Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1298
Full metadata record
DC FieldValueLanguage
dc.contributor.authorR, Kavitha-
dc.date.accessioned2020-09-04T06:54:36Z-
dc.date.available2020-09-04T06:54:36Z-
dc.date.issued2018-
dc.identifier.urihttps://www.jardcs.org/backissues/abstract.php?archiveid=4604-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1298-
dc.description.abstractIn this paper, new modified techniques are being used to choose the most relevant feature which is weighed against the typical techniques and offered to the classifier for exact and appropriate prediction of the diseases. The improved techniques CBMPSO, MBFO, BB-BAT are used for feature selection. These techniques determine best features which are provided to the ESVM, IELM and SADE ELM classifier and the effect are weighed against the standard algorithm. It has been proved that the improved method provides better accuracy in comparison to standard SVM and ELM algorithm.en_US
dc.language.isoenen_US
dc.publisherJournal of Advanced Research in Dynamical and Control Systemsen_US
dc.subjectCBMPSOen_US
dc.subjectESVMen_US
dc.subjectECG Signalsen_US
dc.titlePREDICTING ACCURACY IN ECG SIGNAL CLASSIFICATION: A COMPARATIVE METHOD FOR FEATURE SELECTIONen_US
dc.typeArticleen_US
Appears in Collections:International Journals

Files in This Item:
File Description SizeFormat 
PREDICTING ACCURACY IN ECG SIGNAL CLASSIFICATION A COMPARATIVE METHOD FOR FEATURE SELECTION.docx10.12 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.