Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1084
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYong-Ki Ma-
dc.contributor.authorArthi G-
dc.contributor.authorMarshal Anthoni S-
dc.date.accessioned2020-08-25T05:51:23Z-
dc.date.available2020-08-25T05:51:23Z-
dc.date.issued2018-03-27-
dc.identifier.issnPrint:1687-1839-
dc.identifier.issnOnline:1687-1847-
dc.identifier.urihttps://doi.org/10.1186/s13662-018-1562-6-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1084-
dc.description.abstractIn this paper, by employing the fractional power of operators, semigroup theory, and fixed point strategy we obtain some new criteria ensuring the existence and exponential stability of a class of impulsive neutral stochastic integrodifferential equations driven by a fractional Brownian motion. We establish some new sufficient conditions that ensure the exponential stability of mild solution in the mean square moment by utilizing an impulsive integral inequality. Also, we provide an example to show the efficiency of the obtained theoretical resulten_US
dc.language.isoenen_US
dc.publisherAdvances in Difference Equations, Springeren_US
dc.subjectExistenceen_US
dc.subjectExponential stabilityen_US
dc.subjectStochastic systemen_US
dc.subjectImpulsiveen_US
dc.subjectFractional Brownian motionen_US
dc.titleEXPONENTIAL STABILITY BEHAVIOR OF NEUTRAL STOCHASTIC INTEGRODIFFERENTIAL EQUATIONS WITH FRACTIONAL BROWNIAN MOTION AND IMPULSIVE EFFECTSen_US
dc.typeArticleen_US
Appears in Collections:International Journals



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.