Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/2395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJ, Maria Shyla-
dc.contributor.authorM, Renuka Devi-
dc.date.accessioned2020-12-24T09:19:59Z-
dc.date.available2020-12-24T09:19:59Z-
dc.date.issued2016-01-
dc.identifier.issn0973-4562-
dc.identifier.urihttps://www.ripublication.com/Volume/ijaerv11n1.htm-
dc.identifier.urihttp://localhost:8080/xmlui/handle/123456789/2395-
dc.description.abstractData mining approach helps to diagnose patient’s diseases. Diabetes Mellitus is a chronic disease to affect various organs of the human body. Early prediction can save human life and can take control over the diseases. This paper explores the early prediction of diabetes using various data mining techniques. The dataset has taken 768 instances from PIMA Indian Dataset to determine the accuracy of the data mining techniques in prediction. The analysis proves that Modified J48 Classifier provide the highest accuracy than other techniques.en_US
dc.language.isoenen_US
dc.publisherResearch India Publicationsen_US
dc.subjectData miningen_US
dc.subjectDiabetesen_US
dc.subjectPredictionen_US
dc.subjectaccuracyen_US
dc.subjectclassificationen_US
dc.titleANALYSIS OF VARIOUS DATA MINING TECHNIQUES TO PREDICT DIABETES MELLITUSen_US
dc.typeArticleen_US
Appears in Collections:International Journals

Files in This Item:
File Description SizeFormat 
ANALYSIS OF VARIOUS DATA MINING TECHNIQUES TO PREDICT DIABETES MELLITUS.docx10.16 kBMicrosoft Word XMLView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.