Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/1531
Full metadata record
DC FieldValueLanguage
dc.contributor.authorT, Hashni-
dc.date.accessioned2020-09-16T04:58:17Z-
dc.date.available2020-09-16T04:58:17Z-
dc.date.issued2011-07-29-
dc.identifier.isbn978-81-8424-707-7-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/1531-
dc.description.abstractSwarm Intelligence (SI) is a branch of ArtificialIntelligence (AI), it is collective behavior ofsocial insect colonies and other animal societies.It designs algorithms for distributed problem-solving devices by using behavior of insects. BeeColony Optimization (BCO) is one of the recenttrends in the swarm Intelligence, has beensuccessfully applied to many combinatorialoptimization problems, mostly in transportation,location and scheduling fields. This paperdiscusses various types of scheduling, BeeColony Optimization (BCO) algorithms and itfocuses on scheduling using BCO algorithms.en_US
dc.language.isoenen_US
dc.publisherAllied Publishers Pvt.Ltden_US
dc.subjectSwarm Intelligence (SI)en_US
dc.subjectArtificialIntelligence (AI)en_US
dc.subjectBee Colony Optimization(BCO)en_US
dc.subjectSchedulingen_US
dc.titleA VERSATILE APPROACH FORSCHEDULING USING BEE COLONYOPTIMIZATION (BCO) ALGORITHMSen_US
dc.title.alternativeProceeding on Second National Conference on “Intelligent Computing” (SNCIC-2011).en_US
dc.typeBooken_US
Appears in Collections:National Conference

Files in This Item:
File Description SizeFormat 
A VERSATILE APPROACH FORSCHEDULING USING BEE COLONYOPTIMIZATION (BCO) ALGORITHMS.docx10.57 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.