracy. Passing through TFT’s layers, blending self-

attention and autoregressive mechanisms, yields predictions capturing air quality conditions. TFT effectively 

transforms time series air quality data, bridging history and future for enhanced AQI forecasting. 

The TFT architecture’s performance was enhanced by tuning hyperparameters [14]. The number of 

hidden units influences the model’s complexity, while dropout prevents overfitting learning rate, window 

size, and sequence length affect convergence and temporal context. Activation functions like ReLU, sigmoid, 

and Tanh introduce non-linearity. Optimizing these parameters was crucial for accurate AQI predictions with 

TFT, involving iterative experimentation and validation. 

A side from commonly tuned hyperparameters like learning rate, dropouts, and activation functions, 

several key parameters significantly influenced the performance tuning of the TFT-based AQI prediction 

model. The prediction time step dictates the model’s forecast duration, while the deep neural networks 

(DDN) encoding layer controls the depth of temporal encoding. The “state size” and “dropout rate” in TFT 

impacted the model’s representational capacity and regularization, respectively, crucial for capturing 

complex patterns and preventing overfitting. 

Various NN including LSTM, bidirectional long short-term memory (BiLSTM), and gated recurrent 

unit (GRU) were simultaneously implemented with the same dataset and AQI models were developed. The 

dataset was split, utilizing 80% of records for training and the remaining 20% for testing purposes. To assess 

model efficacy, performance evaluation metrics such as MAE, MSE, root mean squared error (RMSE), and 

R2 were employed. The developed models were named as LSTM-AQI-PMF, BILSTM-AQI-PMF, GRU-

AQI-PMF, and TFT-AQI-PMF. The outcomes of these assessments are presented in Table 1 and illustrated 

in Figure 2. The 𝑥 axis represents different models used for prediction. The 𝑦 axis represents scaled 

performance metrics ranging from 0 to 0.8.  

 

  

Table 1. Performance of DL models for Cochin data 
Models MAE MSE RMSE R2 score 

LSTM-AQI-PMF-Cochin 0.5013 0.4270 0.6534 0.6543 

BILSTM-AQI-PMF-Cochin 0.5123 0.4321 0.6723 0.6471 
GRU-AQI-PMF-Cochin 0.5462 0.4815 0.6939 0.6214 

TFT-AQI-PMF-Cochin 0.4285 0.3314 0.5756 0.7332 

 

 

2.3.  Pre-trained air quality index prediction model 

In the previous work, an AQI prediction model was developed using Trivandrum data. This data 

encompassed meteorological data collected from the central pollution control board portal and pollutant data 
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sourced from the visual crossing website spanning a timeframe of 3 years from 2017 to 2020. The data used 

includes 26,305 instances with 24 attributes.  

  

 

 
 

Figure 2. Comparative performance analysis of AQI prediction models 

 

 

The research commenced with an EDA phase, employing tools like histograms, heatmaps, boxplots, 

bar charts, and pair plots to identify the insights and trends within the dataset [15]. Outliers were identified 

and preprocessing measures were executed to rectify this issue, ensuring data integrity [16]. To enhance 

predictive capabilities, feature engineering was conducted to identify the attributes crucial for AQI 

prediction. The target attribute, AQI, was calculated for each data point and appended as the final attribute. 

Finally, the dataset was formed with 26,305 instances and 17 attributes. The dataset was named as AQI-PMF. 

The attributes used were timestamp, temperature, relative humidity, dew, sea level pressure, cloud cover, 

atmospheric temperature, rainfall, wind speed, PM2.5, PM10, CO, SO2, ozone, nox and NH3 and AQI.  

For model development, 80% of the records were allocated for training, while the remaining 20% 

were allocated for testing. Employing DL architectures, namely LSTM, BILSTM, GRU, and TFT, the 

prediction models were constructed and named it as LSTM_AQI_PMF, BILSTM_AQI_PMF, 

GRU_AQI_PMF and TFT_AQI_PMF. Performance of the models were evaluated based on MAE, MSE, 

RMSE, and R-squared value. The predictive results obtained are provided in Table 2 and illustrated in  

Figure 3. The developed models were named as LSTM-AQI-PMF, BILSTM-AQI-PMF, GRU-AQI-PMF and 

TFT-AQI-PMF. The outcomes of these assessments are presented in Table 1 and illustrated in Figure 2. The 

𝑥 axis represents different models used for prediction. The 𝑦 axis represents scaled performance metrics 

ranging from 0 to 1. 

 

  

Table 2. Performance of pretrained models 
  LSTM_AQI_PMF BILSTM_AQI_PMF GRU_AQI_PMF TFT_AQI_PMF 

MAE 0.31 0.51 0.37 0.20 
RMSE 0.42 0.60 0.49 0.26 

MSE 0.17 0.36 0.24 0.09 

R2 0.85 0.70 0.82 0.92 

 

 

Out of the four models used to predict air quality, the TFT_AQI_PMF model seems to be the best. 

TFT_AQI_PMF has the lowest MAE of 0.20, RMSE value of 0.26, and MSE of 0.09, indicating that it has 

the smallest error on average. TFT_AQI_PMF has the highest R2 of 0.92, suggesting that it captures the 

variance in the data most effectively and provides a better fit to the actual values. When comparing the 

results of all the models, the model TFT-AQI-PMF shows superior performance in predicting the AQI value. 

When comparing the results of the AQI models built for Trivandrum region given in Table 2 with the 

performance of the model’s LSTM-AQI-Cochin, BILSTM-AQI-Cochin, GRU-AQI-Cochin and TFT-AQI-

Cochin built for Cochin given in Table 1, in all the aspects such as MSE, MAE, RMSE and R2 the models 
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built for Trivandrum region shows superior performance. The two key features that contributed to the 

efficiency of the models are the ample availability of data instances used during the model’s construction and 

the implementation of TFT for constructing the model.  

 

 

 
 

Figure 3. Performance analysis of pretrained models 

 

 

Recognizing the success achieved with the AQI models created for Trivandrum, there is potential 

for further improvements in the efficiency of an AQI model designed for the Cochin region by leveraging the 

knowledge acquired from the Trivandrum dataset AQI-PMF. Therefore, the model TFT-AQI-PMF is utilized 

as the pretrained model for developing the AQI model specifically tailored to the Cochin region. This transfer 

learning approach ensures that, the valuable insights and patterns learned from Trivandrum’s air quality data 

can be effectively applied to enhance the performance of the Cochin AQI model. 

 

2.4.  Transfer learning 

Transfer learning is a potent ML approach that capitalizes on the insights gained from solving one 

task to enhance learning and performance on a different but related task [17]. This process involves training a 

model on a source task, often utilizing a vast and intricate dataset. The model learns to extract meaningful 

features and recognize complex patterns within the data during this pre-training phase. Subsequently, these 

learned features are extracted from specific layers of the model. They serve as a representation of the data’s 

intrinsic characteristics, encapsulating valuable information. With the extracted features as a foundation, a new 

model is constructed for the target task. While the architecture might resemble the original pretrained model, the 

parameters are fine-tuned using a smaller dataset closely linked to the target task. This fine-tuning process allows 

the model to adapt its features to the specific nuances of the new task, resulting in enhanced performance.  

Transfer learning is classified into two main types homogeneous transfer learning and 

heterogeneous transfer learning. Homogeneous transfer learning involves transferring knowledge between 

similar domains or tasks, while heterogeneous transfer learning deals with transferring knowledge between 

dissimilar domains or tasks [18]. Transfer learning encompasses two distinct approaches: the developer 

approach and the pretrained model approach. The pretrained model approach capitalizes on models 

previously trained on extensive datasets. These pretrained models encapsulate learned features and patterns 

[19]. By fine-tuning them with the specific dataset, they become adaptable to the new task. This strategy 

optimizes time and computational resources, as it leverages existing knowledge effectively. On the other 

hand, the developer approach involves crafting a custom model architecture tailored to the specific task [20]. 

This method demands domain expertise and manual feature engineering to extract pertinent insights from the 

limited dataset. In this work, homogeneous transfer learning is implemented. As the pretrained model is not 

available for AQI prediction, developer approach is followed. A model was built for Trivandrum in the 

previous work was used as a pretrained model. An inherent advantage of transfer learning lies in its ability to 

expedite training. By leveraging knowledge from a source task, models can avoid starting from scratch and 

benefit from pre-trained features, leading to quicker convergence during fine-tuning [21]. This acceleration is 

particularly valuable when faced with limited data or complex architectures, ultimately facilitating rapid 

model deployment and iterative development cycles. 
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2.4.1. Transfer learning mechanics 

Transfer learning represents a DL technique enabling the utilization of a pre-trained model as a 

foundational starting point for a novel task. The process involves creating a pretrained model and subsequently 

fine-tuning it on task-specific data. An essential step in this process is freezing the final layer of the pretrained 

model when transferring knowledge. During the initial training phase on a source task, the model is exposed to a 

large-scale dataset, learning to extract valuable features and patterns. Once this training is complete, the model’s 

layers become feature extractors, capturing higher-level representations that are potentially relevant to various 

tasks. When the focus shifts to the target task, the pretrained model is modified to align with the task’s 

requirements. A new architecture like pretrained model is created and the weights are transferred from the 

pretrained model to new model [22]. The new model is then fine-tuned using the task-specific data. Keeping the 

weights obtained from the pretrained model as foundation, new weights are calculated. This makes the model 

retains its ability to recognize more universal features, and accommodate the nuances of the target task. This 

approach strikes a balance between leveraging existing knowledge and adapting to the specific context of the 

target task, making it especially effective when there’s a scarcity of data for the target domain. The working 

of transfer learning is depicted in Figure 4. 
 

 

 
 

Figure 4. Working of transfer learning 

 

 

3. PROPOSED AQI PREDICTION MODEL USING TFT AND HOMOGENEOUS TRANSFER 

LEARNING  

This study introduces a novel approach for constructing an accurate AQI model by integrating 

transfer learning with the TFT framework. Addressing the challenge of limited prediction accuracy observed 

in AQI models designed for the Cochin region due to a scarcity of training samples, this research proposes 

the integration of transfer learning as a solution. The proposed architecture is given in Figure 5. 
 
 

 
 

Figure 5. Proposed architecture of transfer learning based AQI prediction model 
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The method for constructing an AQI prediction model for the Cochin region entails several 

sequential steps: i) creation of a pretrained model, ii) transfer of knowledge, and iii) fine-tuning with 

hyperparameters. 

− Creation of a pretrained model: a pretrained model for AQI prediction is currently unavailable. Therefore, 

the study relies on a model created in prior research as the pretrained AQI prediction model thus 

following developer approach. The pretrained model utilized in this work was developed using 

meteorological and pollutant features of Trivandrum region. Various architectures including LSTM, 

BILSTM, GRU, and TFT were employed to construct the models and are labelled as LSTM-AQI-PMF, 

BILSTM-AQI-PMF, GRU-AQI-PMF, and TFT-AQI-PMF. The detailed explanation about the dataset 

used, exploratory data analytics and preprocessing steps performed and the experimental results are 

explained in section as TFT consistently exhibits superior accuracy relative to other architectures, the 

TFT-AQI-PMF model was selected for use as the pretrained model. 

− Transfer of knowledge: the pretrained TFT model, initially trained on the Trivandrum dataset, has been 

adept at capturing intricate temporal patterns and interrelationships present within the data. The features 

derived from the model’s layers hold invaluable insights into the diverse influences of meteorological and 

pollutant attributes on AQI values. Serving as a foundational element for constructing the AQI model for 

Cochin data, the pretrained TFT model marks the outset of the process. Both the pretrained model and the 

Cochin dataset were trained with an identical set of feature attributes, thereby constituting a form of 

homogeneous transfer learning. Following this, a new TFT architecture resembling the structure of the 

pretrained model is constructed and initialized with the weights obtained from the pretrained model 

trained on the Trivandrum dataset. The newly created model is then trained with the Cochin dataset, 

leveraging the foundational weights from the pretrained model. This process facilitates the creation of 

new weights tailored specifically to the Cochin data. The knowledge acquired by the pretrained TFT model 

regarding general temporal patterns, correlations between attributes, and how they affect AQI is effectively 

transferred to the Cochin AQI model. However, as the model fine-tunes with Cochin data, it also learns to 

adapt to the specific intricacies of Cochin’s air quality data. 

− Finetuning with hyperparameters: the performance of the model is further enhanced by assigning the 

Hyperparameters such as number of hidden units, dropouts, learning rate, and activation functions. The 

special hyperparameters used to finetune the TFT model are DDN encoding layer, state size and loss 

functions. The number of hidden units in NN layers affects the model’s capacity to capture intricate data 

patterns, while dropout regularization mitigates overfitting by randomly deactivating neurons. Setting an 

appropriate learning rate influences how quickly the model converges during training. The size and 

sequence length of the input window determine the temporal scope of information used for predictions, 

adapting to the data’s time dependencies. Activation functions introduce non-linearity, impacting the 

model’s capacity to grasp complex relationships within the data [23]. DDN encoding layer significantly 

influences the model’s ability to represent AQI data. State size affects the model’s capacity to capture 

sequential patterns. Finally, the choice of loss functions is instrumental in guiding the model towards 

minimizing prediction errors. Careful hyperparameter tuning, considering these factors, is essential to 

optimize the AQI prediction model’s performance for a given dataset and use case [24]. The details about 

the values assigned for the hyperparameters are provided in Table 3. 

 

 

Table 3. Special hyperparameters of TFT 
No of 
time 

steps 

No of DDN 
encoder 

layers 

Number of 

batch sizes 

State 

size 

Learning 

rates 

No of 
attention 

heads 

Dropout 

rate 

Loss 
function 

A 

Loss 
function 

B 

Loss 
function 

G 

50 5 128 64 0.01 5 0.20, 
0.30, 

0.40 

0.5 0.01 0.1 

 

 

4. EXPERIMENTS AND RESULTS 

To create an AQI prediction model using transfer learning, the process involves training the AQI-

PMF-Cochin dataset while incorporating knowledge gained from the pretrained TFT-AQI-PMF model. By 

implementing the TFT architecture using python, a new AQI prediction model named TFT_AQI_PMF_TL is 

formulated. Eighty percentage of the records are used for training and twenty percentage of the records are 

used for testing. The performance of the models are evaluated using performance metrics MSE, MAE, 

RMSE, and R-squared value.  
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4.1.  Results of air quality index prediction model with various activation functions 

Activation functions introduce non-linearity, allowing NN to capture complex data patterns, 

mitigate gradient issues, and stabilize training. The choice of activation function creates an impact on the NN 

ability to model and approximate non-linear relationships in data. Using activation functions like ReLU, 

Leaky ReLU, and Tanh, experiments were conducted with epoch value as 50 to evaluate their impact on the 

performance of the model and the results are given in the Table 4. When comparing the model performance 

using activation functions ReLU, Leaky ReLU, and Tanh over 50 epochs, ReLU outperforms the others. It 

exhibits lower MAE, MSE, and RMSE, while Tanh results in higher errors. Additionally, ReLU yields a 

higher R2, indicating better fit. Thus, for further analysis, ReLU is recommended as the preferred activation 

function. The results are illustrated in Figure 6. The 𝑥 axis represents different activation functions and 𝑦 axis 

represents scaled performance metrics. 

 

 

Table 4. Performance of the TFT_AQI_PMF_TL model with various activation functions 

Performance metrics 
Activation functions 

TFT-ReLU TFT-leaky ReLU TFT-Tanh 

MAE 0.5267 0.5693 0.5926 

MSE 0.3637 0.4070 0.4603 
RMSE 0.6031 0.6377 0.6783 

R2 0.5443 0.4581 0.4192 

 

 

 
 

Figure 6. Performance analysis of AQI model with various activation functions 

 

 

4.2.  Results of AQI prediction model across the range of dropout rates 

Dropout enhances model performance by mitigating overfitting, promoting feature independence, 

and improving robustness, preventing NN from relying too heavily on specific neurons [25]. Choosing the 

appropriate dropout rate is essential to avoid underfitting. Experiment is conducted by altering dropout values 

in conjunction with the ReLU activation function across 50 epochs and the results obtained are provided in 

Table 5. In assessing the impact of varying dropout rates (0.2, 0.3, and 0.4) with a ReLU activation function 

across 50 epochs, several performance metrics were considered. Notably, the MAE exhibited a decreasing 

trend as the dropout rate increased. Similarly, the RMSE displayed its best performance at a dropout rate of 

0.3, implying improved precision in model predictions. The MSE is low at a dropout rate of 0.3. Lastly, the 

R2 score, which measures the goodness of fit, achieved its highest value at a dropout rate of 0.3, suggesting 

that this configuration resulted in the best overall model performance and ability to explain the variance in 

the data compared to the other dropout rates. The comparative results are provided in Figure 7. The 𝑥 axis 

represents performance metrics. The 𝑦 axis represents values of each metric corresponding to different 

dropout rates that is represented using coloured bars. 
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Table 5. Performance of the TFT_AQI_PMF_TL model with different drop out rates 

Performance metrics 
Dropouts 

0.2 0.3 0.4 

MAE 0.6423 0.6139 0.6922 

RMSE 0.7482 0.7229 0.7985 

MSE 0.5598 0.5226 0.6376 
R2 0.5264 0.5946 0.4891 

 

 

 
 

Figure 7. Performance analysis of AQI prediction model with different dropout rate 

 

 

4.3.  Result of AQI prediction model with different epochs 

Epochs enhance model performance by allowing iterative learning, improving accuracy, and 

enabling the model to capture complex patterns. In the experiment, the ReLU activation function and a 

dropout rate of 0.3 were employed, while values were systematically adjusted over varying epochs and the 

results obtained are provided in Table 6. When comparing the results observed at the various epochs, the 

results observed at the epoch 100 seem to be better when compared to other epochs. Low MAE, RMSE, and 

MSE are obtained at the epoch 100. High R2 value of 0.7332 was obtained at the epoch 100 whereas low R2 

value of 0.5946 was obtained for the epoch 50. The same is illustrated in Figure 8. The 𝑥 axis represents 

performance metrics. The 𝑦 axis represents values of each metric corresponding to different epochs that are 

represented using coloured lines. 
 
 

Table 6. Result of TFT_AQI_PMF_TL models with various epochs 

Performance metric 
TFT_AQI_PMF_TL 

Epoch – 50 Epoch-100 Epoch-150 

MAE 0.6139 0.4285 0.6143 

RMSE 0.7229 0.5756 0.7010 

MSE 0.5226 0.3314 0.4915 
R Squared 0.5946 0.7332 0.6239 

 

 

 
 

Figure 8. Performance analysis of AQI model with various epochs 
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4.4.  Comparative analysis of base models vs transfer learning-based air quality index model 

The effectiveness of the transfer learning-driven model, TFT_AQI_PMF_TL, is assessed by 

contrasting it with the foundational model, TFT_AQI_PMF_Cochin. The comparison, as depicted in Table 2, 

reveals that the transfer learning-based approach consistently outperforms the baseline models across all 

evaluated criteria. This is evidenced by the transfer learning models exhibiting lower values for MAE, 

RMSE, and MSE in comparison to the baseline models. The results observed for base model and transfer 

learning-based model is provided in Table 7 and illustrated in Figure 9. The 𝑥 axis represents performance 

metrics. The 𝑦 axis represents values of each metric corresponding to different models such as base model 

and transfer learning-based model. 

 

 

Table 7. Performance of base model and transfer learning-based model 
 MAE RMSE MSE R2 

TFT_AQI_PMF 0.5013 0.6534 0.4270 0.6543 

TFT_AQI_PMF_TL 0.4285 0.5756 0.3314 0.7332 

 

 

 
 

Figure 9. Comparative performance analysis between base model and transfer learning-based model 

 

 

The transfer learning based TFT_AQI_PMF_TL model achieves the lowest MAE value of 0.4285, 

indicating superior predictive accuracy, in contrast to the relatively higher MAE observed with the baseline 

TFT_AQI_PMF_Cochin model. Furthermore, the transfer learning model demonstrates a high R2 of 0.7332, 

indicative of its better overall goodness-of-fit, while the base model, TFT_AQI_PMF_Cochin, yields a 

comparably lower R2 of 0.6543. The findings of this study highlight the successful development of an 

accurate AQI model, specifically tailored for regions with limited data instances. Employing TFT, a powerful 

DDN, the model is meticulously crafted. TFT’s proficiency in capturing temporal patterns, handling diverse 

inputs including pollutant and meteorological data, and estimating uncertainties makes it a standout in AQI 

prediction. Due to the limited data available, the initial AQI model designed for the Cochin region did not 

perform well. However, by incorporating TFT alongside transfer learning, the model’s performance was 

notably improved. Leveraging the pre-existing model trained on the Trivandrum region, which possessed a 

more substantial dataset, played a pivotal role in significantly enhancing the accuracy of AQI predictions for 

Cochin. Additionally, fine-tuning hyperparameters further contributed to optimize the model’s efficiency. 

 

 

5. CONCLUSION 

This study aims to build an effective AQI prediction model for a region with data scarcity issue. The 

model is constructed through the integration of temporal fusion transfer and transfer learning technique. The 

dataset used in this research is obtained from the central pollution control board portal and the visual crossing 

website, encompassing both meteorological and pollutant data specific to the Cochin region. The prediction 

model is built using a special transformer-based architecture TFT. The performance of the model is further 

empowered with the application of transfer learning. A significant aspect of this approach is the utilization of 

knowledge from a pre-trained model developed using data from the Trivandrum region. By effectively 
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applying transfer learning in conjunction with TFT, the model becomes more adaptable and precise, 

capitalizing on the insights gained from the Trivandrum model to enhance predictions in the Cochin region. 

To assess the model’s performance, a comparison is made between the base model and the TFT-based 

transfer learning model. The results clearly demonstrate the superiority of the transfer learning-based model 

in all the aspects. Future work could extend this study by enriching the dataset with multimodal data and 

implementing heterogeneous transfer learning techniques. This approach would potentially enhance the 

model’s ability to leverage diverse types of information sources, improving its overall performance and 

robustness across varied data modalities and domains. 
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