Please use this identifier to cite or link to this item: http://localhost:8080/xmlui/handle/123456789/3899
Title: A DEEP LEARNING OF AUTISM SPECTRUM DISORDER USING NAÏVE BAYES, IBK AND J48 CLASSIFIERS
Authors: Gomathi, S
Keywords: Autism
Machine Learning
Weka
J48
IBk
k-NN
Classifier
Naïve Bayes.
Issue Date: Jul-2019
Publisher: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)
Abstract: Deciding the right classification algorithm to classify and predict the disease is more important in the health care field. The eminence of prediction depends on the accuracy of the dataset and the machine learning method used to classify the dataset. Predicting autism behaviors through laboratory or image tests is very time consuming and expensive. With the advancement of machine learning (ML), autism can be predicted in the early stage. The main objective of the paper is to analyze the three classifiers Naïve Bayes, J48 and IBk (k-NN). An Autism Spectrum Disorder (ASD) diagnosis dataset with 21 attributes is obtained from the UCI machine learning repository. The attributes have experimented with the three classifiers using WEKA tool. 10-fold cross validation is used in all three classifiers. In the analysis, J48 shows the best accuracy compared with the other two classifiers. The architecture diagram is shown to depict the flow of the analysis. The Confusion matrix with other relevant results and figures are shown.
URI: https://www.ijrte.org/wp-content/uploads/papers/v8i2/B2090078219.pdf
Appears in Collections:f) 2019-Scopus Open Access (PDF)

Files in This Item:
File Description SizeFormat 
A DEEP LEARNING OF AUTISM SPECTRUM DISORDER USING NAÏVE BAYES, IBK AND J48 CLASSIFIERS.pdf600.05 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.