Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2382
Title: BRAIN STROKE SEGMENTATION USING FUZZY C-MEANS CLUSTERING
Authors: S, Keerthana
K, Sathiyakumari
Keywords: FCM
MRI
CT
PET
hemorrhage
ischemic,
embolic
WMF
Issue Date: Nov-2016
Publisher: Foundation of Computer Science
Abstract: Image processing technique plays an important role in medical science for envisage various phenomenal structure of human body. Even though it helps more, sometimes it’s very difficult to detect abnormal structures of human body by using simple images. Magnetic Resonance Imaging (MRI) is the one of the most significant technique to analyze human body and helpful for distinguishing and expounding the neural architecture of human brain effectively. This proposed strategy focus on detection and extraction of brain stroke from different patient’s MRI images. In this work some preprocessing techniques like noise removal, filtering and segmentation is used for extract brain stroke partition accurately. The segmentation of brain stroke is implemented by using Fuzzy C-Means (FCM) clustering with two different levels of extraction. Edge detection is used for finding segmented portion of brain stroke edges accurately. Finally the stroke size is calculated for help doctors to make effective decisions about brain stroke. The experimental result proven that the proposed method is successful in detecting and extraction brain stroke efficiently with less time.
URI: https://www.ijcaonline.org/archives/volume154/number4/keerthana-2016-ijca-912105.pdf
http://localhost:8080/xmlui/handle/123456789/2382
ISSN: 0975 – 8887
Appears in Collections:International Journals

Files in This Item:
File Description SizeFormat 
BRAIN STROKE SEGMENTATION USING FUZZY C-MEANS CLUSTERING.docx10.49 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.